
Contact: Marcelo MORENO
UFJF

Brazil (Federative Republic of)

Tel: +55 32 2102 3311
Fax:

Email: moreno@ice.ufjf.br

Contact: Luiz Fernando Gomes SOARES
PUC-Rio

Brazil (Federative Republic of)

Tel: +55 21 3527 1500 ext. 4330
Fax: +55 21 3527 1530

Email: lfgs@inf.puc-rio.br
Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the
Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related
work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 16

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2013-2016

7rTD 130 (WP 2/16)

English only

Original: English

Question(s): 13/16 Geneva, 28 October – 08 November 2013

TD

Source: Editor H.761

Title: H.761 “Nested context language (NCL) and Ginga-NCL” (Rev.): Initial draft of

revised text (Geneva, 28 October – 8 November 2013)

Summary

This document is the output text of Draft Recommendation ITU-T H.761 “Nested context language

(NCL) and Ginga-NCL” agreed by the SG16 meeting (Geneva, 28 October – 08 November 2013),

based on the discussions of COM16-C.425R1 (Brazil) "H.761: New NCL version and profile".

mailto:moreno@ice.ufjf.br
mailto:lfgs@inf.puc-rio.br
http://www.itu.int/md/meetingdoc.asp?lang=en&parent=T13-SG16-C-0425

- 2 -
7rTD 130 (WP 2/16)

Table of Contents

 Page

1 Scope ... 11

2 References ... 11

3 Definitions ... 11

3.1 Terms defined elsewhere .. 11

3.2 Terms defined in this Recommendation .. 13

4 Abbreviations and acronyms .. 14

5 NCL and Ginga-NCL ... 15

6 Ginga-NCL harmonization with other IPTV declarative environments 16

7 NCL: XML application declarative language for multimedia presentations 17

7.1 Identifiers for NCL 3.1 module and language profiles... 19

7.1.1 NCL version information .. 20

7.2 NCL modules ... 20

7.2.1 General remarks ... 20

7.2.2 Structure functionality .. 21

7.2.3 Components functionality ... 22

7.2.4 Interfaces functionality ... 34

7.2.5 Layout functionality ... 46

7.2.6 Presentation Specification functionality .. 49

7.2.7 Timing functionality ... 50

7.2.8 Transition Effects functionality ... 51

7.2.9 Navigational Key functionality ... 54

7.2.10 Presentation Control functionality ... 56

7.2.11 Linking functionality .. 59

7.2.12 Connectors functionality ... 60

7.2.13 Animation functionality .. 68

7.2.14 Reuse functionality ... 69

7.2.15 Metainformation functionality .. 72

7.3 NCL language profiles for IPTV ... 72

7.3.1 Attributes and elements of the NCL 3.1 Enhanced DTV profile 74

7.3.2 Attributes and elements of the NCL 3.1 Raw DTV profile 78

8 Media objects in NCL presentations ... 79

8.1 The Media Player API .. 80

8.1.1 Interface data types ... 80

- 3 -
7rTD 130 (WP 2/16)

 Page

8.1.2 Interface specification ... 84

8.1.3 Input Device Control Model ... 86

8.2 Expected behaviour of basic media players ... 87

8.2.1 start action on presentation events .. 87

8.2.2 stop action on presentation events ... 89

8.2.3 abort action on presentation events ... 89

8.2.4 pause action on presentation events .. 89

8.2.5 resume action on presentation events .. 90

8.2.6 start action on attribution events ... 90

8.2.7 stop, abort, pause, and resume actions on attribution events 90

8.2.8 addInterface NCL Editing Command ... 91

8.2.9 removeInterface NCL Editing Command .. 91

8.2.10 Natural end of a presentation .. 91

8.3 Expected behavior of declarative hypermedia players in NCL applications 91

8.3.1 start action on presentation events .. 92

8.3.2 stop action on presentation events ... 93

8.3.3 abort action on presentation events ... 93

8.3.4 pause action on presentation events .. 94

8.3.5 resume action on presentation events .. 94

8.3.6 Natural end of a temporal chain section presentation 94

8.3.7 start, stop, abort, pause and resume actions on attribution events 95

8.3.8 addEvent and removeEvent instructions .. 95

8.4 Expected behaviour of imperative-object media players in NCL

applications .. 95

8.4.1 start action on presentation events .. 96

8.4.2 stop action on presentation events ... 97

8.4.3 abort action on presentation events ... 98

8.4.4 pause action on presentation events .. 98

8.4.5 resume action on presentation events .. 99

8.4.6 Natural end of a code execution of presentation events 99

8.4.7 start action on attribution events ... 99

8.4.8 stop, abort, pause and resume actions on attribution events 100

8.4.9 addEvent and removeEvent instructions .. 100

8.5 Expected behavior of media players after actions applied to composite

objects .. 100

8.5.1 Binding a composite node ... 100

8.5.2 Starting a context presentation .. 100

8.5.3 Stopping a context presentation .. 100

- 4 -
7rTD 130 (WP 2/16)

 Page

8.5.4 Aborting a context presentation .. 101

8.5.5 Pausing a context presentation .. 101

8.5.6 Resuming a context presentation ... 101

8.6 Relation between the presentation-event state machine of a node and the

presentation-event state machine of its parent-composite node 101

9 NCL Editing Commands .. 102

9.1 Private bases ... 102

9.2 Command parameters XML schemas ... 113

9.3 NCL Editing Commands in Ginga-NCL ... 113

9.3.1 DSM-CC transport of Editing Command parameters using object

carousels ... 115

9.3.2 Transport of editing commands parameters using specific Ginga-

NCL structures ... 115

10 Lua imperative objects in NCL presentations ... 118

10.1 Lua language - functions removed from the standard Lua library 118

10.2 Execution model ... 118

10.3 Additional modules .. 118

10.3.1 The canvas module ... 119

10.3.2 The event module ... 131

10.3.3 The settings module .. 142

10.3.4 The persistent module ... 142

11 Security API .. 142

11.1 Security control in Ginga-NCL ... 142

12.2 The NCLua Security API .. 143

12.2.1 NCLua event classes for security control .. 143

List of Figures

 Page

Figure 5-1 – Ginga-NCL presentation environment ... 16

Figure 7-1 – Region positioning attributes ... 47

Figure 7-2 – Event state machine .. 61

Figure 8-1 – APIs for integrating media players with an NCL presentation engine implementation 80

- 5 -
7rTD 130 (WP 2/16)

List of Tables

 Page

Table 7-1 – The NCL 3.1 module identifiers ... 19

Table 7-2 – Extended Structure module used in the EDTV profile... 22

Table 7-3 – Allowed URIs .. 22

Table 7-4 – Global variables ... 25

Table 7-5 – MIME media types for Ginga-NCL formatters ... 32

Table 7-6 – Extended Media module ... 33

Table 7-7 – Extended Context module... 34

Table 7-8 – Extended MediaContentAnchor module ... 36

Table 7-9 – Reserved parameter/attribute and possible values ... 39

Table 7-10 – Reserved names for colour definition.. 44

Table 7-11 – Extended PropertyAnchor module .. 44

Table 7-12 – Extended CompositeNodeInterface module .. 46

Table 7-13 – Extended SwitchInterface module .. 46

Table 7-14 – Extended Layout module .. 48

Table 7-15 – Extended Descriptor module... 50

Table 7-16 – Extended TransitionBase module.. 51

Table 7-17 – Required transition types and subtypes ... 52

Table 7-18 – Extended Transition module ... 53

Table 7-19 – Extended TestRule module ... 57

Table 7-20 – Extended TestRuleUse module ... 57

Table 7-21 – Extended ContentControl module ... 58

Table 7-22 – Extended DescriptorControl module ... 59

Table 7-23 – Extended Linking module ... 60

Table 7-24 – Transition names for an event state machine ... 61

Table 7-25 – Reserved condition role values associated to event state machines 63

Table 7-26 – Simple condition qualifier values ... 63

Table 7-27 – Reserved action role values associated to event state machines 65

Table 7-28 – Extended CausalConnectorFunctionality module .. 66

Table 7-29 – Extended ConnectorBase module ... 67

Table 7-30 – Extended Import module .. 70

Table 7-31 – Extended Metainformation module ... 72

Table 7.32 – Extended structure module elements and attributes used in the Enhanced DTV profile

 ... 74

- 6 -
7rTD 130 (WP 2/16)

 Page

Table 7.33 – Extended media module elements and attributes used in the Enhanced DTV profile . 74

Table 7.34 – Extended context module elements and attributes used in the Enhanced DTV profile 74

Table 7.35 – Extended MediaContentAnchor module elements and attributes used in the Enhanced

DTV profile .. 74

Table 7.36 – Extended PropertyAnchor module elements and attributes used in the Enhanced DTV

profile ... 74

Table 7.37 – Extended CompositeNodeInterface module elements and attributes used in the

Enhanced DTV profile .. 75

Table 7.38 – Extended SwitchInterface module elements and attributes used in the Enhanced DTV

profile ... 75

Table 7.39 - Extended layout module elements and attributes used in the Enhanced DTV profile .. 75

Table 7.40 – Extended descriptor module elements and attributes used in the Enhanced DTV profile

 ... 75

Table 7.41 – Extended TransitionBase module elements and attributes used in the Enhanced DTV

profile ... 75

Table 7.42 – Extended Transition module elements and attributes used in the Enhanced DTV profile

 ... 75

Table 7.43 – Extended TestRule Module elements and attributes used in the Enhanced DTV profile

 ... 76

Table 7.44 – Extended TestRuleUse module elements and attributes used in the Enhanced DTV

profile ... 76

Table 7.45 – Extended ContentControl module elements and attributes used in the Enhanced DTV

profile ... 76

Table 7.46 – Extended DescriptorControl module elements and attributes used in the Enhanced

DTV profile .. 76

Table 7.47 - Extended linking module elements and attributes used in the Enhanced DTV profile . 76

Table 7.48 – Extended CausalConnector functionality module elements and attributes in the

Enhanced DTV profile .. 77

Table 7.49 – Extended ConnectorBase module element and attributes used in the Enhanced DTV

profile ... 77

Table 7.50 – Extended Import module elements and attributes used in the Enhanced DTV profile 77

Table 7.51 – Extended Metainformation module elements and attributes used in the Enhanced DTV

profile ... 77

Table 7.52 – Extended structure module elements and attributes used in the Raw DTV profile...... 78

Table 7.53 – Extended media module elements and attributes used in the Raw DTV profile.......... 78

Table 7.54 – Extended context module elements and attributes used in the Raw DTV profile 78

Table 7.55 – Extended MediaContentAnchor module elements and attributes used in the Raw DTV

profile ... 78

- 7 -
7rTD 130 (WP 2/16)

 Page

Table 7.56 – Extended PropertyAnchor module elements and attributes used in the Raw DTV

profile ... 78

Table 7.57 – Extended CompositeNodeInterface module elements and attributes used in the Raw

DTV profile .. 78

Table 7.58 - Extended linking module elements and attributes used in the Raw DTV profile 78

Table 7.59 – Extended CausalConnector functionality module elements and attributes in the Raw

DTV profile .. 79

Table 7.60 – Extended ConnectorBase module element and attributes used in the Raw DTV profile

 ... 79

Table 8.1 – IDL data types used in this Draft Recommendation... 84

Table 9.1 – Editing Command event descriptor ... 102

Table 9.2 – Editing Commands for Ginga’s private base manager ... 103

Table 9.3 – Identifiers used in Editing Commands .. 112

Table 9.4 - Editing command stream event descriptor ... 114

Table 9.5 – List of event identifiers defined by the mapping structure ... 116

Table 11.1 – Algorithms supported by the signature class ... 143

Table 11.2 – Optional algorithms for the signature class ... 144

Table 11.3 – Algorithms supported by the digest class .. 145

Table 11.4 – Algorithms supported by the cipher class .. 146

Electronic attachment: NCL 3.1 module schemas

- 8 -
7rTD 130 (WP 2/16)

Draft revised ITU-T H.761

Nested Context Language (NCL) and Ginga-NCL

AAP Summary

[To be added before Consent]

Summary

Recommendation ITU-T H.761 gives the specification of the Nested Context Language (NCL) and

of an NCL presentation environment called Ginga-NCL to provide interoperability and

harmonization among IPTV multimedia application frameworks.

NCL is a declarative glue language that holds media object presentations synchronized in time and

space, no matter the types of the media objects. Ginga-NCL is an NCL presentation engine built as

a component of a DTV middleware.

This Recommendation includes an electronic attachment containing NCL 3.0 module schemas used

in the Enhanced DTV profile.

Introduction

Nested Context Language (NCL) is a declarative XML-based language initially designed aiming at

hypermedia document specification for the Web. The language's flexibility, reusability,

multi-device support, application content adaptability and, mainly, the language intrinsic ability for

easily defining spatiotemporal synchronization among media assets, including viewer interactions,

make it an outstanding solution for IPTV systems. NCL is also the declarative language used in the

Japanese Brazilian terrestrial DTV standard (ISDB-T).

NCL is a glue language that holds media objects together in a multimedia presentation, no matter

which object types they are. In this sense, media objects may be image objects (JPEG, PNG, etc.),

video objects (MPEG, MOV, etc.), audio objects (MP3, WMA, etc.), text objects (TXT, PDF, etc.),

imperative objects (with Lua code, etc.), other declarative objects (HTML, LIME, SVG, MHEG,

nested NCL applications, etc.), etc. Which media objects are supported depends on which media

players are embedded in the NCL Player (part of the Ginga-NCL environment). As an example,

NCL treats an HTML document as one of its possible media objects. In this way, NCL does not

substitute but embed XHTML-based documents. The same reasoning applies to other media content

and multimedia content objects, and also to objects with content coded in any computer language.

Ginga-NCL is an NCL presentation engine built as a component of a DTV middleware. An open

source reference implementation of Ginga-NCL is available under the GPLv2 licence

(http://www.gingancl.org.br/index_en.html). This reference implementation was developed in a

way that it can easily integrate a variety of media-object players for audio, video, image, text, etc.,

including imperative execution engines and other declarative language players.

A special NCL object type defined in Ginga-NCL is NCLua, an imperative media-object with Lua

code as its content. Because of its simplicity, efficiency and powerful data description syntax, Lua

is considered the default scripting language for Ginga-NCL. The Lua engine is small and written in

ANSI/C, making it easily portable to several hardware platforms. The Lua engine is also distributed

as free software under the Massachusetts Institute of Technology (MIT) licence

(http://www.lua.org/license.html).

http://www.lua.org/license.html

- 9 -
7rTD 130 (WP 2/16)

- 11 -
7rTD 130 (WP 2/16)

Recommendation ITU-T H.761

Nested context language (NCL) and Ginga-NCL

1 Scope

This Recommendation1 specifies the Nested Context Language (NCL) and an NCL presentation

environment, called Ginga-NCL, to provide interoperability and harmonization among IPTV

multimedia application frameworks. To provide global standard IPTV services, it is foreseeable that

a combination of different standard multimedia application frameworks will be used. Therefore, this

Recommendation specifies the Nested Context Language, as one of those standards that compose

the multimedia application frameworks, to provide interoperable use of IPTV services. Ginga-NCL

is an NCL presentation environment that integrates NCL and Lua players. NCL and Lua

frameworks can be used in other declarative environments, but if they are used together they shall

follow the Ginga-NCL specification.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.222.0] Recommendation ITU-T H.222.0 (2006) | ISO/IEC 13818-1:2007,

Information technology – Generic coding of moving pictures and associated

audio information: Systems.

[ITU-T H.750] Recommendation ITU-T H.750 (2008), High-level specification of metadata

for IPTV services.

[ITU-T J.200] Recommendation ITU-T J.200 (2001), Worldwide common core

Application environment for digital interactive television services.

[ISO/IEC 13818-6] ISO/IEC 13818-6 (1998), Information technology – Generic coding of

moving pictures and associated audio information – Part 6: Extensions for

DSM-CC. Plus its Amd.1 (2000), Amd.2 (2000), Amd.3 (2001).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [ITU-T J.200]: Information that expresses a specific set of observable behaviour.

3.1.2 application environment [ITU-T J.200]: The context or software environment in which an

application is processed.

1 This Recommendation includes an electronic attachment containing NCL 3.1 module schemas

used in the Enhanced DTV profile.

- 12 -
7rTD 130 (WP 2/16)

3.1.3 application programming interface (API) [ITU-T J.200]: Software libraries that provide

uniform access to system services.

3.1.4 character [ITU-T J.200]: Specific "letter" or other identifiable symbol, e.g., "A".

3.1.5 data carousel [ITU-T J.200]: A transmission scheme defined in [ISO/IEC 13818-6], with

which data is transmitted repetitively. It can be used for downloading various data in broadcasting.

It is the scheme of the DSM-CC User-to-Network Download protocol that embodies the cyclic

transmission of data.

3.1.6 declarative application [ITU-T J.200]: An application which is started by, and primarily

makes use of, a declarative information to express its behaviour.

3.1.7 declarative application environment [ITU-T J.200]: An environment that supports the

processing of declarative applications.

3.1.8 digital storage media command and control (DSM-CC) [ITU-T J.200]: A control method

defined in [ISO/IEC 13818-6], which provides access to files or streams for digital interactive

services.

3.1.9 electronic program guide (EPG) [b-ITU-T H.770]: A service navigation interface which is

used especially for programs.

3.1.10 element [ITU-T J.200]: A portion of document delimited by tags.

3.1.11 elementary stream (ES) [ITU-T H.222.0]: A generic term for one of the coded video,

coded audio or other coded bit streams in PES packets. One elementary stream is carried in a

sequence of PES packets with one, and only one, stream id.

3.1.12 execution engine [ITU-T J.200]: A subsystem in a receiver that evaluates and executes

imperative applications consisting of computer language instructions and associated data and media

content. An execution engine may be implemented with an operating system, computer language

compilers, interpreters, and Application Programming Interfaces (APIs), which an imperative

application may use to present audiovisual content, interact with a user, or execute other tasks,

which are not evident to the user. A common example of an execution engine is the JavaTV

software environment, using the Java programming language and byte code interpreter, JavaTV

APIs, and a Java Virtual Machine for program execution.

3.1.13 locator [ITU-T J.200]: A linkage, expressed in the syntax provided in RFC 2396, which

provides a reference to an application or resource.

3.1.14 markup language [ITU-T J.200]: A formalism that describes document structures,

appearances, or other aspects. XHTML is an example of markup language.

3.1.15 normal play time (NPT) [ITU-T J.200]: The absolute temporal coordinates that

represent the position in a stream at which an event occurs.

3.1.16 packet identifier (PID) [ITU-T H.222.0]: A unique integer value used to identify

elementary streams of a program in a single or multi-program transport stream.

3.1.17 persistent storage [ITU-T J.200]: Memory available that can be read/written to by an

application and may outlive the application's life. Persistent storage can be volatile or non-volatile.

3.1.18 plug-in [ITU-T J.200]: A set of functionalities that may be added to a generic platform

in order to provide additional functionality.

3.1.19 presentation engine [ITU-T J.200]: A subsystem in a receiver that evaluates and

presents declarative applications (consisting of content such as audio, video, graphics, and text)

primarily based on presentation rules defined in the presentation engine. A presentation engine also

- 13 -
7rTD 130 (WP 2/16)

responds to formatting information, or "markup", associated with the content, to user inputs, and to

script statements, which control presentation behaviour and initiate other processes in response to

user input and other events.

3.1.20 receiver platform (platform) [ITU-T J.200]: The receiver's hardware, operating

system, and native software libraries.

3.1.21 resource [ITU-T J.200]: A network data object or a service that is uniquely identified in

a network. An application resource or environment resource.

3.1.22 service information (SI) [ITU-T J.200]: Data which describes programs and services.

3.1.23 transport stream (TS) [ITU-T H.222.0]: The MPEG-2 transport stream syntax for the

packetization and multiplexing of video, audio, and data signals for digital broadcast systems.

3.1.24 uniform resource identifier (URI) [ITU-T J.200]: An addressing method to access a

resource in local storage or on the Internet.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 application life-cycle: Time period from the moment an application is loaded until the

moment it is destroyed.

3.2.2 author: Person who writes NCL documents.

3.2.3 authoring tool: Tool to help authors create NCL documents.

3.2.4 attribute: Parameter that represents the character of a property.

3.2.5 declarative object content (or declarative media object content): Type of content that

takes the form of a code written in some declarative language.

NOTE – An XHTML-based document, an MHEG application and an embedded NCL application

are examples of declarative media objects.

3.2.6 element attribute (or attribute of an element): Property of an XML element.

3.2.7 event: Occurrence in time that may be instantaneous or have measurable duration.

3.2.8 hybrid application: A hybrid declarative application or a hybrid imperative application.

3.2.9 hybrid declarative application: Declarative application that makes use of imperative object

content.

NOTE – An NCL document with an embedded NCLua object is an example of a hybrid declarative

application.

3.2.10 hybrid imperative application: Imperative application that makes use of declarative

content.

NOTE – A Java Xlet that creates and causes the display of an NCL document instance is an

example of a hybrid imperative application.

3.2.11 imperative application: Application that is started by, and primarily makes use of,

imperative information to express its behaviour.

NOTE – A Java program and a Lua program are examples of imperative applications.

3.2.12 imperative application environment: Environment that supports the processing of

imperative applications.

- 14 -
7rTD 130 (WP 2/16)

3.2.13 imperative object content (or imperative media object content): Type of content that

takes the form of an executable code written in some non-declarative language.

NOTE – A Lua script is an example of imperative object content.

3.2.14 media object (or media node): Collection of named pieces of data that may represent a

media content, a multimedia content, or a program written in a specific language. Besides a media

content, a media object contains a set of properties concerning its media content, like those

specifying the position and size of the media content presentation, etc.

3.2.15 media player: Component of an application environment which decodes or executes a

specific content type.

3.2.16 native application: An intrinsic function implemented by a receiver platform.

NOTE – A closed captioning display is an example of a native application.

3.2.17 NCL application: Set of information that consists of an NCL document (the application

specification) and a group of data, including objects (media objects) accompanying the NCL

document.

3.2.18 NCL document (or NCL content): An NCL application specification; an NCL code

chunk.

3.2.19 NCL formatter: Software component that is in charge of receiving the specification of

an NCL document and controlling its presentation, trying to guarantee that author-specified

relationships among media objects are respected.

NOTE – NCL document renderer, NCL user agent, and NCL player are other names used with the

same meaning of NCL formatter.

3.2.20 NCL node (or NCL Object): Refers to a <media>, <context>, <body>, or <switch>

element of NCL.

3.2.21 NCL user agent: Any program that interprets an NCL document written in the

document language according to the terms of this specification.

NOTE – A user agent may display a document, trying to guarantee that author-specified

relationships among media objects are respected. The relation can be: read it aloud; cause it to be

printed; convert it to another format, etc.

3.2.22 profile: Specification for a class of capabilities providing different levels of

functionality in a receiver.

3.2.23 property element: NCL element that defines a property name and its associated value.

3.2.24 scripting language: Language used to describe an imperative object content that is

embedded in other host language. For example, Lua is a scripting language for NCL documents as

ECMAScript is for HTML documents.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ABNT Brazilian Association for Technical Standards (Associação Brasileira de Normas

Técnicas)

DTV Digital Television

GIF Graphics Interchange Format

HTML HyperText Markup Language

- 15 -
7rTD 130 (WP 2/16)

HTTP HyperText Transfer Protocol

ISDB-TB International Standard for Digital Broadcasting-Terrestrial TV with Brazilian

Innovations

JPEG Joint Photographic Experts Group

LIME Lightweight Interactive Multimedia Environment

MIME Multipurpose Internet Mail Extension

MNG Multiple Network Graphics

MPEG Moving Picture Experts Group

NCL Nested Context Language

NCM Nested Context Model

NPT Normal Play Time

PES Packetized Elementary Stream

PID Packet Identifier

SMIL Synchronized Multimedia Integration Language

TS Transport Stream

URI Universal Resource Identifier

URL Universal Resource Locator

W3C World-Wide Web Consortium

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

5 NCL and Ginga-NCL

Nested Context Language (NCL) is an XML application that allows authors to write interactive

multimedia presentations. Using NCL, authors can describe the temporal behaviour of a multimedia

presentation, associate hyperlinks (user interaction) with media objects, define alternatives for

presentation (adaptation), and describe the layout of the presentation on multiple devices. NCL also

allows for using Editing Commands (see Clause 9) coming from external sources, including those

commands for live application generation.

Ginga-NCL is the logical subsystem of the Ginga system that processes NCL declarative

applications (NCL documents). A key component of Ginga-NCL is the declarative content

decoding engine (NCL formatter or NCL player). Another important module of Ginga is the Lua

engine, which is responsible for interpreting NCLua objects, i.e., media objects with Lua code

[b-H.IPTV-MAFR.14]. Lua is the scripting language of NCL.

Ginga-NCL deals with applications collected inside data structures known as private bases. A

Private Base Manager component is in charge of receiving NCL document, Editing Commands and

maintaining the NCL documents being presented. In Ginga-NCL, an application can be generated

or modified on the fly, using NCL Editing Commands.

Figure 5-1 illustrates the Ginga-NCL presentation environment. Appendix I presents an overview of

the whole Ginga architecture.

- 16 -
7rTD 130 (WP 2/16)

Figure 5-1 – Ginga-NCL presentation environment

6 Ginga-NCL harmonization with other IPTV declarative environments

An NCL application has a strict separation between its content and its structure. NCL itself does not

define any media content. Instead, it defines the glue that holds media objects together in

multimedia presentations.

An NCL document only defines how media objects are structured and related, in time and space. As

a glue language, it does not restrict or prescribe the content types of its media objects. Which media

objects are supported depends on the media players that are coupled in the NCL formatter. Among

these players are the video and audio decoder/players that actuate in the video plane of a structured

screen (see Clause 7.2.6), usually implemented in hardware in an IPTV receiver. In this way, note

that video and audio streams of a service presented in the video plane are treated like all other

media objects (exhibited in any presentation plane – see Clause 7.2.6) that may be related using

NCL.

Another NCL media object that is required in a Ginga-NCL implementation is the HTML-based

media object [b-W3C XHTML]. Therefore, NCL does not substitute, but embed HTML-based

documents (or objects). As with other media objects, which HTML-based language will have

support in an NCL formatter is an implementation choice, and, therefore, it will depend on which

HTML browser will act as a media player integrated to the NCL formatter.

As a consequence, it is possible, for example, to have LIME browsers embedded in an NCL

document player. It is also possible to receive an HTML-based browser code through datacasting

and install it as a plug-in (usually as Lua objects).

It is also possible to have a harmonization browser implemented, and receiving the complementary

part, if needed, as a plug-in, in order to convert the HTML player into one of the several IPTV

browser standards.

Note that, in the extreme case, an NCL document may be reduced to having only one HTML media

object. In this case, the NCL document player will act nearly like an HTML browser.

No matter the case, the HTML-based browser implementation shall be a consequence of the

following requirements:

– minimization of the redundancy with existing NCL facilities;

– robustness;

– alignment with W3C specifications;

– rejection of non-conformant content;

– precise content layout control mechanisms;

- 17 -
7rTD 130 (WP 2/16)

– support of different pixel aspect ratios.

− support to Ginga-NCL’s player API.

Although an HTML-based browser is required to be supported, the use of HTML elements to define

relationships (including HTML links) is not recommended when authoring NCL documents.

Structure-based authoring should be emphasized for the well-known reasons largely reported in the

literature.

When any media player, in particular an HTML-based browser, is integrated to the Ginga-NCL

formatter, it shall support the generic API discussed in Clause 8. Therefore, for some HTML-based

browsers, an adapter module can be necessary to accomplish the integration.

Finally, for live editing, Ginga-NCL also supports event descriptors and Editing Commands defined

by NCL.

Another NCL media object that must be supported by a Ginga-NCL implementation is the

declarative NCL media object, i.e., a media object whose content is an NCL application. Therefore,

NCL applications can be embedded in NCL parent applications, as well as HTML-based

applications.

7 NCL: XML application declarative language for multimedia presentations

The modularization approach has been used in several XML-based language recommendations.

Modules are collections of semantically-related XML elements, attributes, and attribute values that

represent a unit of functionality. Modules are defined in coherent sets. This coherence is expressed

in that the elements of these modules are associated with the same namespace

[b-W3C XMLNAMES1].

A language profile is a combination of modules. Modules are atomic, i.e., they shall not be

subdivided when included in a language profile. Furthermore, a module specification may include a

set of integration requirements to which language profiles that include the module shall comply.

NCL has been specified in a modular way, allowing for the combination of its modules in language

profiles [b-NCL DTV]. Each profile may group a subset of NCL modules, allowing for the creation

of languages according to the users' needs. Moreover, NCL modules and profiles can be combined

with other language modules, allowing for the incorporation of NCL features into those languages,

and vice-versa.

Commonly, there is a language profile that incorporates nearly all the modules associated with a

single namespace. Other language profiles can be specified as subsets of the larger one. This is the

case of the Enhanced DTV profile and the Raw DTV profile of NCL, focal points of this

Recommendation.

The main purpose of being in conformance with a language profile is to enhance interoperability.

The mandatory modules are defined in such a way that any document interchanged in a conforming

language profile will yield a reasonable presentation. The document formatter, while supporting the

associated mandatory module set, shall ignore all other (unknown) elements and attributes.

NCL edition 3.1 is partitioned into 14 functional areas, which are further partitioned into modules:

1) Structure:

– Structure Module.

2) Components:

– Media Module.

- 18 -
7rTD 130 (WP 2/16)

– Context Module.

3) Interfaces:

– MediaContentAnchor Module.

– CompositeNodeInterface Module.

– PropertyAnchor Module.

– SwitchInterface Module.

4) Layout:

– Layout Module.

5) Presentation Specification:

– Descriptor Module.

6) Timing:

– Timing Module.

7) Transition Effects:

– TransitionBase Module.

– Transition Module.

8) Navigational Key:

– KeyNavigation Module.

9) Presentation Control:

– TestRule Module.

– TestRuleUse Module.

– ContentControl Module.

– DescriptorControl Module.

10) Linking:

– Linking Module.

11) Connectors:

– ConnectorCommonPart Module.

– ConnectorAssessmentExpression Module.

– ConnectorCausalExpression Module.

– CausalConnector Module.

– CausalConnectorFunctionality Module.

– ConnectorBase Module.

12) Animation:

– Animation Module.

13) Reuse:

– Import Module.

– EntityReuse Module.

– ExtendedEntityReuse Module.

14) Meta-Information:

– Metainformation Module.

- 19 -
7rTD 130 (WP 2/16)

7.1 Identifiers for NCL 3.1 module and language profiles

Each NCL profile should explicitly state the namespace URI that is to be used to identify it.

Documents authored in language profiles that include the NCL Structure module can be associated

with the "application/x-ncl+xml" mime type. Documents using the "application/x-ncl+xml" mime

type are required to be host language conformant.

The XML namespace identifiers for the complete set of NCL 3.1 modules, elements and attributes

are contained within the following namespace: http://www.ncl.org.br/NCL3.1/.

Each NCL module has a unique identifier. The identifiers for NCL 3.1 modules shall comply with

Table 7-1.

Modules may also be identified collectively. NCL 3.1 defines the following module collections are

defined:

– modules used by the NCL 3.1 Language profile:

 http://www.ncl.org.br/NCL3.1/LanguageProfile

– modules used by the NCL 3.1 Enhanced DTV profile:

 http://www.ncl.org.br/NCL3.1/EDTVProfile

– modules used by the NCL 3.1 Raw DTV profile:

 http://www.ncl.org.br/NCL3.1/RawDTVProfile

Table 7-1 – The NCL 3.1 module identifiers

Modules Identifiers

Animation http://www.ncl.org.br/NCL3.1/Animation

CompositeNodeInterface http://www.ncl.org.br/NCL3.1/CompositeNodeInterface

CausalConnector http://www.ncl.org.br/NCL3.1/CausalConnector

CausalConnectorFunctionality http://www.ncl.org.br/NCL3.1/CausalConnectorFunctionality

ConnectorCausalExpression http://www.ncl.org.br/NCL3.1/ConnectorCausalExpression

ConnectorAssessmentExpression http://www.ncl.org.br/NCL3.1/ConnectorAssessmentExpression

ConnectorBase http://www.ncl.org.br/NCL3.1/ConnectorBase

ConnectorCommonPart http://www.ncl.org.br/NCL3.1/ConnectorCommonPart

ContentControl http://www.ncl.org.br/NCL3.1/ContentControl

Context http://www.ncl.org.br/NCL3.1/Context

Descriptor http://www.ncl.org.br/NCL3.1/Descriptor

DescriptorControl http://www.ncl.org.br/NCL3.1/DescriptorControl

EntityReuse http://www.ncl.org.br/NCL3.1/EntityReuse

ExtendedEntityReuse http://www.ncl.org.br/NCL3.1/ExtendedEntityReuse

Import http://www.ncl.org.br/NCL3.1/Import

Layout http://www.ncl.org.br/NCL3.1/Layout

Linking http://www.ncl.org.br/NCL3.1/Linking

Media http://www.ncl.org.br/NCL3.1/Media

MediaContentAnchor http://www.ncl.org.br/NCL3.1/MediaContentAnchor

http://www.ncl.org.br/NCL3.1/
http://www.ncl.org.br/NCL3.1/LanguageProfile
http://www.ncl.org.br/NCL3.1/EDTVProfile
http://www.ncl.org.br/NCL3.1/RawDTVProfile

- 20 -
7rTD 130 (WP 2/16)

Table 7-1 – The NCL 3.1 module identifiers

Modules Identifiers

KeyNavigation http://www.ncl.org.br/NCL3.1/KeyNavigation

PropertyAnchor http://www.ncl.org.br/NCL3.1/PropertyAnchor

Structure http://www.ncl.org.br/NCL3.1/Structure

SwitchInterface http://www.ncl.org.br/NCL3.1/SwitchInterface

TestRule http://www.ncl.org.br/NCL3.1/TestRule

TestRuleUse http://www.ncl.org.br/NCL3.1/TestRuleUse

Timing http://www.ncl.org.br/NCL3.1/Timing

TransitionBase http://www.ncl.org.br/NCL3.1/TransitionBase

Transition http://www.ncl.org.br/NCL3.1/Transition

Metainformation http://www.ncl.org.br/NCL3.1/MetaInformation

Three SMIL modules [b-W3C SMIL 2.1] were used as the basis for the NCL Transition module and

the NCL Metainformation module definitions.

7.1.1 NCL version information

The following processing instructions shall be written in an NCL document. They identify NCL

documents that contain only the elements defined in this Recommendation, and the NCL version to

which the document conforms.

<?xml version="1.0" encoding="UTF-8"?>

<ncl id="any string" xmlns="http://www.ncl.org.br/NCL3.1/profileName">

The id attribute of an <ncl> element may receive any string that matches the NCName type

definition [Namespaces in XML:1999] as its value. That is, it may receive any string value that

begins with a letter or an underscore and that only contains letters, digits, ‘-’, ‘.’ and ‘_’.

The version number of an NCL document specification consists of a major number and a minor

number, separated by a dot. The numbers are represented in base 10 with leading zeros suppressed.

The initial standard version number is 3.0.

New NCL versions shall be released in accordance with the following versioning policy. If

receivers that conform to older versions can still receive and play a document based on the revised

specification, the new version of NCL shall be released with the minor number updated. If receivers

that conform to older versions cannot receive or play a document based on the revised

specifications in its full functionalities, the major number shall be updated.

A specific version is specified in the URI path http://www.ncl.org.br/NCLx.y/profileName, where

the version number "x.y" is written immediately after the "NCL".

The profileName, in the URI path, shall be EDTVProfile or RawDTVProfile.

7.2 NCL modules

7.2.1 General remarks

The main definitions made by the NCL 3.1 modules that are present in the NCL 3.1 Enhanced DTV

profile are given in Clauses 7.2.2 to 7.2.15.

http://www.ncl.org.br/NCLx.y/profileName

- 21 -
7rTD 130 (WP 2/16)

The complete definition of these NCL 3.1 modules, using XML Schemas, is presented in Annex A.

Any ambiguity found in this text can be clarified by consulting the XML Schemas (see Clause

7.2.2.1).

As stated in the scope of this Recommendation, NCL can be used in other declarative environments

besides Ginga-NCL. Constraints coming only from Ginga-NCL are always pointed out in a separate

paragraph of the subclauses of Clause 7.2, mentioning the Ginga-NCL specification.

After discussing each module, a table is presented indicating the module elements and their

attributes. The value of an attribute may not contain quotation marks ("), as usual in XML

attributes’ values. For a given profile, attributes and contents (child elements) of an element may be

defined in the module itself or in the language profile that groups the modules. Therefore, tables in

this clause show attributes and contents that come from NCL Enhanced DTV profile, besides those

defined in the NCL modules themselves. Tables in Clause 7.3.2 show the attributes and contents

that come from NCL Raw DTV profile, besides those defined in the NCL modules themselves.

Element attributes that are required are underlined. In the tables, the following symbols are used: (?)

optional (zero or one occurrence), (|) or, (*) zero or more occurrences, (+) one or more occurrences.

The child element order is not specified in the tables.

Additionally, an NCL application is presented in Appendix II, for example purposes only.

7.2.2 Structure functionality

The Structure functionality has just one module, called Structure, which defines the basic structure

of an NCL document.

7.2.2.1 Structure module

The Structure module defines the <ncl> root element, the <head> element and the <body> element,

following the terminology adopted by other W3C standards. The <body> element of an NCL

document is treated as an NCM context node [b-NCM Core].

In NCM, the conceptual data model of NCL, a node may be a context, a switch, or a media object.

All NCM nodes are represented by corresponding NCL elements. Context nodes (see Clause 7.2.3)

contain other NCM nodes and links.

Most NCL elements have the id attribute. This attribute may receive as its value any string that

matches the NCName type definition [Namespaces in XML:1999], i.e., it may receive any string

value that begins with a letter or an underscore and that only contains letters, digits, ‘-’, ‘.’ and ‘_’.

The id attribute uniquely identifies an element within a document. Its value is an XML identifier.

In particular, the <ncl> element shall define the id attribute, and the <body> element may define the

id attribute.

The xmlns attribute of <ncl> declares an XML namespace, i.e., it declares the primary collection of

XML-defined constructs used in the document. The attribute value is the URL identifying where the

namespace is officially defined. Two values are allowed for the xmlns attribute:

"http://www.ncl.org.br/NCL3.1/EDTVProfile", for the Enhanced DTV profile, and

"http://www.ncl.org.br/NCL3.1/RawDTVProfile", for the Raw DTV profile. An NCL formatter

shall know that the schemaLocation for these namespaces is, by default, respectively:

http://www.ncl.org.br/NCL3.1/profiles/NCL31EDTV.xsd,

http://www.ncl.org.br/NCL3.1/profiles/NCL31RawDTV.xsd

Child elements of <head> and <body> are defined in other NCL modules.

The elements of this module, their child elements, and their attributes shall comply with Table 7-2.

- 22 -
7rTD 130 (WP 2/16)

Table 7-2 – Extended Structure module used in the EDTV profile

Elements Attributes Content

ncl id, xmlns (head?, body?)

head (importedDocumentBase?, ruleBase?, transitionBase?,
regionBase*, descriptorBase?, connectorBase?, meta*,

metadata*)

body id (port| property| media| context| switch| link | meta | metadata)*

7.2.2.1.1 Exception handling

– Documents with id attributes whose values are not strings that match the NCName

production [Namespaces in XML] shall be ignored by an implementation in conformance

with this Recommendation.

– Documents with xmlns attribute different from the three previously mentioned values and

that are not in conformance with future versions of this Recommendation shall be ignored

by an implementation in conformance with this Recommendation.

– All attributes other than id and xmlns of the <ncl>element should be ignored by the NCL

player.

7.2.3 Components functionality

The Components functionality is partitioned into two modules, called Media and Context.

7.2.3.1 Media module

The Media module defines basic media object types. For defining media objects, this module

defines the <media> element. Besides the id attribute. each media object may define two main

attributes: src, which defines the URI of the object content, and type, which defines the object type.

In an implementation in conformance with Ginga-NCL specification, the URIs (uniform resource

identifiers) defined in Table 7-3 shall be supported.

Table 7-3 – Allowed URIs

Scheme Scheme-specific-part Use

file: ///file_path/#fragment_identifier Local files

http: //server_identifier/file_path/#fragment_identifier Remote files downloaded using the HTTP
protocol. It can also refer to streams using
HTTP-based streaming protocols like

MPEG DASH.

https: //server_identifier/file_path/#fragment_identifier Remote files downloaded using the HTTPS

protocol

rtsp: //server_identifier/file_path/#fragment_identifier Streams using the RTSP protocol

rtp: //server_identifier/file_path/#fragment_identifier Streams using the RTP protocol

ncl-

mirror:

//media_element_identifier Content flow identical to the one in

presentation by another media element

ts: //server_identifier/program_number.component_

tag

Elementary streams contained in a transport

stream

- 23 -
7rTD 130 (WP 2/16)

An absolute URI by itself contains all information needed to locate its resource. Relative URIs are

also allowed. Relative URIs are incomplete addresses that are applied to a base URI to complete the

location. The portions omitted are the URI scheme and server, and potentially, part of the URI path.

The primary benefit of using relative URIs is that documents and directories containing them may

be moved or copied to other locations without requiring changing the URI attribute values within

the documents. This is especially interesting when transporting documents from the server part

(usually broadcasters) to the receivers. Relative URI paths are typically used as a short means of

locating media files stored in the same directory as the current NCL document, or in a directory

close to it. They often consist of just the filename (optionally with a fragment identifier into the

file). They may also have a relative directory path before the filename.

It should be emphasized that references to streaming video or audio resources shall not cause

tuning. References that imply tuning to access a resource shall behave as if the resource were

unavailable. Relative URI is also allowed in using “ts” scheme. In this case, server_identifier can be

omitted, and the source of the tuned “ts” shall be assumed.

NOTE 1 – Media objects with the same src value and with the corresponding URI scheme different

from "ncl-mirror" have the same content to be presented. Moreover, the content of each object can

have its presentation started at different moments in time, depending on the time the media objects

were started. In addition, their presentations are completely independent. On the other hand, if the

URI scheme is equal to "ncl-mirror", the media object whose src attribute defines this scheme and

the media object referred by the scheme shall have the same content presentation and at the same

moment in time, if both media objects are being presented, independently from their starting time.

Being different media objects, their properties may have different values, as, for example, those that

define the presentation location.

Media objects with the same src values and whose URIs refer to the same elementary media stream

being broadcasted (pushed data) shall have the same content presentation and in the same moment

in time, if they are being presented. However, as being different media objects, their properties may

have different values, as, for example, those defining the presentation location.

For media objects with the src attribute whose value identifies the "ts" scheme, the

program_number.component_tag values, can be substituted by the following reserved words:

– video: The primary video ES of the tuned or identified services.

– audio: The primary audio ES of the tuned or identified services.

– text: The primary text ES of the tuned or identified services.

– video(i): The ith smaller video ES component_tag listed in the PMT of the tuned or

identified services.

– audio(i): The ith smaller audio ES component_tag listed in the PMT of the tuned or

identified services.

– text(i): The ith smaller text ES component_tag listed in the PMT of the tuned or identified

services.

The allowed values for the type attribute shall follow MIME Media Types format (or, more simply,

MIME types). A MIME type is a character string that defines the class of media (audio, video,

image, text, application) and a media encoding type (such as jpeg, mpeg, etc.). MIME types may be

registered or informal. Registered MIME types are controlled by the Internet Assigned Numbers

Authority (IANA). Informal MIME types are not registered with IANA, but are defined by common

agreement.

A <media> element whose type value is prefixed by “application/x-” may be used to specify a

declarative hypermedia-object or an imperative media object in an NCL application. In this case,

- 24 -
7rTD 130 (WP 2/16)

the object’s content (located through the src attribute) shall be a declarative or a non-declarative

code span to be executed, respectively.

In an implementation in conformance with Ginga-NCL specification, two special types are defined:

"application/x-ginga-NCL", and "application/x-ginga-NCLua".

NOTE 2 – In an implementation in conformance with Ginga-NCL specification, "application/x-

ginga-NCL" and "application/x-ginga-NCLua" special types may also be defined as "application/x-

ncl-NCL" and "application/x-ncl-NCLua", respectively. However this is should be avoided since

this is deprecated, and will likely be unsupported in future versions of NCL.

The "application/x-ginga-NCL" type shall be applied to <media> elements with NCL code content

(therefore, an NCL application can embed another NCL application). The "application/x-ginga-

NCLua" type shall be applied to <media> elements with Lua imperative code content (see

Clause 10).

NCL media objects embedded in NCL applications and HTML-based media objects embedded in

NCL applications shall follow the guidelines established in Clause 8.3 (see also [b-NCL Decl.

Obj.]).

NCLua objects embedded in NCL applications shall follow the guidelines established in Clause 8.4.

Two other special types shall be supported by any NCL presentation engine: "application/x-ncl-

time", and "application/x-ncl-settings".

NOTE 3 – In an implementation in conformance with Ginga-NCL specification, "application/x-ncl-

settings" and "application/x-ncl-time" special types may also be defined as "application/x-ginga-

settings" and "application/x-ginga-time", respectively. However this is should be avoided since this

is deprecated, and will likely not be supported in future versions of NCL.

The application/x-ncl-time type shall be applied to a special <media> element (there may be only

one in an NCL document), whose content is the absolute value of the Universal Time Coordinated

(UTC). Note that any continuous <media> element with no source can be used to define a clock

relative to the <media> element start time. . In this <media> element, <area> child elements can be

defined whose begin and end attributes delimit a period of time from the start of the <media>

element.

The content of a <media> element of application/x-ncl-time type is a string with the following

syntax: Year":"Month":"Day":"Hours":"Minutes":"Seconds"."Fraction, where Year is an integer;

Month is an integer in the [1,12] interval; Day is an integer in the [1,31] interval; Hours is an

integer in the [0,23] interval; Minutes is an integer in the [0,59] interval; Seconds is an integer in

the [0,59] interval; Fraction is a positive integer.

The "application/x-ncl-settings" type shall be applied to a special <media> element (there may be

only one in an NCL document) whose properties are global variables defined by the document

author or reserved environment variables that may be manipulated by the NCL player. Table 7-4

states the already defined variables, their semantics and their possible values. In the table, if the

value is specified in italic, it means any value of the type in italic. If the value is a list, its elements

must be separated by ‘,’ and after the ‘,’ there can be zero or more space characters.

- 25 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

system

– set of variables managed by the

receiver system;

– they may be read, but they may
not have their values changed by

an NCL application, a Lua

procedure or any other

imperative or declarative

procedure;

– receiver's native applications
may change the variables'

values;

– they shall persist during the

receiver life cycle.

system.language Audio language . “ISO 639-1 code | ISO 639-2

code”

system.caption Caption language. “ISO 639-1 code | ISO 639-2

code”

system.subtitle Subtitle Language. “ISO 639-1 code | ISO 639-2

code”

system.returnBitRate(i) Bit rate of the ith network interface in Kbit/s. “positive real”

system.screenSize Device screen size, in (lines, pixels/line), when a class is

not defined.

“positive integer, positive

integer”

system.screenOrientation Device screen orientation “portrait” | “landscape”

system.screenVideoSize Resolution set for the device’s screen video plane, in

(lines, pixels/line), when a class is not defined

“positive integer, positive

integer”

system.screenBackgroundSi

ze

Resolution set for the device’s screen background plane,

in (lines, pixels/line), when a class is not defined

“positive integer, positive

integer”

system.screenGraphicSize Resolution set for the device's screen graphics plane, in

(lines, pixels/line), when a class is not defined.

“positive integer, positive

integer”

system.audioType Type of the device audio, when a class is not defined. "mono" | "stereo" | "5.1"

system.screenSize(i) Screen size of the class (i) of devices in (lines,

pixels/line).

“positive integer, positive

integer”

system.screenGraphicSize(i) Resolution set for the screen graphics plane of the class

(i) of devices, in (lines, pixels/line).

“positive integer, positive

integer”

system.audioType(i) Type of the audio of the class (i) of devices. "mono" | "stereo" | "5.1"

system.devNumber(i) Number of exhibition devices registered in the class (i). “positive integer”

system.classType(i) Type of the class (i). "passive" | "active"

system.classMin(i) Minimum number of devices in class(i) “positive integer”

- 26 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

system.classMax(i) Maximum number of devices in class(i) “positive integer” |

“unbounded”

system.info(i) List of class (i)'s media players. “string”

system.classNumber Number of classes that have been defined. “positive integer”

system.CPU CPU performance in MIPS, regarding its capacity to run

applications.

“positive real”

system.memory Minimum memory space in Mbytes provided to

applications.

“positive integer”

system.operatingSystem Type of the operating system. “string”

system.luaVersion Version of the Lua engine supported by the receiver. “string”

system.luaSupportedEventC

lasses

List of event classes supported by NCLua, separated by

‘,’

“string”

system.nclVersion NCL language version. “string"

system.nclProfiles
Language profiles supported by the receiver, separated

by ‘,’

“string”

system.gingaNclVersion Ginga-NCL environment version. “string”

system.* Any variable with the "system." prefix not listed in this

table shall be reserved for future use.

user

– set of variables managed by the

receiver system;

– they may be read, but they may
not have their values changed by
an NCL application, a Lua

procedure or any other

user.age User age. “positive integer”

user.location User location shall be the country code concatenated with
the country post code. The country code specification

shall follow the ISO 3166-1 alpha 3 format.

“string”

user.genre User genre. "m"| "f"

user.language User language “ISO 639-1 code | ISO 639-2

code”

- 27 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

imperative or declarative

procedure;

– receiver's native applications
may change the variables'

values;

– they shall persist during the

receiver life cycle.

user.* Any variable with the "user." prefix not listed in this

table shall be reserved for future use.

si

– set of variables managed by the

middleware system;

– they may be read but they may
not have their values changed by

an NCL application, a Lua

procedure or any other
imperative or declarative

procedure;

– they shall persist at least until

the next channel tuning.

si.numberOfServices Number of services available in the tuned channel for the

local country.

NOTE – The value of this variable should be

obtained from the number of PMT tables specified

in the PAT table of the transport stream received

from the tuned channel (see [ITU-T H.222.0]). The

variable value should take into account only the

PMT tables whose field country_code are equal to

the value of the user.location variable of the Settings

node (media object of "application/x-ncl-settings"

type).

“positive integer”

si.channelNumber Number of the tuned channel. “positive integer”

si.* Any variable with the "si." prefix not listed in this table

shall follow the rules specified for the group.

- 28 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

metadata

– set of variables managed by the

middleware system;

– they may be read but they may
not have their values changed by

an NCL application, a Lua

procedure or any other

imperative or declarative

procedure;

– they shall persist at least until

the next channel tuning.

metadata.* Any variable with the "metadata" prefix shall follow the
rules specified for the group. Variables in this group shall

follow the high-level specification of metadata for IPTV

services [ITU-T H.750].

default

– set of variables managed by the

receiver system;

– they may be read and have their
values changed by an NCL

application, a Lua procedure or
any other imperative or

declarative procedure;

– receiver's native applications
may change the variables'

values;

default.focusBorderColor Default colour applied to the border of an element in

focus.

"white" | "black" | "silver" |

"gray" | "red" | "maroon" |
"fuchsia" | "purple" | "lime" |

"green" | "yellow" | "olive" |

"blue" | "navy" | "aqua" | "teal"

default.selBorderColor Default colour applied to the border of an element in

focus when activated.

"white" | "black" | "silver" |
"gray" | "red" | "maroon" |

"fuchsia" | "purple" | "lime" |
"green" | "yellow" | "olive" |

"blue" | "navy" | "aqua" | "teal"

default.focusBorderWidth Default width (in pixels) applied to the border of an

element in focus.

“integer”

- 29 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

– they shall persist during all
receiver life cycle, however,

they shall be set to their initial
values when a new channel is

tuned.

default.focusBorderTranspa

rency

Default transparency applied to the border of an element

in focus.

“Real value between 0 and 1” |
“Real value in the range

[0,100] ending with the
character ‘%’ (e.g., 30%)”

NOTE: "1" or "100%" means

full transparency and "0" or

"0%" means no transparency.

default.* Any variable with the "default." prefix not listed in this

table shall be reserved for future use.

service

– set of variables managed by the

NCL Player;

– they may be read and have their
values changed by an NCL

application of the same service;

– they may be read but they may
not have their values changed by

a Lua procedure or any other

imperative or declarative
procedure of the same service;

however, variable changes may

be done using NCL commands;

– they shall persist at least during

the service life cycle.

service.currentFocus The focusIndex value of the <media> element on focus. “positive integer”

service.currentKeyMaster Identifier (id) of the <media> element that controls the
navigational keys; if the <media> element is not being

presented or is not paused, the navigational key control

pertains to the NCL Formatter.

“string”

service.* Any variable with the "service." prefix not listed in this

table shall follow the rules specified for the group.

- 30 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

channel

– set of variables managed by the

NCL player;

– they may be read and have their
values changed by an NCL

application of the same channel;

– they may be read but they may
not have their values changed by

a Lua procedure or any other

imperative or declarative
procedure; however, variable

changes may be done using

NCL commands;

– they shall persist at least until

the next channel tuning.

NOTE – A channel is defined as a

set of related services.

channel.keyCapture Request of alphanumeric keys for NCL applications. “string”

channel.virtualKeyboard Request of a virtual keyboard for NCL applications. “true” | “false”

channel.keyboardBounds Virtual keyboard region (left, top, width, height). “positive integer, positive
integer, positive integer,

positive integer”

channel.* Any variable with the "channel." prefix not listed in this

table shall follow the rules specified for the group.

- 31 -
7rTD 130 (WP 2/16)

Table 7-4 – Global variables

Group Variable Semantics Possible values

shared

– set of variables managed by the

NCL Player;

– they may be read and have their
values changed by an NCL

application;

– they may be read but they may
not have their values changed by

a Lua procedure or any other

imperative or declarative
procedure; however, variable

changes may be done using

NCL commands;

– they shall persist at least during

the receiver life cycle.

shared.* Any variable with the "shared" prefix shall follow the

rules specified for the group.

- 32 -
7rTD 130 (WP 2/16)

Table 7-5 shows some possible values of the type attribute for the Enhanced DTV profile and the

associated file extensions for an implementation in conformance with Ginga-NCL specification.

The required types shall be defined for each particular TV system. The type attribute is optional and

should be used to guide the player's (presentation tool) choice by the formatter. When the type

attribute is not specified, the formatter shall use the content extension specification in the src

attribute to make the player's choice.

When there is more than one player for the type supported by the formatter, the player property of

the <media> element may specify which one will be used for presentation. Otherwise the formatter

shall use a default player for that type of media.

Table 7-5 – MIME media types for Ginga-NCL formatters

Media type File extensions

text/html htm, html

text/plain txt

text/css css

text/xml xml

image/bmp bmp

image/png png

image/mng mng

image/gif gif

image/jpeg jpg, jpeg

audio/basic wav

audio/mp3 mp3

audio/mp2 mp2

audio/mpeg mpeg, mpg

audio/mpeg4 mp4, mpg4

video/mpeg mpeg, mpg

application/x-ginga-NCL ncl

application/x-ginga-NCLua lua

application/x-ncl-settings no src (source)

application/x-ncl-time no src (source)

The instance, refer and descriptor attributes of <media> elements are extensions defined in other

modules and are discussed in the definition of these modules.

However, it should be stressed that a <media> element of application/x-ginga-NCL type may not

have the instance and refer attributes.

The elements of the Media module, their child elements, and their attributes shall comply with

Table 7-6.

- 33 -
7rTD 130 (WP 2/16)

Table 7-6 – Extended Media module

Elements Attributes Content

media id, src, refer,
instance, type,

descriptor

(area|property)*

7.2.3.1.1 Default values

– The system.nclVersion and system.gingaNclVersion properties of the media object of

“application/x-ginga-settings” (or “application/x-ncl-settings”) type have “3.1”and “1.1” as

default values, respectively.

7.2.3.1.2 Exception handling

– If a <media> element does not define the src and type attributes it shall be considered a media

object with a continuous content. In the <media> element, <area> child elements can be

defined whose begin and end attributes delimit a period of time from the start of the <media>

element.

– Every action on a <media> element representing an unavailable resource shall be ignored by

the NCL formatter. Every condition or assessment based on a <media> element representing

an unavailable resource shall be considered as false.

– If the number of media objects of a certain type surplus the maximum allowed number for

that type in a particular exhibition device, the start of exceeding media objects shall be

ignored.

– The “ncl-mirror” scheme shall not refer to a <media> element of application/x-ginga-NCL,

and application/x-ginga-NCLua types. If a <media> element whose src attribute specifies the

“ncl-mirror”scheme and this scheme refers to a <media> element of application/x-ginga-NCL

or application/x-ginga-NCLua types, the <media> element shall be ignored.

– References to streaming video or audio resources may not cause tuning. References that imply

tuning to access a resource shall behave as if the resource were unavailable.

– If the file associated to a media object is updated in an object carrousel, and if the media

object is not being presented when the updated version of the file arrives, the new version

must replace the previous one. Therefore, when the media object is started after the update is

completed, it will load the contents of the latest version. If the media object is started during

the update, it must load the contents from the latest version of the file that has completely

arrived. That version must be kept throughout the update process, only being replaced at the

end. If the file associated to a media object is updated in an object carrousel, and if the media

object is already being presented when the updated version of the file arrives, the media

object presentation shall not be affected. However, the updated version must be used in future

presentations.

- 34 -
7rTD 130 (WP 2/16)

7.2.3.2 Context module

The Context module is responsible for the definition of context nodes (context objects) through

<context> elements. An NCM context node is a particular type of NCM composite node and is

defined as containing a set of nodes and a set of links. As usual, the id attribute uniquely identifies

each <context> element within a document.

The refer attribute is an extension defined in the Reuse module (see Clause 7.2.14).

The elements of the Context module, their child elements, and their attributes shall be in agreement

with Tables 7.7.

Table 7-7 – Extended Context module

Elements Attributes Content

context id, refer (port|property|media|context|link|switch|meta|metadata)*

7.2.4 Interfaces functionality

The Interfaces functionality allows for the definition of node (media object or composite object)

interfaces that will be used in relationships with other node interfaces. This functionality is

partitioned into four modules:

– MediaContentAnchor, which allows for content anchor (or area) definitions as interfaces of

media nodes (<media> elements);

– PropertyAnchor, which allows for the definition of node properties as interfaces of nodes;

– CompositeNodeInterface, which allows for port definitions as interfaces of composite

nodes (<context> and <switch> elements); and

– SwitchInterface, which allows for the definition of special interfaces for <switch>

elements.

7.2.4.1 MediaContentAnchor module

The MediaContentAnchor module defines the <area> element, which allows for the definition of

content anchors representing:

– spatial portions, through the coords attribute (as in XHTML);

– temporal portions relative to the beginning time of the content presentation, through begin and

end attributes;

– temporal and spatial portions through coords, begin and end attributes;

– textual chunks, through the beginText,beginPosition, endText and endPosition attributes that

define the string and the string's occurrence in the text, respectively;

– temporal portions based on the number of audio samples or video frames, through first and

last attributes, which shall indicate the initial and final sample/frame;

– temporal portions, through first and last attributes based on Normal Play Time(NPT) values.

When values of the first and last attributes of an <area> element are specified in NPT, they

refer to the temporal base specified in the contenId attribute of the <media> element that

contains the <area> element.

- 35 -
7rTD 130 (WP 2/16)

– Moreover, the <area> element also allows for defining a content anchor based on:

– the label attribute, which specifies a string that should be used by a media player to identify a

content region;

– the clip attribute, which specifies a triple value that shall be used by a media player to identify

a clip in the content of a declarative hypermedia object.

Except for the <media> element of the application/x-ncl-time type, the begin and end attributes

shall be specified according with one of the following syntax:

i) Hours“:”Minutes“:”Seconds“.”Fraction, Hours is an integer in the [0,23] interval; Minutes is

an integer in the [0,59] interval; Seconds is an integer in the [0,59] interval; Fraction is a

positive integer; or

ii) Seconds“s”, where Seconds is a positive real number.

For the <media> element of the “application/x-ncl-time” type, the begin and end attributes shall be

specified according with the following syntax:

Year“:”Month“:”Day“:”Hours“:”Minutes“:”Seconds“.”Fraction (according to the country time

zone).

The NCL user agent is responsible for translating the value for the country time zone to the UTC

time.

The first and last attributes shall be specified according to one of the following syntaxes:

 a) Samples"s", where Samples is a positive integer;

 b) Frames"f", where Frames is a positive integer;

 c) NPT"npt", where NPT is the Normal Play Time value.

When values of the first and last attributes of an <area> element are specified in NPT, they refer to

the temporal base specified in the contentId property of the <media> element that contains the

<area> element.

For media objects of text type, the beginText and beginPosition attributes specifies the beginning of

the text anchor. The text anchor ending may be specified using the endTex and endPosition

attributes, which also define a string and the string’s occurrence in the text, respectively.

EXAMPLE Assume the text content: “AAA AA AA AAA”; and the attributes

beginText=“AA”.

For beginPosition=1, the anchor begins in the underlined bold string: AAA AA AA AAA

For beginPosition=2, the anchor begins in the underlined bold string: AAA AA AA AAA

For beginPosition=3, the anchor begins in the underlined bold string: AAA AA AA AAA

For media objects of "application/x-ginga-NCL" type, the clip and label attribute values may be

defined, and shall follow the guidelines established for any declarative hypermedia objects in NCL,

as follows.

A declarative hypermedia object (a <media> element of a declarative type with prefix

“application/x-”) is handled by the NCL parent application as a set of temporal chains. A temporal

chain corresponds to a sequence of presentation events (occurrences in time, see definition of events

in Clause 7.2.12), initiated from the event that corresponds to the beginning of the declarative

hypermedia object presentation. Sections in these chains may be associated with declarative

hypermedia object's <area> child elements using the clip attribute. The clip value is a triple of the

form "(chainId, beginOffset, endOffset)". The chainId parameter identifies one of the chains

- 36 -
7rTD 130 (WP 2/16)

defined by the declarative hypermedia object. The beginOffset and endOffset parameters have the

same sintax defined for the begin and end attributes, and define the begin time and the end time of

the content anchor, with regards the beginning time of the chain. When a declarative hypermedia

object defines just one temporal chain, the chainId parameter may be omitted (and also the first

comma in the list). The beginOffset and endOffset may also be omitted when they assume their

default values: 0s or the chain end time, respectively (e.g., “(chainId,,50s)”..

For a declarative hypermedia object with NCL code (i.e. <media> element of "application/x-ginga-

NCL" type), a temporal chain is identified by one of the NCL document entry points, defined by

<port> elements (see clause 7.2.4.3),, children of the document's <body> element.

A declarative hypermedia object's content anchor can also refer to any content anchor defined

inside the declarative code itself. In this case, the label attribute of the <area> element that defines

the content anchor has a value such that the declarative hypermedia object player is able to identify

one of its internally defined content anchors. For a declarative hypermedia object with NCL code

(i.e. <media> element of “application/x-ginga-NCL” type), one of its <area> elements may refer to

a <port> element, child of its <body> element, through its label attribute (that must have the <port>

element's id as its value). In its turn, the <port> element may be mapped to an <area> element

defined in any object nested in the declarative NCL hypermedia object. Note that a declarative

hypermedia object can externalize content anchors defined inside its content to be used in links

defined by the parent NCL object in which the declarative hypermedia object is included.

In a media object of "application/x-ginga-NCLua" type, an imperative-code span may be associated

with an <area> element using the label attribute. In this case, the label value shall identify the code

span. An <area> element may also be used just as an interface to be used as conditions of NCL

links (set by Lua code) to trigger actions on other objects.

As usual, <area> elements shall have the id attribute, which uniquely identifies the element within a

document.

In NCM, every node (media or context node) shall have an anchor with a region representing the

whole content of the node. This anchor is called the whole content anchor and is declared by default

in NCL documents. Except for media objects with imperative code content (e.g. <media> element

of "application/x-ginga-NCLua" type), every time an NCL component is referred without

specifying one of its anchors, the whole content anchor is assumed.

The <area> element and its attributes shall comply with Table 7-8.

Table 7-8 – Extended MediaContentAnchor module

Elements Attributes Content

area id, coords, begin, end, beginText,
beginPosition, endText, endPosition, first, last,

label, clip

Empty

7.2.4.1.1 Default values

– If the begin attribute is defined, but the end attribute is not specified, the end of the whole

media content presentation shall be assumed as the anchor ending. On the other hand, if the

end attribute is defined, but without an explicit begin definition, the start of the whole media

content presentation shall be considered as the anchor beginning. Analogous behaviour is

expected from the first and last attributes.

- 37 -
7rTD 130 (WP 2/16)

– In textual content anchors, if the end of the anchor region is not defined, the end of the text

content shall be assumed. If the beginning of the content anchor region is not defined, the

beginning of the text content shall be assumed.

– When a declarative hypermedia-object defines just one temporal chain, the chainId parameter

may be omitted. The begingOffset and endOffset may also be omitted when they assume their

default values: 0s and the chain end time, respectively.

– Except for media objects with imperative code content (<media element of “application/x-

ginga-NCLua” type, for example), every time an NCL component is referred without

specifying one of its anchors, the whole content anchor is assumed.

7.2.4.2 PropertyAnchor module

The PropertyAnchor module defines an element named <property>, which may be used for defining

a node (media object, context or switch) property or a group of node properties as one of its

interfaces (anchors). The <property> element defines the name attribute, which indicates the name

of the property or property group, and the value attribute, an optional attribute that defines an initial

value for the name property. The parent element shall not have <property> elements with the same

name attribute values.

It is possible to have NCL document players (formatters) that define some node properties as node

interfaces, implicitly. However, in general, it is a good practice to explicitly declare the interfaces.

A <media> element may have several embedded properties. Examples of these properties can be

found among those that define the media object placement during a presentation, the presentation

duration, and others that define additional presentation characteristics: device (defining the device

class in which the presentation will take place), top, left, bottom, right, width, height, zIndex, plane

or plan (defining in which plane of a structured screen an object will be placed), explicitDur,

background (specifying the background colour used to fill the area of a region displaying a media

that is not filled by the media itself), transparency (indicating the degree of transparency of an

object presentation), rgbChromakey (defining the RGB colour to be set as transparent), visible

(allowing the object presentation to be seen or hidden), fit (indicating how an object will be

presented), scroll (which allows for the specification of how an author would like to configure the

scroll in a region), style (which refers to a style sheet [b-W3C CSS2] with information for text

presentation, for example), soundLevel, balanceLevel, trebleLevel, bassLevel, fontColor,

fontFamily, fontStyle, fontSize, fontVariant, fontWeight, player, reusePlayer (which determines if a

new player shall be instantiated or if a player already instantiated shall be used), playerLife (which

specifies what will happen to the player instance at the end of the presentation), moveLeft,

moveRight, moveUp, moveDown, focusIndex, focusBorderColor, focusBorderWidth,

focusBorderTransparency, focusSrc, focusSelSrc, selBorderColor, transIn, transOut, freeze, etc.

Application authors can also define other own properties associated to <media> elements.

All properties may assume as their initial values those defined in homonym attributes of their node-

associated descriptor and region (see Clauses 7.2.6 and 7.2.5). However, it should be remarked that

<descriptor>, <descriptorParam>, and <region> elements (see Clauses 7.2.5 and 7.2.6) are only

additional options for defining initial values for properties. Every property (and their initial values)

defined by those elements may be defined using only <property> elements. Moreover, when the

value of a property is specified in a <property> element, it has precedence over the value defined in

homonym attributes of its node’s associated descriptor or region.

Every <property> element has a Boolean attribute called externable that shall be set to “true” by

default. When the property is intended to be used in a relationship, it shall be explicitly declared as

a <property> (interface) element and with the externable attribute equal to “true”.

- 38 -
7rTD 130 (WP 2/16)

NOTE - If a property is defined in a <descriptor> or <region> element, its externable attribute shall

be set to “false” by default.

Neither the id property (attribute) of a <media>, <context> or <switch> element nor the src

property (attribute) of a <media> element shall have the externable associated attribute equal to

“true”. In other words, they cannot be changed by an action of a <link> element.

If the left, right, top, bottom, width or height properties defined in <property> elements have values

in percentages (%), the percentages refer to the screen size of the device where the media object

will be exhibited.

For soundLevel, trebleLevel and bassLevel audio properties, their values must be interpreted

relative to the recorded volume of the media. A setting of “0%” mutes the media. A value of

‘100%´ will play the media at its recorded volume (i.e., 0 dB).

The plane property defines in which plane of a structured screen an object will be placed. The plan

property has the same meaning but must be avoided, since it is deprecated, and it will likely be

unsupported in future versions of NCL. The number of planes depends on the DTV system. Usually

we can have at least three planes: background, video and graphics. The graphics plane superposes

the video plane that superposes the background plane. The zIndex property gives the superposition

order in just one plane, i.e., the plane superposition order has precedence over zIndex values.

If a video stream of a tuned service, which is not referred by any src attribute of <media> elements,

is being presented on the video plane, the first started media object referring to this stream gets

control of this content presentation, i.e., no new content presentation is started. Any other further

<media> element that refers to this content by using the src attribute, when started, begins a new

presentation.

If there is no media object being presented on the video plane referring (through its src attribute) to

a video stream of a tuned service (no matter in which application of the private base that represents

this TV channel), the video streams that were previously being presented in this plane when there

were no application running shall be presented, with the same previous video parameters, although

not being referred by any media object in exhibition.

If an audio stream of a tuned service, which is not referred by any src attribute of <media>

elements, is being presented, the first started media object referring to this stream gets control of

this content presentation, i.e., no new content presentation is started. Any other further <media>

element that refers to this content by using the src attribute, when started, begins a new

presentation.

If there is no media object being presented referring (through its src attribute) to an audio stream of

a tuned service (no matter in which application of the private base that represents this TV channel),

the audio streams that were previously being presented when there were no application running

shall be presented, with the same previous audio parameters, although not being referred by any

media object in exhibition.

The visible property may also be associated with a <context> or <body> element. In these cases,

when the property’s value is equal to “true”, the visible property of each child element of the

composition shall be taken into account. When the property’s value is equal to “false”, all child

elements of the composition shall be hidden, i.e., although the values of their visible properties do

not change, the child elements are not visible. In particular, when a document has its <body>

element with its visible property set to “false” and its presentation event in the paused state (see

definition of events in Clause 7.2.12), the document is said to be in standby. When all applications

in presentation are in standby, the video streams that were previously being presented in the video

plane, when there was no application running, shall be presented, with the same previous video

parameters; similarly, the audio streams that were previously being presented when there were no

- 39 -
7rTD 130 (WP 2/16)

application running shall be presented, with the same previous audio parameters. When any

application returns from its standby state, it regains the whole control of these audio and video

streams, and the presentation resumes with the same media content presentation as before when the

last application has entered in the standby state.

An object with a visible property equal to “false”, i.e., a hidden object, may not transit selection

event machines defined by its content anchors to the “occurring” state (see Clause 7.2.12) while the

visible property value persists as “false”.

Some properties have their values defined by the middleware system, as for example, the contentId

property (associated to a continuous-media object whose content is defined referring to an

elementary stream), which has the "null" string as its initial value, and is set to the identifier value

transported in the NPT reference descriptor (in a field of the same name: contentId), as soon as the

associated continuous-media object is started. Another example is the standby property that shall be

set to "true" while an already started continuous-media object content referring to an elementary

stream is temporarily interrupted by another interleaved content, in the same elementary stream.

NOTE 5 – The standby property may be set to "true" when the identifier value transported in the

NPT reference descriptor (in a field of the same name: contentId) signalized as non-paused is

different from the contentId property value.

The standby property can be used to pause an application when the continuous media object content

referring to an elementary stream is temporarily interrupted by another interleaved content, for

example an advertisement (TV commercial). The same property can then be used to resume the

application.

A group of node properties may also be explicitly declared as a single <property> (interface)

element, allowing authors to specify the value of several properties within a single property. The

following groups shall be recognized by an NCL formatter: location, grouping (left, top), in this

order; size, grouping (width, height), in this order; and bounds, grouping (left, top, width, height), in

this order. When a formatter treats a change in a property group, it shall only test the process

consistency at its end.

The words device, top, left, bottom, right, width, height, zIndex, plane, plan, explicitDur,

background, transparency, rgbChromakey, visible, fit, scroll, style, soundLevel, balanceLevel,

trebleLevel, bassLevel, fontColor, fontFamily, fontStyle, fontSize, fontVariant, fontWeight, player,

reusePlayer, playerLife, moveLeft, moveRight, moveUp, moveDown, focusIndex,

focusBorderColor, focusBorderWidth, focusBorderTransparency, focusSrc, focusSelSrc,

selBorderColor, transIn, transOut, freeze, location, size and bounds are reserved words for values of

the name attribute of the <property> element. The possible values for these reserved property names

shall comply with Table 7-9. Implementation in agreement with this Recommendation shall be able

to handle all these properties.

Table 7-9 – Reserved parameter/attribute and possible values

Parameter/attribute

name
Value Default

top, left, bottom, right,

width, height

Type: layout
A real number in the range [0,100] ending with the
character "%" (e.g., 30%), or an integer value

specifying the attribute in pixels (a positive integer,

in the case of width and height), ending optionally

If any of these properties
is not defined and cannot
be inferred from the NCL

rules, they shall assume

value "0"

- 40 -
7rTD 130 (WP 2/16)

Table 7-9 – Reserved parameter/attribute and possible values

Parameter/attribute

name
Value Default

with “px” string (e.g. 30px).

location Type: position
Two numbers separated by a comma, each one

following the value rule specified for left and top
parameters, respectively. There may be zero or

more space characters after the comma that shall de

ignored.

See first row

size Type: size
Two values separated by a comma. Each value shall

follow the same rule specified for width and height
parameters, respectively. There may be zero or

more space characters after the comma that shall de

ignored.

See first row

bounds Type: sizePosition
Four values separated by commas. Each value shall

follow the same rule specified for left, top, width
and height parameters, respectively. There may be

zero or more space characters after the comma that

shall de ignored.

See first row

plane Type: plane
"background", "video" or "graphic", following the

plane definition of the DTV system.

"video", for media with
src attribute referring to a

TS's PES,
"graphics", for all other

cases.

baseDeviceRegion Type: sizePosition.
Four values separated by comma. Each value shall

follow the same rule specified for left, top, width

and height parameters, respectively. There can be
zero or more space characters after the comma that

shall de ignored.

See first row

device Type: device.
“systemScreen (i)” or “systemAudio(i)” value,

where i is an integer greater than zero.

systemScreen (0)

explicitDur Type: time

i) Hours":"Minutes":"Seconds"."Fraction, where
Hours is an integer in the [0,23] interval; Minutes is

an integer in the [0,59] interval; Seconds is an

integer in the [0,59] interval; and Fraction is a

positive integer.

ii) Seconds"s", where Seconds is a positive real

number.

iii) The null string.

For continuous media, the
default value shall be set

to the natural content

presentation duration,
otherwise it must be set to

the “null” string

- 41 -
7rTD 130 (WP 2/16)

Table 7-9 – Reserved parameter/attribute and possible values

Parameter/attribute

name
Value Default

background Type: color
Reserved colour names: "white", "black", "silver",
"gray", "red", "maroon", "fuchsia", "purple", "lime",

"green", "yellow", "olive", "blue", "navy", "aqua",

or "teal". The background value may also be the

reserved value "transparent". This can be helpful to
present transparent images, like transparent GIFs,

superposed on other images or videos.

transparent

visible Type: Boolean

"true" or "false".

true

transparency Type: percent
A real number in the range [0,1] or a real number in

the range [0,100] and ending with the character "%"

(e.g., 30%), specifying the degree of transparency
of an object presentation ("1" or "100%" means full

transparency and "0" or "0%" means opaque).

0

rgbChromakey Type: RGB888

An RGB 888 value, or the “null” string.

The “null” string

fit Type: fit

"fill", "hidden", "meet", "meetBest", or "slice"

value.

"fill": scale the object's media content so that it
touches all edges of the box defined by the object's

width and height attributes.

"hidden": if the intrinsic height (width) of the media
content is smaller than the height (width) attribute,

the object shall be rendered starting from the top
(left) edge and have the remaining height (width)

filled up with the background colour; if the intrinsic

height (width) of the media content is greater than

the height (width) attribute, the object shall be
rendered starting from the top (left) edge until the

height (width) defined in the attribute is reached,

and have the part of the media content below (to the

right of) the height (width) clipped.

"meet": scale the visual media object while
preserving its aspect ratio until its height or width is

equal to the value specified by the height or width

attributes. The media content left-top corner is

positioned at the top-left coordinates of the box; the
empty space at the right or the bottom shall be filled

up with the background colour.

"meetBest": the semantic is identical to "meet"
except that the image is not scaled greater than

100% in either dimension.

"slice": scale the visual media content while

fill

- 42 -
7rTD 130 (WP 2/16)

Table 7-9 – Reserved parameter/attribute and possible values

Parameter/attribute

name
Value Default

preserving its aspect ratio until its height or width
are equal to the value specified in the height and

width attributes and the defined presentation box is

completely filled. Some parts of the content may get
clipped. Overflow width is clipped from the right of

the media object. Overflow height is clipped from

the bottom of the media object.

scroll Type: scroll
"none", "horizontal", "vertical", "both", or

"automatic" value.

none

style Type: style

The locator of a stylesheet file, or the “null” string.

the “null” string

soundLevel,

trebleLevel, bassLevel

Type: percent
A real number in the range [0,1] or a real number in

the range [0,100] and ending with the character "%"

(e.g., 30%).

1

balanceLevel Type balance

A real number in the range [–1,1].

0

zIndex Type: unsigned integer
An integer number in the range [0,255], where

regions with greater zIndex values are stacked on

top of regions with smaller zIndex values.

0

fontColor Type: color
"white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow",

"olive", "blue", "navy", "aqua", or "teal".

white

textAlign Type: alignment.
Sets the horizontal alignment of text: “left”, “right”,

“center”, or “justified” value.

left

fontFamily Type: fontFamily
A prioritized list of font family names and/or

generic family names.

DTV system dependent

fontStyle Type: fontStyle
Sets the style of the font ("normal" or "italic"

value).

normal

fontSize Type: fontSize

The size of a font.

DTV system dependent

fontVariant Type: fontVariant
Displays text in a "small-caps" font or a "normal"

font.

normal

fontWeight Type: fontWeight

Sets the weight of a font ("normal" or "bold" value).

normal

player Type: string.

Establishes the player to be used

-

- 43 -
7rTD 130 (WP 2/16)

Table 7-9 – Reserved parameter/attribute and possible values

Parameter/attribute

name
Value Default

reusePlayer Type: Boolean

"false", "true" value.

false

playerLife Type: playerLife

"keep" or "close" value.

close

moveLeft, moveRight,
moveUp, moveDown,

focusIndex

Type: optionalInteger

Positive integer or the “null” string.

the “null” string

focusBorderColor; Type: color
"white", "black", "silver", "gray", "red", "maroon",

"fuchsia", "purple", "lime", "green", "yellow",

"olive", "blue", "navy", "aqua", or "teal".

DTV system dependent:
the value defined by the

default.focusBorderColor

selBorderColor Type: color
"white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow",

"olive", "blue", "navy", "aqua", or "teal".

DTV system dependent:
the value defined by the

default.selBorderColor

focusBorderWidth Type: unsigned integer

An integer value specifying the attribute in pixels.

DTV system dependent:
the value defined by the

default.focusBorderWidth

focusBorderTranspare

ncy

Type: percent
A real number in the range [0,1] or a real number in

the range [0,100] ending with the character "%"

(e.g., 30%), specifying the degree of transparency
of an object presentation ("1" or "100%" means full

transparency and "0" or "0%" means opaque).

DTV system dependent:
the value defined by the

default.focusTransparency

focusSrc, focusSelSrc Type: optionalURI

An URI or the “null” string

the “null” string

freeze Type: Boolean

"true" or "false" value.

false

transIn, transOut Type: optionalTransitionList

i) A semicolon-separated list of <transition>
element identifiers defined in the <transitionBase>

element; or

ii) A semicolon-separated list of transitions in
which each transition is defined by a list of

parameters (type, subtype, dur, startProgress,

endProgress, direction, fadeColor, horzRepeat,
vertRepeat, borderWidth, borderColor) sepatared by

commas.

In the lists, there can be zero or more space

characters after the commas or the semicolons,
which shall be ignored. In a transition list, if a

parameter does not exist, it must be declared as the

null string.

the “null” string

- 44 -
7rTD 130 (WP 2/16)

NOTE. The parameters that define a transition specified in a transIn or transOut list shall follow the

syntax and semantics of the corresponding attributes of the <transition> element defined in Clause

7.2.8.2.

Properties that have reserved color string names as values (“white”, “black”, “silver”, “gray”, red”,

“maroon”, fuchsia”, “purple”, “lime”, “green”, “yellow”, “olive”, “blue”, “navy”, “aqua”, or “teal”)

follow the CSS1 color standard, as defined in Table 7.10.

Table 7-10 – Reserved names for colour definition

Name Hexadecimal R G B Hue Satur. Light Satur. Value

White #FFFFFF 100% 100% 100% 0
o
 0% 100% 0% 100%

Silver #C0C0C0 75% 75% 75% 0
o
 0% 75% 0% 75%

Gray #808080 50% 50% 50% 0
o
 0% 50% 0% 50%

Black #000000 0% 0% 0% 0
o
 0% 0% 0% 0%

Red #FF0000 100% 0% 0% 0
o
 100% 50% 100% 100%

Maroon #800000 50% 0% 0% 0
o
 100% 25% 100% 50%

Yellow #FFFF00 100% 100% 0% 60
o
 100% 50% 100% 100%

Olive #808000 50% 50% 0% 60
o
 100% 25% 100% 50%

Lime #00FF00 0% 100% 0% 120
o
 100% 50% 100% 100%

Green #008000 0% 50% 0% 120
o
 100% 25% 100% 50%

Aqua #00FFFF 0% 100% 100% 180
o
 100% 50% 100% 100%

Teal #008080 0% 50% 50% 180
o
 100% 25% 100% 50%

Blue #0000FF 0% 0% 100% 240
o
 100% 50% 100% 100%

Navy #000080 0% 0% 50% 240
o
 100% 25% 100% 50%

Fuchsia #FF00FF 100% 0% 100% 300
o
 100% 50% 100% 100%

Purple #800080 50% 0% 50% 300
o
 100% 25% 100% 50%

The <property> element and its attributes shall be in agreement with Table 7.11.

Table 7-11 – Extended PropertyAnchor module

Elements Attributes Content

property name, value, externable Empty

7.2.4.2.1 Other default values

– The value attribute of a <property> element is optional and defines an initial value for the

property declared as name. When the value is not specified, the property assumes as its initial

value the one defined in homonym attributes of its node’s associated descriptor or region, or

else a default value. When the value is specified, it has precedence over the value defined in

homonym attributes of its node’s associated descriptor or region.

– If the left, right, top, bottom, width or height properties are not defined and cannot be inferred

from property values defined on <property>, <descriptor> and its child elements, or <region>

elements, they shall assume “0”.

- 45 -
7rTD 130 (WP 2/16)

– If the audio properties soundLevel, trebleLevel or bassLevel are not specified they shall

assume “100%” as value.

– The values “systemScreen (1)” and “systemAudio(1)” of the device property are reserved to

passive classes, and the values “systemScreen(2)”, “systemScreen(3)”, “systemAudio(2)” and

“systemAudio(3)” are reserved to active classes.

7.2.4.2.2 Exception handling

– If two or more <property> elements with the same name attribute are defined as child

elements of the same <media> element, only the last value defined shall be taken into

account. The others shall be ignored.

– When the left, right, top, bottom, width or height properties exceed the dimension of the

exhibition device, only the content portion inside the device dimension shall be exhibited.

– If a <bind> element refers to a <property> element with the externable attribute equal to

“false”, the <bind> element shall be ignored by the NCL formatter.

– The <body> and <context> elements should ignore <property> child elements whose name

attribute has as value the words top, left, bottom, right, width, height, zIndex, plane,

explicitDur, background, transparency, rgbChromakey, visible, fit, scroll, style, soundLevel,

balanceLevel, trebleLevel, bassLevel, fontColor, fontFamily, fontStyle, fontSize, fontVariant,

fontWeight, player, reusePlayer, playerLife, moveLeft, moveRight, moveUp, moveDown,

focusIndex, focusBorderColor, focusBorderWidth, focusBorderTransparency, focusSrc,

focusSelSrc, selBorderColor, transIn, transOut, freeze, location, size and bounds.

– When the user specifies top, bottom and height information for the same <media> element,

spatial inconsistencies can occur. In this case, the top and height values shall have precedence

over the bottom value. Analogously, when the user specifies inconsistent values for the left,

right and width properties, the left and width values shall be used to compute a new right

value.

– When the left, right, top, bottom, width or height properties exceed the dimension of the

exhibition device, only the content portion inside the device dimension shall be exhibited.

– The reusePlayer and playerLife attributes offer additional support for media-objects’ player

management, and can be used or be ignored by a particular middleware implementer. The

playerLife attribute specifies what will happen to a player instance at the end of a media

object presentation. Maintaining a player instance demands memory space however decreases

the player loading time and the probability for synchronization mismatches, as a consequence.

The reusePlayer attribute allows using the same player instance to more than one media

object presentation, including using a player left in the memory space by the playerLife

attribute.

– If the name attribute of a <property> element is “src” or “id”, the <property> element shall be

ignored. These properties can be defined only by attributes of the <media> element. For these

properties the externable attribute shall always have the “false” value.

7.2.4.3 CompositeNodeInterface module

The CompositeNodeInterface module defines the <port> element, which specifies a composite node

port with its respective mapping to an interface (interface attribute) of one and only one of its

components (specified by the component attribute).

The <port> element and its attributes shall comply with Table 7-12.

- 46 -
7rTD 130 (WP 2/16)

Table 7-12 – Extended CompositeNodeInterface module

Elements Attributes Content

port id, component, interface Empty

7.2.4.4 SwitchInterface module

The SwitchInterface module allows for the creation of <switch> element interfaces (see

Clause 7.2.10), which may be mapped to a set of alternative interfaces of internal nodes, allowing a

link to anchor on the chosen interface when the <switch> is processed (see [b-NCM Core]). This

module introduces the <switchPort> element, which contains a set of mapping elements. A mapping

element defines a path from the <switchPort> to an interface (interface attribute) of one of the

switch components (specified by its component attribute).

Every element representing an object interface (<area>, <port>, <property>, or <switchPort>) shall

have an identifier (id attribute or name attribute).

A reference to an internal switch component shall be made through a <switchPort> element or, by

default, to the <switch> element without specifying any <switchPort>. In this case, it is considered

as if the reference is made to a default <switchPort> that contains mapping elements to each child

object of the switch and referring to its whole content anchor.

A <switchPort> element may define a mapping to a subset of the switch's components. When a link

is bound to a <switchPort> element and all the rules bound to mapped components are evaluated as

false, the <defaultComponent> element shall be chosen; if the <defaultComponent> element is not

defined no component shall be selected for presentation.

The <switchPort> element, its child elements, and its attributes shall comply with Table 7-13.

Table 7-13 – Extended SwitchInterface module

Elements Attributes Content

switchPort id mapping+

mapping component, interface Empty

7.2.5 Layout functionality

The Layout functionality has a single module, called Layout, which specifies elements and

attributes that may define how objects will be initially presented inside regions of output devices.

Indeed, this module may define initial values for homonym NCL properties defined by <media>,

<body>, and <context> elements (see Clause 7.2.3).

7.2.5.1 Layout module

A <regionBase> element, which may be declared in the NCL document <head>, defines a set of

<region> elements, each of which may contain another set of nested <region> elements, and so on,

recursively.

The <regionBase> element may have the id attribute, and <region> elements shall have the id

attribute. As usual, the id attribute uniquely identifies the element within a document and shall

follow the NCName production [Namespaces in XML].

Each <regionBase> element is associated with a class of devices where presentation will take place.

In order to identify the association, the <regionBase> element defines the device attribute, which

- 47 -
7rTD 130 (WP 2/16)

may have the values: "systemScreen (i)" or "systemAudio(i)", where i is an integer greater than

zero. The chosen class defines global environment variables: system.screenSize(i),

system.screenGraphicSize(i), and system.audioType(i), as defined in Table 7-4 (see clause 7.2.3).

There are two different types of device classes: active and passive. In an active class, a device is

able to run media players supported by Ginga-NCL. In a passive class, a device is not required to

run media players supported by Ginga-NCL, only to exhibit a bit map or a sequence of audio

samples received from another (parent) device.

The <regionBase> element that defines a passive class may also have a region attribute. This

attribute is used to identify a <region> element in a <regionBase> associated with an active class

where the (parent) device that creates the bit map sent to the passive-class devices is registered. In

the specified region the bit map must also be exhibited.

Multiple device support shall follow the guidelines established in [b_NCL Multi. Dev.] “Support to

Multiple Exhibition Devices”.

The interpretation of the region nesting inside a <regionBase> should be made by the software in

charge of the document presentation orchestration (the NCL Player).

In an implementation in conformance with Ginga-NCL specification, the first nesting level

(implicitly defined by the <regionBase>) shall be interpreted as defining the device area where the

presentation would take place; the second nesting level as windows (that is, presentation areas in the

screen) of the parent area; and the other levels as regions inside these windows and so on.

A <region> may also define the following attributes: left, right, top, bottom, height, width, and

zIndex. All these attributes have the usual meaning.

The position of a region, as specified by its top, bottom, left, and right attributes, is always relative

to the parent geometry, which is defined by the parent <region> element or the total device area in

the case of first nesting level regions. Attribute values may be positive "percentage" values, or

positive pixel units. For pixel values, the author may omit the "px" unit qualifier (e.g., "100"). For

percentage values, on the other hand, the ‘%’ symbol shall be indicated (e.g., "50%"). The

percentage is always relative to the parent's width, in the case of right, left and width definitions,

and parent's height, in the case of bottom, top and height definitions.

The top and left attributes are the primary region positioning attributes. They place the left-top

corner of the region at the specified distance away from the left-top edge of the parent region (or the

device left-top edge in the case of the outermost region). Sometimes, explicitly setting the bottom

and right attributes is helpful. Their values define the distance between the region's right-bottom

corner and the right-bottom corner of the parent region (or the device right-bottom edge in the case

of the outermost region); see Figure 7-1.

H.761-v2(11)_F7-1

Left Width Right

T
op

H
ei

g
h

t
B

o
tt

o
m

Region

Parent region

Figure 7-1 – Region positioning attributes

- 48 -
7rTD 130 (WP 2/16)

Regarding region sizes, when they may be specified by declaring width and height attributes using

the "%" notation, the size of the region is relative to the size of its parent geometry as mentioned

before. Sizes declared as absolute pixel values maintain those absolute values.

The zIndex attribute specifies the region superposition precedence, where regions with greater

zIndex values are stacked on top of regions with smaller zIndex values. If two presentations

generated by elements A and B have the same stack level, then, if the display of an element B starts

later than the display of an element A, the presentation of B is stacked on top of the presentation of

A (temporal order); otherwise, if the display of the elements starts at the same time, the stacked

order is chosen arbitrarily by the formatter.

The left, right, top, bottom, height, width, and zIndex attributes of a <region> element define initial

values for the corresponding properties of an object, if these values are not declared in <property>

and <descriptorParam> elements. If a property is defined in a <region> element, its externable

attribute shall be set to “false” by default.

The Layout module also defines the region attribute to be used by a <descriptor> element

(see Clause 7.2.6) to refer to a Layout <region> element.

The elements of this module, their child elements, and their attributes shall comply with Table 7-14.

Table 7-14 – Extended Layout module

Elements Attributes Content

regionBase id, device, region ((importBase|region)+,

meta*, metadata*)

region id, left, right, top, bottom, height, width, zIndex (region)*

7.2.5.1.1 Default values

– When the device attribute is not specified, the presentation shall take place in the same device

that runs the NCL formatter.

– In a conformant implementation, systemScreen(1) and systemAudio(1) are reserved to passive

classes, and systemScreen(2), systemScreen(3), systemAudio(2) and systemAudio(3) are

reserved to active classes.

– If the region attribute of the <regionBase> element that defines a passive class is not specified

the exhibition will take place only on the passive class devices.

– The intrinsic size of a region is equal to the size of the logical parent’s geometry. This means

that, if a nested region doesn’t specify any positioning or size values, it will be assumed to

have the same position and size values of its parent region. In particular, when a first level

region doesn’t specify any positioning or size values, it will be assumed to be the whole

device presentation area.

– When any of the top, bottom, height, left, right, and width <region> attributes is not specified

and cannot have its value computed from the other attributes, its value shall be inherited from

the corresponding parent absolute value.

– When not specified, the zIndex attribute shall be set equal to zero.

– All attributes other than those defined in Table 7.14 for the <region> element should be

ignored by the NCL player.

- 49 -
7rTD 130 (WP 2/16)

7.2.5.1.2 Exception handling

– When the user specifies top, bottom and height information for the same <region>, spatial

inconsistencies can occur. In this case, the top and height values shall have precedence over

the bottom value. Analogously, when the user specifies inconsistent values for the left, right

and width <region> attributes, the left and width values shall be used to compute a new right

value.

– Child regions cannot stay outside the area established by their parent regions. When some

portion of the child region lies outside its parent region, the child region shall be ignored

(considered not specified).

– Any other attribute than id, left, right, top, bottom, height, width, and zIndex, shall be ignored

by the NCL 3.1 Player.

7.2.6 Presentation Specification functionality

The Presentation Specification functionality has a single module called Descriptor. The purpose of

this module is to specify temporal and spatial information needed to present each document

component. This information is modelled by descriptors.

7.2.6.1 Descriptor module

The Descriptor module allows for the definition of <descriptor> elements, which contain a set of

optional attributes, grouping temporal and spatial definitions, which should be used according to the

type of object to be presented. The definition of <descriptor> elements shall be included in the head

section of the document, inside the <descriptorBase> element, which specifies the set of descriptors

of a document. The <descriptor> element shall have the id attribute and the <descriptorBase>

element may have the id attribute, which, as usual, uniquely identifies the elements within a

document.

A <descriptor> element may have temporal attributes, namely: explicitDur and freeze, defined by

the Timing module (see Clause 7.2.7); an attribute called player; an attribute called region, which

refers to a region defined by elements of the Layout module (see Clause 7.2.5); and key-navigation

attributes, namely: moveLeft, moveRight, moveUp; moveDown, focusIndex, focusBorderColor;

focusBorderWidth; focusBorderTransparency, focusSrc, selBorderColor, and focusSelSrc, defined

by the KeyNavigation module (see Clause 7.2.9); and transition attributes, namely: transIn and

transOut (see Clause 7.2.8). All these attributes are used to establish initial values for the

corresponding properties of an object, if these values are not declared in <property> and

<descriptorParam> elements. If a property is defined in a <descriptor> element and if it is not

overwrited by a <property> element, its externable attribute shall be set to “false” by default.

A <descriptor> element may also have <descriptorParam> child elements, which are used to

parameterize the presentation control of the object associated with the descriptor element. These

parameters can, for example, redefine some attribute values defined by the region attributes. They

can also define other media object property's initial values, such as values for plane;

rgbChromakey; background; visible; fit; scroll; transparency; style; and also specific values for

audio objects, such as values for soundLevel, balanceLevel, trebleLevel and bassLevel properties.

Besides, <descriptorParam> child elements can determine if a new player shall be instantiated or if

a player already instantiated shall be used (reusePlayer), and specify what will happen to the player

instance at the end of the presentation (playerLife). Therefore, <descriptorParam> elements can

establish initial values for the corresponding properties of an object, if these values are not declared

in <property> elements. If a property is defined in a <descriptorParam> element, its externable

attribute shall be set to “false” by default.

- 50 -
7rTD 130 (WP 2/16)

Besides the <descriptor> element, the Descriptor module defines a homonym attribute, which refers

to an element of the document descriptor set. When a language profile uses the Descriptor module,

it has to determine how descriptors will be associated with document components. Following NCM

directives, this Recommendation establishes that the descriptor attribute is associated with any

media node through <media> elements and through link endpoints (<bind> elements) (see

Clause 8.2.1).

It should be remarked that the set of descriptors of a document may contain <descriptor> elements

or <descriptorSwitch> elements, which allow for specifying alternative descriptors (see

Clause 7.2.10).

The elements of the Descriptor module, their child elements, and their attributes shall comply with

Table 7-15.

Table 7-15 – Extended Descriptor module

Elements Attributes Content

descriptor id, player, explicitDur, region,
freeze, moveLeft, moveRight,

moveUp, moveDown, focusIndex,
focusBorderColor,

focusBorderWidth,

focusBorderTransparency, focusSrc,
focusSelSrc, selBorderColor,

transIn, transOut

(descriptorParam)*

descriptorParam name, value Empty

descriptorBase id (importBase|descriptor|descriptorSwitch)+

It must be stressed that <descriptor> and <region> elements are just "syntactic sugar" that promote

reuse. All <media> element's properties may be defined using only <property> elements.

If several values are specified for the same property, the value defined in a <property> element has

precedence over the one defined in a <descriptorParam> element, which has precedence over the

value defined in an attribute of the corresponding <descriptor> element (including the region

attribute).

7.2.7 Timing functionality

The Timing functionality defines the Timing module. The Timing module allows for the definition

of temporal attributes for document components.

7.2.7.1 Timing module

Basically, the Timing module defines attributes for specifying what will happen with an object at

the end of its presentation (freeze), and the ideal duration of an object (explicitDur). These attributes

may be incorporated by <descriptor> elements.

When freeze is specified with a value equal to "true" the last image map of the object must be

frozen indefinitely, i.e., until its end is determined by an external event (for example, coming from a

<link> evaluation), or by the explicitDur value for that object.

The explicitDur attribute gives the presentation duration of an object and not the presentation

duration of the object's content. If the explicitDur value is greater than the content presentation

duration what must happen on the end of the content presentation depends on the freeze attribute

previously mentioned. If the explicitDur value is smaller than the content presentation duration, the

- 51 -
7rTD 130 (WP 2/16)

content presentation is cut. Note that a player may, optionally, make elastic time adjustments on the

media content in order to make the content presentation duration as close as possible to the

explicitDur value.

The explicitDur attributes shall be specified according with one of the following syntax:

i) Hours“:”Minutes“:”Seconds“.”Fraction, where Hours is an integer in the [0,23] interval; Minutes

is an integer in the [0,59] interval; Seconds is an integer in the [0,59] interval; and Fraction is a

positive integer

ii) Seconds”s”, where Seconds is a positive real number.

7.2.7.1.1 Default values

– When not specified, the value of the freeze attribute value shall be considered as “false”.

– When not specified, the value of the explicitDur attribute value shall be considered as equal to

the natural content presentation duration.

7.2.8 Transition Effects functionality

The Transition Effects functionality is divided into two modules: TransitionBase and Transition.

7.2.8.1 TransitionBase module

The TransitionBase module defines the <transitionBase> element that specifies a set of transition

effects, and shall be defined as a child element of the <head> element.

The <transitionBase> element, its child elements, and its attributes shall comply with Table 7-16.

Table 7-16 – Extended TransitionBase module

Elements Attributes Content

transitionBase id (importBase, transition)+

7.2.8.2 Transition module

The Transition module is based on SMIL 2.1 specification [b-W3C SMIL 2.1]. It has just one

element called <transition>.

In NCL 3.1 Enhanced DTV profile, the <transition> element is specified in the <transitionBase>

element and allows a transition template to be defined. Each <transition> element defines a single

transition template and shall have an id attribute so that it may be referred.

The attributes of the <transition> element come from SMIL BasicTransitions module specification:

type, subtype, dur, startProgress, endProgress, direction and fadeColor.

Transitions are classified according to a two-level taxonomy of types and subtypes. Each of the

transition types describes a group of transitions which are closely related. Within that type, each of

the individual transitions is assigned a subtype which emphasizes the distinguishing characteristic

of that transition.

The type attribute is required and it is used to specify the general transition.

The subtype attribute provides transition-specific control. This attribute is optional and, if specified,

shall be one of the transition subtypes appropriate for the specified type. If this attribute is not

specified, then the transition reverts to the default subtype for the specified transition type. Only the

subtypes for the five required transition types listed in Table 7-17 shall be supported. The other

subtypes defined in SMIL specifications [b-W3C SMIL 2.1] are optional

- 52 -
7rTD 130 (WP 2/16)

Table 7-17 – Required transition types and subtypes

Transition type Default transition subtype

barWipe leftToRight

irisWipe rectangle

clockWipe clockwiseTwelve

snakeWipe topLeftHorizontal

fade crossfade

The dur attribute specifies the duration of the transition. The duration is specified as Seconds“s”,

where Seconds is a positive real number.

The startProgress attribute specifies the amount of progress through the transition at which to begin

execution. Legal values are real numbers in the range [0.0,1.0]. For instance, one may want to begin

a crossfade with the destination image being already 40% faded in. In this case, startProgress

would be 0.4.

The endProgress attribute specifies the amount of progress through the transition at which to end

execution. Legal values are real numbers in the range [0.0,1.0], and the value of this attribute shall

be greater than or equal to the value of the startProgress attribute. If endProgress is equal to

startProgress, then the transition remains at a fixed progress for the duration of the transition.

The direction attribute specifies the direction in which the transition will run. The legal values are

"forward" and "reverse". The default value is "forward". Note that not all transitions will have

meaningful reverse interpretations. For instance, a crossfade is not a geometric transition, and

therefore has no interpretation of reverse direction.

If the value of the type attribute is "fade" and the value of the subtype attribute is "fadeToColor" or

"fadeFromColor" (values that are optional in NCL), then the fadeColor attribute specifies the

ending or starting colour of the fade.

The Transition module also defines attributes to be used in <descriptor> elements to use the

transition templates defined by <transition> elements: transIn and transOut attributes, which

initialize values of the transIn and transOut properties. These properties may also be defined using

<property> elements. Transitions specified with a transIn attribute will begin at the beginning of the

media element's active duration (when the object presentation begins to occur). Transitions

specified with a transOut attribute will end at the end of the media element's active duration (when

the object presentation transits from occurring to sleeping state).

The value of the transIn and transOut attributes is a semicolon-separated list of transition

identifiers. Each of the identifiers shall correspond to the value of the XML identifier of one of the

transition elements previously defined in the <transitionBase> element. The purpose of the

semicolon-separated list is to allow authors to specify a set of fall-back transitions if the preferred

transition is not available. The first transition in the list shall be performed if the user-agent has

implemented this transition. If this transition is not available, then the second transition in the list

shall be performed, and so on.

All transitions defined in the Transition module accept four additional attributes (coming from the

SMIL TransitionModifiers module specification) that may be used to control the visual appearance

of the transitions. The horzRepeat attribute specifies how many times to perform the transition

pattern along the horizontal axis. The vertRepeat attribute specifies how many times to perform the

transition pattern along the vertical axis. The borderWidth attribute specifies the width of a

generated border along a wipe edge. Legal values are integers greater than or equal to 0. If

- 53 -
7rTD 130 (WP 2/16)

borderWidth value is equal to 0, then no border should be generated along the wipe edge. If the

value of the type attribute is not "fade", then the borderColor attribute specifies the content of the

generated border along a wipe edge. If the value of this attribute is a colour, then the generated

border along the wipe or warp edge is filled with this colour. If the value of this attribute is "blend",

then the generated border along the wipe blend is an additive blend (or blur) of the media sources.

The element of the Extended Transition Module, its child elements, and its attributes shall comply

with Table 7-18.

Table 7-18 – Extended Transition module

Elements Attributes Content

transition id, type, subtype, dur,
startProgress, endProgress,

direction, fadeColor,

horzRepeat, vertRepeat,

borderWidth, borderColor

Empty

7.2.8.2.1 Default values

– If the subtype attribute is not specified then the transition reverts to the default subtype for the

specified transition type, as shown in Table 17.

– The default value for the dur attribute is 1s.

– The default value for the startProgress attribute is 0.0.

– The default value for that endProgress attribute is 1.0.

– The default value for the direction attribute is “forward”.

– The default value for the fadeColor attribute is “black”.

– The default value for both the transIn and the transOut attributes is an empty string, which

indicates that no transition shall be performed.

– The default value for the horzRepeat attribute is 1.

– The default value for the vertRepeat attribute is 1.

– The default value for the borderWidth attribute is 0.

– The default value for the borderColor attribute is the colour "black".

7.2.8.2.2 Exception handling

– If the named transition’s type is not supported by the NCL formatter, the transition should be

ignored.

– The subtype attribute, if specified, shall be one of the transition subtypes that is appropriate

for the specified type, otherwise the transition should be ignored.

– The endProgress attribute shall be greater than or equal to the value of the startProgress

attribute. If endProgress value is specified as less than the startProgress value, the transition

effect should be ignored. If endProgress is equal to startProgress, then the transition remains

at a fixed progress for the duration of the transition.

– Transitions that do not have a reverse interpretation should have the direction attribute

ignored.

- 54 -
7rTD 130 (WP 2/16)

– If the value of the type attribute is not “fade”, or the value of the subtype attribute is not

“fadeToColor” or “fadeFromColor”, then the fadeColor attribute shall be ignored.

– If any value in the list of the transIn attribute or the transOut attribute does not correspond to

the value of an XML identifier of a transition element defined in the <transitionBase>, then

this transition shall be ignored.

7.2.9 Navigational Key functionality

The Navigational Key functionality defines the KeyNavigation module that provides the extensions

necessary to describe focus movement operations using a control device like a remote control.

Basically, the module defines attributes that may be incorporated by <descriptor> elements.

7.2.9.1 KeyNavigation module

The focusIndex property specifies an index for the <media> element to which the focus may be

applied, when this element is in exhibition. The focusIndex property may be defined using a

<property>, a <descriptorParam>, or a <descriptor> element, in this last case through a focusIndex

attribute. When this property is not defined, the object is considered as if no focus could be set to it.

In a certain presentation moment, if the focus has not been already defined, or is lost, a focus will be

initially applied to the element being presented with the smallest focusIndex value. Values of

focusIndex attribute should be unique in an NCL document. Otherwise, the repeated properties will

be ignored if at a certain moment there is more than one <media> element to gain the focus.

Assuming a <media> element on focus, its moveUp property specifies a value equal to the

focusIndex value associated to an element to which the focus shall be applied when the "up arrow

key" is pressed. Its moveDown property specifies a value equal to the focusIndex value associated to

an element to which the focus shall be applied when the "down arrow key" is pressed. Its moveRight

property specifies a value equal to the focusIndex value associated to an element to which the focus

shall be applied when the "right arrow key" is pressed. Its moveLeft property specifies a value equal

to the focusIndex value associated to an element to which the focus shall be applied when the "left

arrow key" is pressed. These properties may be defined using <property>, <descriptorParam> or

<descriptor> elements, in this last case through a moveUp, moveDown, moveLeft, and moveRight

attributes, respectively.

The focusSrc property can specify an alternative media source to be presented, instead of the current

presentation, if an element receives the focus. This attribute follows the same rules of the src

attribute of the <media> element.

When an element receives a focus, the square box defined by the element positioning attributes

shall be decorated. The focusBorderColor property defines the decorative colour.

The focusBorderColor property may receive the reserved colour names: "white", "black", "silver",

"gray", "red", "maroon", "fuchsia", "purple", "lime", "green", "yellow", "olive", "blue", "navy",

"aqua", or "teal".

The focusBorderWidth property defines the width in pixels of the decorative border (0 means that

no border will appear, positive values mean that the border is outside the object content, and

negative values mean that the border is drawn over the object content).

The focusBorderTransparency property defines the decorative colour transparency. The

focusBorderTransparency shall be a real value between 0 and 1; or a real value in the range [0,100],

ending with the character "%" (e.g., 30%), with "1" or "100%" meaning full transparency and "0" or

"0%" meaning no transparency.

When an element on focus is selected by pressing the activation (select or enter) key, the

focusSelSrc property can specify an alternative media source to be presented, instead of the current

- 55 -
7rTD 130 (WP 2/16)

presentation. This property follows the same rules of the src attribute of the <media> element.

When selected, the square box defined by the element positioning attributes shall be decorated with

the colour defined by the selBorderColor property, the width of the decorative border defined by

the focusBorderWidth property, and the decorative colour transparency defined by the

focusBorderTransparency property.

The focusSrc, focusBorderColor, focusBorderWidth, focusBorderTransparency, focusSelSrc, and

selBorderColor may be defined using <property>, <descriptorParam> or <descriptor> elements, in

this last case through homonymous attributes, respectively. The focusSrc attribute and the

focusSelSrc attribute can only specify perceptual media content (video, images, text and audio). The

original media content behavior does not stop when substituted but continues running hidden

(visible=”false”).

When an element on focus is selected by pressing the "activate (select, enter, etc.) key", if there is a

<simpleCondition> element with its role attribute equal to "onSelection" without specifying the key

attribute, this condition is considered satisfied if the element on focus is the one specified by the

component attribute of the <simpleCondition> element. Therefore, the navigational keys act

similarly to a pointer device (like mouse, etc.).

When an element on focus is selected by pressing the "activate (select or enter) key", the focus

control shall be passed to the <media> element renderer (player). The player can then follow its

own rules for navigation. The focus control shall be passed back to the NCL formatter when the

"back key" is pressed. In this case, the focus goes to the element identified by the

service.currentFocus attribute of the settings node (<media> element of application/x-ncl-settings

type). In a multiple device environment, the hierarchical rules for input key control and exhibition

device control shall follow the guidelines established in [b_NCL Multi. Dev.] "Support to Multiple

Exhibition Devices".

NOTE – When the NCL player begins an NCL application presentation, it shall receive the

“CURSOR_DOWN”, “CURSOR_LEFT”, “CURSOR_RIGHT”, “CURSOR_UP”, “ENTER” and

“BACK” key notifications, as well as notifications coming from pointer devices (for example, from

a mouse, selection on a touch screen, etc.). From the moment the object on focus is selected (when

the ENTER key is pressed or the pointer device makes the selection), or when the value of the

service.currentKeyMaster attribute of the Settings node is changed to a value equal to the id of a

valid media object, the NCL player shall stop receiving navigational key notifications (and

notifications from all other keys it controls), except notifications coming from the “BACK” key

selection. All previously controlled keys, including the “BACK” key, when pressed, shall now

notify the media player of the media object on focus (however, the notification coming from the

selection of the media object shall not be passed to the player of this selected object). Note thus that

both the NCL player and the media player can handle “BACK” key notifications, however the NCL

player cannot use “BACK” key notifications to trigger condition roles of links during this period of

time, but only to control the key rights. When the media object on focus ends its presentation, the

NCL player regains the control of the “CURSOR_DOWN”, “CURSOR_LEFT”,

“CURSOR_RIGHT”, “CURSOR_UP”, “ENTER” keys (as well as the control of all keys that were

previously allocated to it, and the control of the pointer devices), and can use “BACK” key

notifications to trigger condition roles of links. During the presentation of the media object on

focus, its media player may pass the control of the navigational keys (and the pointer devices) to its

internal (child) media players, and so on. In this meantime if the “BACK” key is pressed, the

navigational key control is passed back to the parent media player (the child media player loses the

control) until the last “BACK” pressing, and so on, until the NCL player that has started the process

regains the control. From then on, only this NCL player will receive navigational key notifications

(and notifications coming from the keys it had previously allocated, and also notifications coming

- 56 -
7rTD 130 (WP 2/16)

from pointer devices). When a media player receives the navigational key control and does not want

this control, it can refuse it passing the control back, as if the “BACK” key had been pressed.

The focus control may also be passed by setting the service.currentFocus property, and the key

control by setting the service.currentKeyMaster attribute of the Settings node (<media> element of

“application/x-ncl-settings” type). This may be done through a link action, through an NCL Editing

Command executed by an imperative-code node (for example, an NCLua object).The player of a

node that has the current control may not directly change the service.currentKeyMaster property.

7.2.9.1.1 Default values

– When the focusIndex property is not defined, it shall be considered as if no focus could be set.

– When the focusBorderColor, focusBorderWidth, focusBorderTransparency, or

selBorderColor attributes are not defined, default values shall be assumed. These values are

specified in properties of the <media> element of application/x-ginga-settings (or

application/x-ncl-settings) type: default.focusBorderColor, default.focusBorderWidth,

default.focusTransparency, default.selBorderColor.

7.2.9.1.2 Exception handling

– In a certain presentation moment, if the focus has not been already defined, or is lost, a focus

will be initially applied to the element that is being presented that has the smallest index

value.

– Values of focusIndex attribute should be unique in an NCL document. Repeated attributes shall

be ignored if in a certain moment there is more than one <media> element to gain the focus.

– When the focus is applied to an element with the visible property set to false, or to an element

that it is not being presented, the current focus does not move.

– When the focus is applied to an element with the visible property set to false, every selection on

the element shall be ignored.

– If the focusSrc attribute or the focusSelSrc attribute receives an invalid value, they should be

ignored and the NCL player must proceed as if this attributes are inexistent.

7.2.10 Presentation Control functionality

The purpose of the Presentation Control functionality is to specify content and presentation

alternatives for a document. This functional area is partitioned into four modules: TestRule,

TestRuleUse, ContentControl and DescriptorControl.

7.2.10.1 TestRule module

The TestRule module allows for the definition of rules that, when satisfied, select alternatives for

document presentation. The specification of rules in NCL 3.1 is done in a separate module, because

they are useful for defining either alternative components or alternative descriptors.

The <ruleBase> element specifies a set of rules, and shall be defined as a child element of the

<head> element. These rules may be simple, defined by the <rule> element, or composite, defined

by the <compositeRule> element.

Simple rules define an optional identifier (id attribute), a variable (var attribute), a value (value

attribute), and a comparator (comparator attribute) relating the variable to the value. . A <rule>

element defined as child of a <compositeRule> element may have its id attribute omitted. The

variable type and the value type shall be the same, otherwise the rule definition shall be ignored by

- 57 -
7rTD 130 (WP 2/16)

the NCL formatter. The variable shall be a property of the settings node (<media> element of

application/x-ncl-settings type), that is, the var attribute shall have the same value of a <property>

name attribute, defined as a child of the <media> element of application/x-ncl-settings type. The

comparator attribute shall have one of the values: "eq", "ne", "gt", "lt", "gte", or "lte".

For string variables, comparisons in simple rules are done based on the binary representation of the

variable’s value and the binary representation of the value used in the comparison.

Composite rules have an identifier (id attribute) and a Boolean operator ("and" or "or" – operator

attribute) relating their child rules. As usual, the id attribute uniquely identifies the <rule> and

<compositeRule> elements within a document.

The elements of the TestRule module, their attributes, and their child elements shall comply with

Table 7-19.

Table 7-19 – Extended TestRule module

Elements Attributes Content

ruleBase id (importBase|rule|compositeRule)+

rule id, var,
comparator,

value

Empty

compositeRule id, operator (rule | compositeRule)+

7.2.10.1.1 Exception Handling

– If the value of the comparator attribute of the <rule> element is not the values: “eq”, “ne”,

“gt”, “lt”, “gte”, or “lte”, the element shall be ignored.

– In <rule> elements, the comparator attribute relates the variable to a value. If the variable

type and the value type are not equal, the< rule> element shall be ignored.

– In <rule> elements, the var attribute shall have the same value of a <property> element’s

name attribute, defined as a child of the <media> element of application/x-ncl-settings type,

otherwise the rule definition shall be ignored.

7.2.10.2 TestRuleUse module

The TestRuleUse defines the <bindRule> element, which is used to associate rules with

components of a <switch> or <descriptorSwitch> element, through its rule and constituent

attributes, respectively.

The element of the TestRuleUse module and its attributes shall comply with Table 7-20.

Table 7-20 – Extended TestRuleUse module

Elements Attributes Content

bindRule constituent, rule Empty

7.2.10.3 ContentControl module

The ContentControl module specifies the <switch> element, allowing the definition of alternat ive

document nodes to be chosen during presentation time. Test rules used to choose the switch

component to be presented are defined by the TestRule module. NCL formatters shall delay the

switch evaluation to the moment when a link anchoring in the switch needs to be evaluated. The

- 58 -
7rTD 130 (WP 2/16)

rules are evaluated in the order they are referred in the <switch> element. During a document

presentation, from the moment when a <switch> is evaluated on, it is considered resolved until the

end of the current switch presentation, that is, while its corresponding presentation event is in the

“occurring” or “paused” state (see definition of events in Clause 7.2.12). The chosen alternative can

be referred through a <switchPort> element mapped to one of its interfaces.

The ContentControl module also defines the <defaultComponent> element, whose component

attribute (also of IDREF type) identifies the default element that shall be selected if none of the

bindRule rules is evaluated as true.

In order to allow links to anchor on the component chosen after evaluating the rules of a switch, a

language profile should also include the SwitchInterface module, which allows for the definition of

special interfaces, named <switchPort>.

As usual, <switch> elements shall have the id attribute, which uniquely identifies the element

within a document. The refer attribute is an extension defined in the Reuse module (see

Clause 7.2.14).

The ContentControl module elements, their attributes and child elements shall comply with

Table 7-21.

Table 7-21 – Extended ContentControl module

Elements Attributes Content

switch id, refer (defaultComponent?, (switchPort | bindRule | media |

context | switch)*)

defaultComponent component Empty

7.2.10.3.1 Exception handling

– If the <defaultComponent> element is not defined in a <switch> element and if none of the

bindRule rules is evaluated as true to a component bound by a <mapping> element child of

the <switchPort> from which the <switch> element is referred, no component is selected for

presentation and the NCL formatter shall behave as if the component does not exist.

7.2.10.4 DescriptorControl module

The DescriptorControl module specifies the <descriptorSwitch> element, which contains a set of

alternative descriptors to be associated with an object. The <descriptorSwitch> elements shall have

the id attribute, which uniquely identifies the element within a document. Analogous to the

<switch> element, the <descriptorSwitch> choice is done during presentation time, using test rules

defined by the TestRule module. The rules are evaluated in the order they are referred in the

<descriptorSwitch> element. NCL formatters shall delay the descriptorSwitch evaluation to the

moment the object referring the descriptorSwitch needs to be prepared to be presented.

During a document presentation, from the moment on a <descriptorSwitch> is evaluated for a

specific <media> element, it is considered resolved for that <media> element until the end of the

presentation of this <media> element, i.e., while any presentation event associated with this

<media> element is in the “occurring” or “paused” state (see definition of events in Clause 7.2.12).

The DescriptorControl module also defines the <defaultDescriptor> element, whose descriptor

attribute (also of IDREF type) identifies the default element that shall be selected if none of the

bindRule rules is evaluated as true.

- 59 -
7rTD 130 (WP 2/16)

The DescriptorControl module elements, their attributes, and their child elements shall comply with

Table 7-22.

Table 7-22 – Extended DescriptorControl module

Elements Attributes Content

descriptorSwitch id (defaultDescriptor?, (bindRule |

descriptor)*)

defaultDescriptor descriptor Empty

7.2.10.4.1 Exception handling

– If the <defaultDescriptor> element is not defined in a <descriptorSwitch> element and if none

of the bindRule rules is evaluated as true, no descriptor is selected for presentation and the

NCL formatter shall behave as if the descriptor does not exist.

7.2.11 Linking functionality

The Linking functionality defines the Linking module, responsible for defining links using

connectors.

7.2.11.1 Linking module

A <link> element may have an id attribute, which uniquely identifies the element within a

document, and shall have an xconnector attribute, which refers to a hypermedia connector URI. The

reference shall have the format: alias#connector_id, or documentURI_value#connector_id, for

connectors defined in an external document (see Clause 7.2.14); or simply connector_id, for

connectors defined in the document itself.

The <link> element also contains child elements called <bind> elements, which allow associating

nodes with connector roles (see Clause 7.2.12). In order to make this association, a <bind> element

has four basic attributes. The first one is called role, which is used for referring to a connector role.

The second one is called component, which is used for identifying the node. The third is an optional

attribute called interface, used for making reference to the node interface. The fourth is an optional

attribute called descriptor, used to refer to a descriptor to be associated with the node, as defined by

the Descriptor module (see Clause 7.2.6).

NOTE – The interface attribute may refer to any node interface, i.e., an anchor, a property, a port (if

it is a composite node), or a switchPort (if it is a switch node). The interface attribute is optional.

When it is not specified, the association will be done with the whole node content, as explained in

Clause 7.2.4, except for media objects with imperative code content, as explained in Clause 8.3.1.

If the connector element defines parameters (see Clause 7.2.12), the <bind> or <link> elements

should define parameter values through child elements called <bindParam> and <linkParam>,

respectively, both with name and value attributes. In this case, the name attribute shall refer to the

name of a connector parameter while the value attribute shall define a value to be assigned to the

respective parameter.

The elements of the linking module, their attributes, and their child elements shall comply with

Table 7-23.

- 60 -
7rTD 130 (WP 2/16)

Table 7-23 – Extended Linking module

Elements Attributes Content

bind role, component, interface, descriptor (bindParam)*

bindParam name, value Empty

link id, xconnector (linkParam*, bind+)

linkParam name, value Empty

7.2.11.1.1 Exception handling

– A <link> element must be ignored if the xconnector attribute refers to an inexistent

hypermedia connector.

– If a <link> defines the same parameter through using the <linkParam> and <bindParam>

elements, the definition by using <bindParam> element has precedence.

– If the number of participants specified by the <link> element for a same condition specified in

the referred <causalConnector> is greater than the value of the max attribute or is lesser than

the value of the min attribute of this condition, the <link> shall be ignored.

7.2.12 Connectors functionality

The NCL 3.1 Connectors functionality is partitioned into seven basic modules:

ConnectorCommonPart, ConnectorAssessmentExpression, ConnectorCausalExpression,

CausalConnector, ConstraintConnector, ConnectorBase, and CompositeConnector.

The Connectors functionality modules are totally independent from the other NCL modules.

Besides the basic modules, the Connectors functionality also defines modules that group sets of

basic modules, in order to make easier to define a language profile. This is the case of the

CausalConnectorFunctionality module, used in the definition of the EDTV and RawDTV profiles.

The CausalConnectorFunctionality module groups the following modules: ConnectorCommonPart,

ConnectorAssessmentExpression, ConnectorCausalExpression, and CausalConnector.

The <causalConnector> element represents a relation that may be used for creating <link> elements

in documents.

A connector specifies a relation independently of derived relationships, i.e., it does not specify

which nodes (represented by <media>, <context>, <body>, and <switch> elements) will interact

through the relation. A <link> element, in its turn, represents a relationship, of the type defined by

its connector, interconnecting different nodes. Links representing the same type of relation, but

interconnecting different nodes, may reuse the same connector, reusing all previous specifications.

A connector specifies, through its child elements, a set of interface points, called roles. A <link>

element refers to a connector and defines a set of binds (<bind> child elements of the <link>

element), which associate each link endpoint (node interface) to a role of the used connector.

Relations in NCL are based on events. An event is an occurrence in time that may be instantaneous

or have a measurable duration. NCL 3.1 defines the following types of events:

– presentation event, which is defined by the presentation of a subset of the information units

of a media object, specified in NCL by the <area> element, or by the media node itself

(whole content presentation). Presentation events may also be defined on composite nodes

(represented by a <body>, <context>, or <switch> element), representing the presentation

of the information units of any node inside a composite node;

- 61 -
7rTD 130 (WP 2/16)

– selection event, which is defined by the selection of a subset of the information units of a

media object (which is specified in NCL by the <area> element, or by the media node’s

whole content anchor), being presented and visible; and

– attribution event, which is defined by the attribution of a value to a property of a node

(represented by a <media>, <body>, <context>, or <switch> element). The property shall

be declared in a <property> child element of the node with externable attribute equal to

“true”.

Each event defines a state machine that should be maintained by the NCL formatter (see

Figure 7-2).

H.761-v2(11)_F7-2

Paused

Pause

Start

Stop abortç

Resume

Occurring
Stop natural endç

Abort

Sleeping

Figure 7-2 – Event state machine

Transition names for the event state machine shall comply with Table 7-24.

Table 7-24 – Transition names for an event state machine

Transition (caused by action) Transition name

sleeping occurring (start) starts

occurring sleeping (stop or natural end) stops

occurring sleeping (abort) aborts

occurring paused (pause) pauses

paused occurring (resume) resumes

paused sleeping (stop) stops

paused sleeping (abort) aborts

A presentation event associated with a media node, represented by a <media> element, initializes in

the sleeping state. At the beginning of the exhibition of its information units, the event goes to the

occurring state. If the exhibition is temporarily suspended, the event stays in the paused state, while

this situation lasts. A presentation event may change from occurring to sleeping as a consequence of

the natural end of the presentation duration, or due to an action that stops the event. When the

presentation of an event is abruptly interrupted, through an abort presentation command, the event

also goes to the sleeping state. The duration of an event is the time it remains in the occurring state.

This duration may be intrinsic to the media object, explicitly specified by an author (explicitDur

attribute of a <descriptor> element, explicitDur name of a <descriptorParam> element, or

explicitDur name of a <property> element), or derived from a relationship.

A presentation event associated with a composite node represented by a <body> or a <context>

element stays in the occurring state while at least one presentation event associated with anyone of

the composite child nodes is in the occurring state, or at least one composite node child link is being

- 62 -
7rTD 130 (WP 2/16)

evaluated. It is in the paused state if at least one presentation event associated with anyone of the

composite child nodes is in the paused state and all other presentation events associated with the

composite child nodes are in the sleeping or paused state. Otherwise, the presentation event is in the

sleeping state.

NOTE 1 – More details about the behaviour of presentation event state machines for media and

composite nodes are given in Clause 8.

A presentation event associated with a switch node, represented by a <switch> element, stays in the

occurring state while the switch child element chosen from the bind rules (selected node) is in the

occurring state. It is in the paused state if the selected node is in the paused state. Otherwise, the

presentation event is in the sleeping state.

A selection event initializes in the sleeping state. It stays in the occurring state while the

corresponding anchor (subset of the information units of a media object) is being selected.

Attribution events stay in the occurring state while the corresponding property values are being

modified. Obviously, instantaneous events, like attribution events for simple value assignments,

stay in the occurring state only during an infinitesimal period of time.

Relations are defined based on event states, changes on the event state machines, and on node

(<media>, <body>, <context> or <switch> element) property values.

7.2.12.1 CausalConnectorFunctionality module

The CausalConnectorFunctionality module allows only for the definition of causal relations,

defined by the <causalConnector> element of the CausalConnector module.

A <causalConnector> element has a glue expression, which defines a condition expression and an

action expression. When the condition expression is satisfied, the action expression shall be

executed. The <causalConnector> element shall have the id attribute, which uniquely identifies the

element within a document.

A condition expression may be simple (<simpleCondition> element) or composite

(<compoundCondition> element), both elements defined by the ConnectorCausalExpression

module.

The <simpleCondition> element has a role attribute, whose value shall be unique in the connector's

role set. As aforementioned, a role is a connector interface point, which is associated to node

interfaces by a link that refers to the connector. A <simpleCondition> also defines an event type

(eventType attribute) and to which transition it refers (transition attribute). The eventType and

transition attributes are optional. They may be inferred by the role value if reserved values are used.

Otherwise, the eventType and transition attributes are required.

Reserved values used for defining <simpleCondition> roles are stated in Table 7-25. If an

eventType value is "selection", the role can also define to which selection apparatus (for example,

keyboard or remote control keys) it refers, through its key attribute. At least the following values

(case sensitive) shall be accepted for the key attribute: "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",

"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T",

"U", "V", "W", "X", "Y", "Z", "*", "#", "MENU", "INFO", "GUIDE", "CURSOR_DOWN",

"CURSOR_LEFT", "CURSOR_RIGHT", "CURSOR_UP", "CHANNEL_DOWN",

"CHANNEL_UP", "VOLUME_DOWN", "VOLUME_UP", "ENTER", "RED", "GREEN",

"YELLOW", "BLUE", "BACK", "EXIT", "POWER", "REWIND", "STOP", "EJECT", "PLAY",

"RECORD", "PAUSE". If the key attribute is not specified, the selection via a pointer device

(mouse, touch screen, navigational keys, in agreement with clause 7.2.9, etc.) shall be assumed.

- 63 -
7rTD 130 (WP 2/16)

NOTE 2 – When a same selection apparatus is pressed, more than one <simple condition> may be

considered satisfied, if this selection apparatus is defined in the key attribute of the

<simpleCondition> and the interfaces bounded by <link> elements referring to the

<simpleCondition> (through the role attributes of their <bind> elements) are being presented.

Table 7-25 – Reserved condition role values associated to event state machines

Role Value Transition Value Event Type

onBegin starts presentation

onEnd stops presentation

onAbort aborts presentation

onPause pauses presentation

onResume resumes presentation

onSelection starts selection

onBeginSelection starts selection

onEndSelection stops selection

onBeginAttribution starts attribution

onEndAttribution stops attribution

onAbortAttribution aborts attribution

onPauseAttribution pauses attribution

onResumeAttribution resumes attribution

The role cardinality specifies the minimal (min attribute) and maximal (max attribute) number of

participants that may play the role (number of binds) when the <causalConnector> is used for

creating a <link>. The minimal cardinality value shall always be a positive finite value, greater than

zero and lesser than or equal to the maximal cardinality value. When the maximal cardinality value

is greater than one, several participants may play the same role, i.e., there may be several binds

connecting diverse nodes to the same role. The "unbounded" value may be set to the max attribute,

if the role may have unlimited binds associated with it. In these two latter cases, a qualifier attribute

should be specified informing the logical relationship among the simple condition binds. As

described in Table 7-26 the possible values for the qualifier attribute are: "or" and "and". If the

qualifier establishes the "or" logical operator, the link action will be triggered whenever any

condition occurs. If the qualifier establishes the "and" logical operator, the link action will be

triggered after all the simple conditions occur.

Table 7-26 – Simple condition qualifier values

Role Element Qualifier Semantics

simpleCondition or True whenever any associated simple condition

occurs.

simpleCondition and True immediately after all associated simple

conditions have occurred.

A delay attribute may also be defined for a <simpleCondition> specifying that the condition will be

true after a time delay from the moment the transition occurs.

The <compoundCondition> element has a Boolean operator attribute ("and" or "or") relating its

child elements: <simpleCondition>, <compoundCondition>, <assessmentStatement> and

- 64 -
7rTD 130 (WP 2/16)

<compoundStatement>. A delay attribute may also be defined specifying that the compound

condition will be true after a time delay from when the expression relating its child elements is true.

The <assessmentStatement> and <compoundStatement> elements are defined by the

ConnectorAssessmentExpression module.

NOTE 3 – When an "and" compound condition relates more than one trigger condition (that is, a

condition that is satisfied only in an infinitesimal time instant – as for example, the end of an object

presentation), the compound condition shall be considered true in the instant immediately after all

the trigger conditions have been satisfied.

The ConnectorAssessmentExpression module defines four elements: <assessmentStatement>,

<attributeAssessment>, <valueAssessment> and <compoundStatement>.

The <attributeAssessment> has a role attribute, which has to be unique in the connector role set. As

usual, the role is a connector interface point, which is associated to node interfaces by a <link> that

refers to the connector. An <attributeAssessment> also defines an event type (eventType attribute).

If the eventType value is "selection", the <attributeAssessment> should also define to which

selection apparatus (for example, keyboard or remote control keys) it refers, through its key

attribute. If the key attribute is not specified, the selection via a pointer device (mouse, touch screen,

etc.) shall be assumed. If the eventType value is "presentation" or “selection”, the attributeType is

optional and, if present, it shall specify the event state ("state"); if the eventType is "attribution" the

attributeType is optional and may have the value "nodeProperty" (default) or "state". In the first

case, the event represents a node property to be evaluated; in the second case the event represents

the evaluation of the corresponding attribution event state. An offset value may be added to an

<attributeAssessment> before the comparison. For example, an offset may be added to an attribute

assessment to specify: "the screen vertical position plus 50 pixels".

The <valueAssessment> element has a value attribute that may assume an event state value, or any

value to be compared with a node property.

The <assessmentStatement> element has a comparator attribute that compares the values inferred

from its child elements (<attributeAssessment> element and <valueAssessment> element). The

comparator attribute shall have one of the values: "eq", "ne", "gt", "lt", "gte", or "lte".

The <compoundStatement> element has a Boolean operator attribute ("and" or "or") relating its

child elements: <assessmentStatement> or <compoundStatement>. The isNegated attribute may

also be defined to specify that the <compoundStatement> child element shall be negated before the

Boolean operation is evaluated.

An action expression captures actions that may be executed in causal relations and may be

composed of a <simpleAction> or a <compoundAction> element, also defined by the

ConnectorCausalExpression module.

The <simpleAction> element has a role attribute, which has to be unique in the connector role set.

As usual, the role is a connector interface point, which is associated to node interfaces by a <link>

that refers to the connector. A <simpleAction> also defines an event type (eventType attribute) and

which event state transition it triggers (actionType). The eventType and actionType attributes are

optional. They can be inferred by the role value if reserved values are used; otherwise, eventType

and actionType are required. Reserved values used for defining <simpleAction> roles are stated in

Table 7-27.

If an eventType value is "attribution", the <simpleAction> shall also define the value that shall be

assigned, through its value attribute. If the value is specified as "$anyName" (where $ is a reserved

symbol, and anyName is any string, except reserved role names), the assigned value shall be

retrieved from the property associated with the role="anyName" and defined by a <bind> child

element of the <link> element that refers to the connector.

- 65 -
7rTD 130 (WP 2/16)

NOTE 4 – Declaring the role="anyName" attribute in a <bind> element of a <link> implies having

a role implicitly declared as <attributeAssessment role="anyName" eventType="attribution"

attributeType="nodeProperty"/>. This is the only possible case of a <bind> element referring to a

role that is not explicitly declared in a connector.

NOTE 5 – If value="$anyName", the value to be attributed is the value of a property (<property>

element) of a component of the same composition where the link (<link> element) that refers to the

event is defined, or of a property of the composition where the link is defined, or of a property of an

element that can be reached through a <port> element of the composition where the link is defined,

or even of a property of an element that can be reached through a port (elements <port> or

<switchPort>) of a composition nested in the same composition where the link is defined. Each

time an attribution is set, the attributed value shall be gotten from the property identified by the

<bind> element of the link.

As with <simpleCondition> elements, the role cardinality specifies the minimal (min attribute) and

maximal (max attribute) number of participants that may play the role (number of binds) when the

<causalConnector> is used for creating a link. When the maximal cardinality value is greater than

one, several participants may play the same role. When it has the "unbounded" value, the number of

binds is unlimited. In these two latter cases, the actions shall be executed in the same order of the

bind sequence.

NOTE. Actions binding to the same role shall be fired in the specified <bind> element order.

However, an action does not need to wait the previous one to be completed in order to be fired. This

means that the order of the results of applying a sequence of actions can be different from the order

of the actions in the sequence.

Table 7-27 – Reserved action role values associated to event state machines

Role value Action type Event type

start start presentation

stop stop presentation

abort abort presentation

pause pause presentation

resume resume presentation

set start attribution

startAttribution start attribution

stopAttribution stop attribution

abortAttribution abort attribution

pauseAttribution pause attribution

resumeAttribution resume attribution

A delay attribute may also be defined for a <simpleAction> specifying that the action shall be

triggered only after waiting for the specified time.

Besides all the aforementioned attributes, the <simpleAction> element may also have attributes

defined in the Animation Functionality (duration and by attributes), if its eventType value is

"attribution" (see Clause 7.2.13).

The <compoundAction> element groups child elements: <simpleAction> and <compoundAction>.

The execution of the actions shall be performed in the order they are specified. A delay attribute

- 66 -
7rTD 130 (WP 2/16)

may also be defined specifying that the fired compound action shall be applied after the specified

delay.

The <compoundAction> element has also an optional attribute called operator, which is deprecated

in NCL 3.1. It should be defined only in applications that also targets Ginga 1.0 (the Player of the

old NCL 3.0 version). In this case, it shall have the “seq” value. In future versions of NCL this

attribute can be unsupported. The actions shall be executed in the same order of the sequence of

<compoundAction> element’s child elements.

NOTE. Actions shall be fired in the specified child elements order. However, an action does not

need to wait the previous one to be completed in order to be fired. This means that the order of the

results of applying a sequence of actions can be different of the order of the actions in the sequence.

The <causalConnector> element may have <connectorParam> child elements, which are used to

parameterize connector attribute values. The ConnectorCommonPart module defines the type of the

<connectorParam> element, which has name and type attributes. In order to specify which attributes

receive parameter values defined by the connector, their values are specified as the parameter name

preceded by the $ symbol. For instance, in order to parameterize the delay attribute, a parameter

called actionDelay is defined (<connectorParam name="actionDelay" type="unsignedLong"/>)

and the value "$actionDelay" is used in the attribute (delay="$actionDelay").

The elements of the CausalConnectorFunctionality module, their attributes, and their child elements

shall comply with Table 7-28.

Table 7-28 – Extended CausalConnectorFunctionality module

Elements Attributes Content

causalConnector id (connectorParam*, (simpleCondition |
compoundCondition), (simpleAction |

compoundAction))

connectorParam name, type Empty

simpleCondition role, delay, eventType, key,

transition, min, max, qualifier

Empty

compoundCondition operator, delay ((simpleCondition |
compoundCondition)+,
(assessmentStatement |

compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min, max,

duration, by

Empty

compoundAction operator, delay (simpleAction | compoundAction)+

assessmentStatement comparator (attributeAssessment,
(attributeAssessment |

valueAssessment))

attributeAssessment role, eventType, key,

attributeType, offset

Empty

valueAssessment value Empty

compoundStatement operator, isNegated (assessmentStatement |

compoundStatement)+

The ConnectorBase module defines an element called <connectorBase>, which allows for grouping

connectors. As usual, the <connectorBase> element should have the id attribute, which uniquely

- 67 -
7rTD 130 (WP 2/16)

identifies the element within a document. The exact content of a connector base is specified by the

language profile that uses the Connectors facility. However, since the definition of connectors is not

easily done by inexperienced users, the idea is to have expert users defining connectors, storing

them in libraries (connector bases) that may be imported, and making them available to others for

creating links.

The element of the ConnectorBase module, its attributes, and its child elements shall comply with

Table 7-29.

Table 7-29 – Extended ConnectorBase module

Elements Attributes Content

connectorBase id (importBase|causalConnector)*

7.2.12.1.1 Default values

– In a <simpleCondition> element and in a <simpleAction> element, if minimal or maximal

cardinalities are not informed, “1” shall be assumed as the default value.

– In a <simpleCondition> element, if the qualifier attribute is not specified, the default value

“or” shall be assumed.

– If the eventType value of an <attributeAssessment> element is “attribution” the attributeType

is optional and has the value “nodeProperty” as default.

– In a compound statement, if the isNegated attribute is not defined, the default value “false”

shall be assumed.

7.2.12.1.2 Exception handling

– If the minimal role’s cardinality value is not a positive finite value, greater than zero and

lesser than or equal to the maximal cardinality value, the link shall be ignored.

– In a <simpleAction> element, if an eventType value is “attribution”, the value attribute is

specified as “$anyName”, and the value to be attributed cannot be retrieved, no attribution

shall be made.

– In a <simpleAction> element, if an eventType value is “attribution” and the value attribute is

specified as “$anyName”, the value to be attributed shall be the value of a property

(<property> element) of a component of the same composition where the link (<link>

element) that refers to the event is defined, or a property of the composition where the link is

defined, or a property of an element that can be reached through a <port> element of the

composition where the link is defined, or even a property of an element that can be reached

through a port (elements <port> or <switchPort>) of a composition nested in the same

composition where the link is defined. Otherwise, no attribution may be made.

– In a <compoundAction> any received attribute, except the delay attribute shall be ignored.

– In an <attributeAssessment> element, if the offset value does not have the same type of the

attributeType attribute or if it is not specified with the same unit of the value to which it will

be added, the offset value shall be ignored.

– In an <assessmentStatement> element, if the value of the comparator attribute is not “eq”,

“ne”, “gt”, “lt”, “gte”, or “lte”, the element shall be ignored.

– All attributes other than those defined in Table 7.28 for the <simpleAction>element should be

ignored by the NCL player.

- 68 -
7rTD 130 (WP 2/16)

7.2.13 Animation functionality

Animation in the cartoon sense is actually a combination of two factors: support for object drawing

and support for object motion – or more correctly, support for object alteration as a function of

time.

NCL is not a content format and, as such, does not have support for creating media object's content

and it does not have a generalized method for altering media object's content. Instead, NCL defines

a scheduling and orchestration format. This means that NCL cannot be used to make cartoons, but

can be used to render cartoon objects in the context of a general presentation, and to change the

timing and rendering properties of a cartoon (or any other) object as a whole, while it is being

displayed.

The animation primitives of NCL allow values of node properties to be changed during an active

explicitly declared duration. Since NCL animation can be computationally intensive only the

properties that define numerical values and colours may be animated.

The Animation Functionality defines the Animation module that provides the extensions necessary

to describe what happens when a node property value is changed.

7.2.13.1 Animation module

Basically, the Animation module defines attributes that may be incorporated by <simpleAction>

elements of a connector, if its eventType value is "attribution". Two new attributes are defined:

duration and by.

When setting a new value to a property, the change is instantaneous by default (duration=0), but

the change may also be carried out during an explicitly declared duration, specified by the duration

attribute.

Also, when setting a new value to a property, the change from the old value to the new one may be

linear by default (by=indefinite), or carried out step by step, with the pace specified by the by

attribute.

The by attribute represents a step to be used in incrementing or decrementing a <property> value

towards the final value of an attribution. It has a string as value that must be a positive number or

the “indefinite” string. When the value is “indefinite”, it should be used the smallest step the

middleware implementation is able to use. When the <property> value is a tuple, the same step

given in the by attribute must be used in every element of the tuple.

The combination of the duration and by attribute definitions gives how (discretely or linearly) the

change shall be performed, and its transforming interval.

7.2.13.1.1 Default values

– When setting a new value to a property, the change is instantaneous by default

(duration=“0”), if the duration attribute is not specified.

– When setting a new value to a property, the change from the old value to the new one, if not

specified the opposite, is assumed to be linear by default (by=“indefinite”).

7.2.13.1.2 Exception handling

– If the value set to a property by an attribution event is different from the current property

value and the by attribute is defined as “0”, it must be assumed as “indefinite”.

- 69 -
7rTD 130 (WP 2/16)

7.2.14 Reuse functionality

NCL allows for intensive reuse of its elements. The NCL Reuse functionality is partitioned into

three modules: Import, EntityReuse and ExtendedEntityReuse.

7.2.14.1 Import module

In order to allow an entity base to incorporate another already-defined base, the Import module

defines the <importBase> element, which has two attributes: documentURI and alias. The

documentURI refers to a URI corresponding to the NCL document containing the base to be

imported. The alias attribute specifies a name to be used as prefix when referring to elements of this

imported base. The alias name shall be unique in a document and its scope is constrained to the

document that has defined the alias attribute. The reference would have the format:

alias#element_id. The import relation is transitive, that is, if baseA imports baseB that imports

baseC, then baseA imports baseC. However, the alias defined for baseC inside baseB shall not be

considered by baseA.

When a language profile uses the Import module, the following specifications are allowed:

– the <descriptorBase> element may have a child <importBase> element referring to a URI

corresponding to another NCL document containing the descriptor base (in fact its child

elements) to be imported and nested. When a descriptor base is imported, the region bases,

the transition base, and the rule base, when present in the imported document, are also

automatically imported to the corresponding region and rule bases of the importing

document;

– the <connectorBase> element may have a child <importBase> element referring to a URI

corresponding to another connector base (in fact its child elements) to be imported and

nested;

– the <transitionBase> element may have a child <importBase> element referring to a URI

corresponding to another transition base (in fact its child elements) to be imported and

nested;

– the <ruleBase> element may have a child <importBase> element referring to a URI

corresponding to another NCL document containing the rule base (in fact its child

elements) to be imported and nested;

– the <regionBase> element may have a child <importBase> element referring to a URI

corresponding to another NCL document containing the region base (in fact its child

elements) to be imported and nested. As the referred document URI can have more than

one region base, the base to be imported must be identified by assigning its id to the baseId

attribute. On importing a <regionBase>, an optional attribute, called region, may be

specified within the <importBase> element. When present, the attribute shall identify the id

of a <region> element declared in the <regionBase> element of the host document, which

did the importing operation. As a consequence, all child <region> elements of the imported

<regionBase> shall be considered as child <region> elements of the region referred by the

<importBase>'s region attribute. If not specified, the child <region> elements of the

imported <regionBase> shall be considered children of the host document <regionBase>

element that did the importing operation.

The <importedDocumentBase> element specifies a set of imported NCL documents, and shall be

defined as a child element of the <head> element. In addition, <importedDocumentBase> elements

shall have the id attribute, which uniquely identifies the element within a document.

An NCL document may be imported through the <importNCL> element. All bases defined inside

an NCL document, as well as the document <body> element, are imported all at once through the

- 70 -
7rTD 130 (WP 2/16)

<importNCL> element. With the exception of region bases, all other bases will be treated as if each

one were imported by an <importBase> element. The imported <regionBase> elements are placed

as direct children of the <head> element of the host NCL document. The imported <body> element

will be treated as a <context> element. It should be stressed that the <importNCL> element does

not "include" the referred NCL document but only makes the referred document visible to have its

components reused by the document that has defined the <importNCL> element. Thus, imported

<body>, as well as any of its contained nodes, may be reused inside the <body> element of the

importing NCL document.

The <importNCL> element has two attributes: documentURI and alias. The documentURI refers to

a URI corresponding to the document to be imported. The alias attribute specifies a name to be used

when referring an element of this imported document. As in the <importBase> element, the name

shall be unique (type=ID) and its scope is constrained to the document that has defined the alias

attribute. The reference would have the format: alias#element_id. It is important to note that the

same alias should be used when referring to elements defined in the imported document bases

(<regionBase>, <connectorBase>, <descriptorBase>, etc.). The <importNCL> element relation has

also the transitive property, i.e., if documentA imports documentB that imports documentC, then

documentA imports documentC. However, the alias defined for documentC inside documentB shall

not be considered by documentA. By definition, the import operation is not recursive.

When a document is imported, its <media> element of application/x-ginga-settings (or

application/x-ncl-settings) type has no influence on the same type <media> element of the

importing document, whose properties are those that are valid for the importing document.

The elements of the Import module, their child elements, and their attributes shall comply with

Table 7-30.

Table 7-30 – Extended Import module

Elements Attributes Content

importBase alias, documentURI, region,

baseId

Empty

importedDocumentBase id (importNCL)+

importNCL alias, documentURI Empty

7.2.14.2 EntityReuse module

The EntityReuse module allows an NCL element to be reused. This module defines the refer

attribute, which refers to an element id that will be reused. Only <media>, <context>, <body> and

<switch> may be reused. An element that refers to another element cannot be reused; i.e., its id

cannot be the value of any refer attribute.

NOTE – If the referred node is defined within an imported document D, the refer attribute value

shall have the format "alias#id", where "alias" is the value of the alias attribute associated with the

imported document D.

When a language profile uses this module, it may add the refer attribute to:

– a <media> or <switch> element. In this case, the referred element shall be, respectively, a

<media> or <switch> element, which represents the same node previously defined in the

document <body> itself (in any nesting level) or in an external imported <body> (in any

nesting level). The referred element shall directly contain the definition of all its attributes and

child elements;

- 71 -
7rTD 130 (WP 2/16)

– a <context> element. In this case, the referred element shall be a <context> or an imported

<body> element. The referred element shall directly contain the definition of all its attributes

and child elements.

When an element declares a refer attribute, all attributes and child elements defined by the referred

element are inherited, except the id attribute. All attributes and child elements defined by the

referring element shall be ignored by the formatter, except the id attribute that shall be defined. The

only other exception is for <media> elements, in which new child <area> and <property> elements

may be added, and a new attribute, named instance, may be defined. The added <area> and

<property> elements are inherited by the referred element, and thus, to all elements that refer it. The

instance attribute is defined in the ExtendedEntityReuse module.

The referred element and the element that refers to it shall be considered the same, regarding its

data specification. The <body> element and <context> elements shall not have child elements

referring to the same element, neither both the referring and referred elements.

The referred element and the element that refers to it shall also be considered the same regarding

their presentation, if the instance attribute receives the "instSame" value. In this case,

<link>elements that are bound to the referred or the referring <media> elements shall have the

descriptor attribute in their respective <bind> elements ignored. The referred element and the

element that refers to it shall be considered independent objects regarding their presentation, if the

instance attribute receives a “new” value.

Therefore, assuming the set of <media> elements composed of the referred <media> element and

all the referring <media> elements, the following semantics shall be respected.

– If any element of the subset formed by the referred <media> element and all other <media>

elements having the instance attribute equal to "instSame" is scheduled to be presented, all

other elements in this subset, which are not child descendants of a <switch> element, are

also assumed as scheduled for presenting at the same time through a unique instance (start

instruction applied on all subset elements). The common instance in presentation shall

notify all events associated with the <area> and <property> elements defined in all

<media> elements of this subset that were scheduled for presenting. Descendant elements

of a <switch> element shall also have the same behaviour, if all rules needed to present

these elements are satisfied; otherwise, they shall not be scheduled for presenting.

– When an element with the instance attribute equal to “new” is scheduled for presenting, no

other element in the set is affected. Moreover, new independent presentation instances shall

be created at each individual presentation start.

It should be stressed that all <media> elements shall have the same behaviour previously described

regarding reuse, including the <media> element of application/x-ginga-settings (or application/x-

ncl-settings) type.

7.2.14.2.1 Default values

– If the value of the instance attribute is not defined, it shall assume the “new” string.

7.2.14.2.2 Exception handling

– When an element has the refer attribute with a value corresponding to an id of an element that

refers to another one, the element shall be considered as nonexistent.

– If the referred node is defined within an imported document D, the refer attribute value shall

have the format “alias#id”, where “alias” is the value of the alias attribute associated with the

D import. Otherwise, the element that contains the refer attribute shall be considered as

nonexistent.

- 72 -
7rTD 130 (WP 2/16)

– A <media> element may only refer to another <media> element; a <switch> element may

only refer to another <switch> element; a <context> element may only refer to another

<context> or <body> element. In all other cases, the element that contains the refer attribute

shall be considered as nonexistent.

– If the new added <property> element has the same name attribute of an already existing

<property> element (defined in the reused <media> element), the new added <property> shall

be ignored. Similarly, if the new added <area> element has the same id attribute of an already

existent <area> element (defined in the reused <media> element), the new added <area> shall

be ignored.

– A <body>, <context> or <switch> element may not include more than one element from the

set composed of the referring object and corresponding referred objects. If this is the case, all

objects in the set shall be considered as nonexistent.

7.2.15 Metainformation functionality

Metainformation does not contain content information that is used or displayed during a

presentation. Instead, it contains information about content that is used or displayed. The

Metainformation Functionality is composed of the Metainformation module that comes from SMIL

Metainformation module specification [b-W3C SMIL 2.1].

7.2.15.1 Metainformation module

The Metainformation module contains two elements that allow for the description of NCL

documents. The <meta> element specifies a single property/value pair in the name and content

attributes, respectively. The <metadata> element contains information that is also related to

metainformation of the document. It acts as the root element of the resource description framework

(RDF) tree. The <metadata> element may have as child elements: RDF elements and its sub-

elements [b-W3C RDF].

The elements of the Metainformation module, their child elements, and their attributes shall comply

with Table 7-31.

Table 7-31 – Extended Metainformation module

Elements Attributes Content

meta name, content Empty

metadata empty RDF tree

7.3 NCL language profiles for IPTV

Each NCL profile may group a subset of NCL modules, allowing the creation of languages

according to user needs.

Any document in conformance with NCL profiles shall have the <ncl> element as its root element.

The NCL 3.1 Full profile, also called NCL 3.1 Language profile, is the "complete profile" of the

NCL 3.1 language. It comprises all NCL modules (including those discussed in Clause 7.2) and

provides all facilities for declarative authoring of NCL documents.

The following NCL 3.1 module schemas used in the profiles of this Recommendation Draft are

available as an electronic attachment:

– Animation module: NCL31Animation.xsd

– CausalConnector module: NCL31CausalConnector.xsd

http://www.ncl.org.br/NCL3.1/modules/NCL31Animation.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31CausalConnector.xsd

- 73 -
7rTD 130 (WP 2/16)

– CompositeNodeInterface module: NCL31CompositeNodeInterface.xsd

– ConnectorAssessmentExpression Module: NCL31ConnectorAssessmentExpression.xsd

– ConnectorBase module: NCL31ConnectorBase.xsd

– ConnectorCausalExpression Module: NCL31ConnectorCausalExpression.xsd

– ConnectorCommonPart Module: NCL31ConnectorCommonPart.xsd

– ContentControl module: NCL31ContentControl.xsd

– Context module: NCL31Context.xsd

– Descriptor module: NCL31Descriptor.xsd

– DescriptorControl module: NCL31DescriptorControl.xsd

– EntityReuse module: NCL31EntityReuse.xsd

– ExtendedEntityReuse module: NCL31ExtendedEntityReuse.xsd

– Import module: NCL31Import.xsd

– KeyNavigation module: NCL31KeyNavigation.xsd

– Layout module: NCL31Layout.xsd

– Linking module: NCL31Linking.xsd

– Media module: NCL31Media.xsd

– MediaContentAnchor module: NCL31MediaContentAnchor.xsd

– Metainformation module: NCL31Metainformation.xsd

– NCL31CausalConnectorFunctionality.xsd

– PropertyAnchor module: NCL31PropertyAnchor.xsd

– Structure module: NCL31Structure.xsd

– SwitchInterface module: NCL31SwitchInterface.xsd

– TestRule module: NCL31TestRule.xsd

– TestRuleUse module: NCL31TestRuleUse.xsd

– Timing module: NCL31Timing.xsd

– TransitionBase module: NCL31TransitionBase.xsd

– Transition module: NCL31Transition.xsd

The profiles defined for digital TV are:

a) NCL 3.1 Enhanced DTV profile: includes the Structure, Layout, Media, Context,

MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface,

Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule,

TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse,

ExtendedEntityReuse KeyNavigation, Animation, TransitionBase, Transition and

Metainformation modules of NCL 3.1. The tables in Clause 7.3.1 show each module

element, already extended by the attributes and child elements inherited from other

modules, for this profile (see XML Schemas in the electronic attachment NCL31EDTV.xsd

of this Recommendation).

http://www.ncl.org.br/NCL3.1/modules/NCL31CompositeNodeInterface.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ConnectorAssessmentExpression.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ConnectorBase.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ConnectorCausalExpression.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ConnectorCommonPart.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ContentControl.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Context.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Descriptor.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31DescriptorControl.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31EntityReuse.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31ExtendedEntityReuse.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Import.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31KeyNavigation.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Layout.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Linking.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Media.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31MediaContentAnchor.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Metainformation.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31CausalConnectorFunctionality.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31PropertyAnchor.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Structure.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31SwitchInterface.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31TestRule.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31TestRuleUse.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Timing.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31TransitionBase.xsd
http://www.ncl.org.br/NCL3.1/modules/NCL31Transition.xsd

- 74 -
7rTD 130 (WP 2/16)

b) NCL 3.1 Raw DTV profile: includes the Structure, Media, Context, MediaContentAnchor,

CompositeNodeInterface, PropertyAnchor, Linking, CausalConnectorFunctionality,

ConnectorBase, EntityReuse, and ExtendedEntityReuse modules of NCL 3.1. Tables in

7.3.2 show each module element, already extended by the attributes and child elements

inherited from other modules, for this profile (see XML schema in the electronic

attachment NCL31RawDTV.xsd of this Recommendation).

7.3.1 Attributes and elements of the NCL 3.1 Enhanced DTV profile

Table 7.32 – Extended structure module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

ncl id, xmlns (head?, body?)

head (importedDocumentBase?, ruleBase?, transitionBase?,
regionBase*, descriptorBase?, connectorBase?, meta*,

metadata*)

body id (port| property| media| context| switch| link | meta | metadata)*

Table 7.33 – Extended media module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

media id, src, refer,
instance, type,

descriptor

(area|property)*

Table 7.34 – Extended context module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

context id, refer (port|property|media|context|link|switch|meta|metadata)*

Table 7.35 – Extended MediaContentAnchor module elements and attributes used in the

Enhanced DTV profile

Elements Attributes Content

area id, coords, begin, end, beginText,
beginPosition, endText, endPosition, first, last,

label, clip

empty

Table 7.36 – Extended PropertyAnchor module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

property name, value empty

- 75 -
7rTD 130 (WP 2/16)

Table 7.37 – Extended CompositeNodeInterface module elements and attributes used in the

Enhanced DTV profile

Elements Attributes Content

port id, component, interface empty

Table 7.38 – Extended SwitchInterface module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

switchPort id mapping+

mapping component, interface empty

Table 7.39 - Extended layout module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

regionBase id, device, region ((importBase|region)+, meta*,

metadata*)

Region id, left, right, top, bottom, height, width,

zIndex

(region)*

Table 7.40 – Extended descriptor module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

descriptor id, player, explicitDur, region, freeze, moveLeft,
moveRight, moveUp, moveDown, focusIndex,

focusBorderColor, focusBorderWidth,

focusBorderTransparency, focusSrc,focusSelSrc,

selBorderColor, transIn, transOut

(descriptorParam)*

descriptorParam name, value

descriptorBase id (importBase | descriptor |

descriptorSwitch)+

Table 7.41 – Extended TransitionBase module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

transitionBase id (importBase, transition)+

Table 7.42 – Extended Transition module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

transition id, type, subtype, dur,
startProgress, endProgress,

empty

- 76 -
7rTD 130 (WP 2/16)

direction, fadeColor,

horzRepeat, vertRepeat,

borderWidth, borderColor

Table 7.43 – Extended TestRule Module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

ruleBase id (importBase|rule|compositeRule)+

rule id, var,
comparator,

value

empty

compositeRule id, operator (rule | compositeRule)+

Table 7.44 – Extended TestRuleUse module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

bindRule constituent, rule empty

Table 7.45 – Extended ContentControl module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

switch id, refer (defaultComponent?,(switchPort| bindRule|media| context |

switch)*)

defaultComponent component empty

Table 7.46 – Extended DescriptorControl module elements and attributes used in the

Enhanced DTV profile

Elements Attributes Content

descriptorSwitch id (defaultDescriptor?, (bindRule | descriptor)*)

defaultDescriptor descriptor empty

Table 7.47 - Extended linking module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

bind role, component, interface,

descriptor

(bindParam)*

bindParam name, value empty

linkParam name, value empty

link id, xconnector (linkParam*, bind+)

- 77 -
7rTD 130 (WP 2/16)

Table 7.48 – Extended CausalConnector functionality module elements and attributes in the

Enhanced DTV profile

Elements Attributes Content

causalConnector id (connectorParam*, (simpleCondition |
compoundCondition), (simpleAction |

compoundAction))

connectorParam name, type empty

simpleCondition role, delay, eventType, key,
transition, min, max,

qualifier

empty

compoundCondition operator, delay ((simpleCondition |

compoundCondition)+,
(assessmentStatement |

compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min,

max, duration, by

empty

compoundAction operator, delay (simpleAction | compoundAction)+

assessmentStatement comparator (attributeAssessment,

(attributeAssessment | valueAssessment))

attributeAssessment role, eventType, key,

attributeType, offset

empty

valueAssessment value empty

compoundStatement operator, isNegated (assessmentStatement |

compoundStatement)+

Table 7.49 – Extended ConnectorBase module element and attributes used in the Enhanced

DTV profile

Elements Attributes Content

connectorBase id (importBase|causalConnector)*

Table 7.50 – Extended Import module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

importBase alias, documentURI,

region, baseId

empty

importedDocumentBase id (importNCL)+

importNCL alias, documentURI, empty

Table 7.51 – Extended Metainformation module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

meta name, content empty

- 78 -
7rTD 130 (WP 2/16)

metadata empty RDF tree

7.3.2 Attributes and elements of the NCL 3.1 Raw DTV profile

Table 7.52 – Extended structure module elements and attributes used in the Raw DTV profile

Elements Attributes Content

ncl id, xmlns (head?, body?)

head (connectorBase?)

body id (port| property| media| context| link)*

Table 7.53 – Extended media module elements and attributes used in the Raw DTV profile

Elements Attributes Content

media id, src, refer,

instance, type

(area|property)*

Table 7.54 – Extended context module elements and attributes used in the Raw DTV profile

Elements Attributes Content

context id, refer (port|property|media|context|link)*

Table 7.55 – Extended MediaContentAnchor module elements and attributes used in the Raw

DTV profile

Elements Attributes Content

area id, coords, begin, end, beginText,
beginPosition, endText, endPosition, first, last,

label, clip

empty

Table 7.56 – Extended PropertyAnchor module elements and attributes used in the Raw DTV

profile

Elements Attributes Content

property name, value empty

Table 7.57 – Extended CompositeNodeInterface module elements and attributes used in the

Raw DTV profile

Elements Attributes Content

port id, component, interface empty

Table 7.58 - Extended linking module elements and attributes used in the Raw DTV profile

Elements Attributes Content

bind role, component, interface (bindParam)*

- 79 -
7rTD 130 (WP 2/16)

bindParam name, value empty

linkParam name, value empty

link id, xconnector (linkParam*, bind+)

Table 7.59 – Extended CausalConnector functionality module elements and attributes in the

Raw DTV profile

Elements Attributes Content

causalConnector id (connectorParam*, (simpleCondition |
compoundCondition), (simpleAction |

compoundAction))

connectorParam name, type empty

simpleCondition role, delay, eventType, key,
transition, min, max,

qualifier

empty

compoundCondition operator, delay ((simpleCondition |
compoundCondition)+,

(assessmentStatement |

compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min,

max, duration, by

empty

compoundAction operator,delay (simpleAction | compoundAction)+

assessmentStatement comparator (attributeAssessment,

(attributeAssessment | valueAssessment))

attributeAssessment role, eventType, key,

attributeType, offset

empty

valueAssessment value empty

compoundStatement operator, isNegated (assessmentStatement |

compoundStatement)+

Table 7.60 – Extended ConnectorBase module element and attributes used in the Raw DTV

profile

Elements Attributes Content

connectorBase id (causalConnector)*

8 Media objects in NCL presentations

The presentation of an NCL document requires the synchronization of several media objects, which

are specified by <media> elements. For each media object, a media player shall control both the

presentation of its content and its NCL events. Moreover, the media player shall be able to receive

presentation commands, to control all event state machines, and to answer queries coming from the

formatter.

- 80 -
7rTD 130 (WP 2/16)

In order to favor the incorporation of third-party media players into an NCL presentation engine, a

modular design is suggested, aiming at separating the media players from the presentation engine

(NCL Player).

Figure 8.1 illustrates a modular organization for an NCL presentation environment. In order to use

third-party with interfaces that are not compatible with the one required by the presentation engine,

it is necessary to develop modules, called adapters, to make the necessary adaptations. In this case,

the media player consists of an adapter together with the player itself.

NCL Presentation Engine

Media Player

Media Player API

Third-Party Player API

Media Player

Non Compliant

Player

Adapter

Figure 8-1 – APIs for integrating media players with an NCL presentation engine

implementation

8.1 The Media Player API

Media players must control every internal event state machine and report any change on this

machine to the NCL Player. Therefore, besides defining an interface to receive commands coming

from the NCL Player, the Media Player API shall also define an interface to report internal event

state machine changes to the NCL Player.

This clause does not specify how must be an instance of the Media Player API, but a type (a

template) for a set of instances, which is language independent, enabling communication between

software components that do not share a language.

Although an interface comprises every interaction between software components, what it is

disclosed about the Media Player API, i.e., what it is documented in this Drat Recommendation, is

more limited. It is exposed only what needs to be know in order to interact with media players.

Thus, this clause focuses on how software components interact, not on how they are implemented,

restricting the documentation to phenomena that are externally visible, and exposing only what it is

necessary to know.

EXAMPLE. Impementations could use synchronous or asynchronous communication between the NCL

Player and media players. In asynchronous communication, for instance, some way to register
and unregister callback functions is also part of the API. However, no matter the

implementation, conversion to and from the Media Player API shall be considered.

8.1.1 Interface data types

The set of data types used in the Media Player API are based on the XML specification provided in

Listing 8.1, except the any type, which represents any type that is implementation dependent.

<!--
XML Schema for the Media API data types

http://en.wikipedia.org/wiki/Software_components

- 81 -
7rTD 130 (WP 2/16)

This is NCL
Copyright: 005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.
See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.1/ancillary/mediaAPI.xsd
Author: TeleMidia Laboratory
Revision: 30/06/2013

Schema for the NCL media API data types.
-->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:mediaAPI="http://www.ncl.org.br/NCL3.1/MediaAPI"
 targetNamespace="http://www.ncl.org.br/NCL3.1/MediaAPI"
 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- define the temporalAnchorAttrs attribute group -->
 <attributeGroup name="temporalAnchorAttrs">
 <attribute name="begin" type="string" use="optional"/>
 <attribute name="end" type="string" use="optional"/>
 </attributeGroup>

 <!-- define the textAnchorAttrs attribute group -->
 <attributeGroup name="textAnchorAttrs">
 <attribute name="beginText" type="string" use="optional"/>
 <attribute name="beginPosition" type="unsignedLong" use="optional"/>
 <attribute name="endText" type="string" use="optional"/>
 <attribute name="endPosition" type="unsignedLong" use="optional"/>
 </attributeGroup>

 <!-- define the sampleAnchorAttrs attribute group -->
 <attributeGroup name="sampleAnchorAttrs">
 <attribute name="first" type="string" use="optional"/>
 <attribute name="last" type="string" use="optional"/>
 </attributeGroup>

 <!-- define the coordsAnchorAttrs attribute group -->
 <attributeGroup name="coordsAnchorAttrs">
 <attribute name="coords" type="string" use="optional"/>
 </attributeGroup>

 <!-- define the labelAttrs attribute group -->
 <attributeGroup name="labelAttrs">
 <attribute name="label" type="string" use="optional"/>
 </attributeGroup>

 <!-- define the clip attribute group -->
 <attributeGroup name="clipAttrs">
 <attribute name="clip" type="string" use="optional"/>
 </attributeGroup>

 <!-- define the default attribute group -->

 <!-- define the values for defaults-->
 <simpleType name="defaultType">
 <restriction base="string">
 <enumeration value="wholeContentAnchor" />
 <enumeration value="mainContentAnchor" />
 </restriction>
 </simpleType>

 <attributeGroup name="defaultAttrs">

- 82 -
7rTD 130 (WP 2/16)

 <attribute name="specialAnchor" type="mediaAPI:defaultType" use="optional"/>
 </attributeGroup>

 <!-- define the values for transistions-->
 <simpleType name="transitionType">
 <restriction base="string">
 <enumeration value="starts" />
 <enumeration value="stops" />
 <enumeration value="pauses" />
 <enumeration value="resumes" />
 <enumeration value="aborts" />
 </restriction>
 </simpleType>

 <!-- define the value for the content locator-->
 <simpleType name="URIlistPrototype">
 <list itemType="anyURI"/>
 </simpleType>

 <!-- define the values for transistions event type-->
 <simpleType name="eventRestrictedPrototype">
 <restriction base="string">
 <enumeration value="presentation" />
 <enumeration value="selection" />
 </restriction>
 </simpleType>

 <!-- define the values for properties-->
 <simpleType name="propertyPrototype">
 <restriction base="string">
 <enumeration value="layout" />
 <enumeration value="position" />
 <enumeration value="size" />
 <enumeration value="sizePosition" />
 <enumeration value="plane" />
 <enumeration value="device" />
 <enumeration value="time" />
 <enumeration value="color" />
 <enumeration value="percent" />
 <enumeration value="RGB888" />
 <enumeration value="fit" />
 <enumeration value="scroll" />
 <enumeration value="style" />
 <enumeration value="balance" />
 <enumeration value="alignment" />
 <enumeration value="fontStyle" />
 <enumeration value="fontFamily" />
 <enumeration value="fontSize" />
 <enumeration value="fontVariant" />
 <enumeration value="fontWeight" />
 <enumeration value="playerLife" />
 <enumeration value="optinal integer" />
 <enumeration value="optionalURI" />
 <enumeration value="optionalTransition" />
 <enumeration value="unsignedInteger" />
 <enumeration value="date" />
 <enumeration value="short" />
 <enumeration value="anyURI" />
 <enumeration value="ID" />
 <enumeration value="IDREF" />
 <enumeration value="unsigned short" />
 <enumeration value="long" />

- 83 -
7rTD 130 (WP 2/16)

 <enumeration value="unsigned long" />
 <enumeration value="float" />
 <enumeration value="double" />
 <enumeration value="char" />
 <enumeration value="string" />
 <enumeration value="Boolean" />
 <enumeration value="octet" />
 </restriction>
 </simpleType>

 <!-- declare global elements in this module -->
 <element name="transition" type="mediaAPI:transitionType"/>

 <!-- define the <area> type-->
 <complexType name="anchorType">
 <attribute name="eventId" type="ID" use="required"/>
 <attribute name="eventType" type="mediaAPI:eventRestrictedPrototype"
use="required"/>
 <attributeGroup ref="mediaAPI:coordsAnchorAttrs" />
 <attributeGroup ref="mediaAPI:temporalAnchorAttrs" />
 <attributeGroup ref="mediaAPI:textAnchorAttrs" />
 <attributeGroup ref="mediaAPI:sampleAnchorAttrs" />
 <attributeGroup ref="mediaAPI:labelAttrs" />
 <attributeGroup ref="mediaAPI:clipAttrs" />
 <attributeGroup ref="mediaAPI:defaultAttrs" />
 </complexType>

 <!-- declare global elements in this module -->
 <element name="area" type="mediaAPI:anchorType"/>

 <!-- define the <property> type-->
 <complexType name="propertyType">
 <attribute name="eventId" type="ID" use="required"/>
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional"/>
 <attribute name="type" type="mediaAPI:propertyPrototype" use="required"/>
 <attribute name="externable" type="boolean" use="required"/>
 </complexType>

 <!-- declare global elements in this module -->
 <element name="property" type="mediaAPI:propertyType"/>

 <!-- define the <media> and <event> types-->
 <group name="mediaInterfaceElementGroup">
 <choice>
 <element ref="mediaAPI:area"/>
 <element ref="mediaAPI:property"/>
 </choice>
 </group>

 <complexType name="mediaType">
 <choice minOccurs="0" maxOccurs="unbounded">
 <group ref="mediaAPI:mediaInterfaceElementGroup"/>
 </choice>
 <attribute name="src" type="mediaAPI:URIlistPrototype" use="required"/>
 </complexType>

 <complexType name="eventType">
 <choice minOccurs="1" maxOccurs="1">
 <group ref="mediaAPI:mediaInterfaceElementGroup"/>
 </choice>
 </complexType>

- 84 -
7rTD 130 (WP 2/16)

 <!-- declare global elements in this module -->
 <element name="media" type="mediaAPI:mediaType"/>
 <element name="event" type="mediaAPI:eventType"/>
</schema>

Listing 8.2 – Data types for the parameters used in the Media Player API.

Although all exchanged information is textual, the specified attributes of the <media>, <area> and

<property> data shall follow the types defined in Clause 7 of this Draft Recommendation, or are

XML data types, or are the IDL (Interface Definition Language) data types presented in Table 8.1.

The characters are coded using ISO 8859-1.

Table 8.1 – IDL data types used in this Draft Recommendation

Type Range Minimum size in bits

short -215 to 215-1 16

unsigned short 0 to 2
16

-1 16

long -231 to 231-1 32

unsigned long 0 to 232-1 32

long long -263 to 263-1 64

unsigned long long 0 to 264-1 64

float IEEE single-precision 32

double IEEE double-precision 64

long double IEEE double extended floating

point
exponent of 15 bits and signed

fraction of 64 bits

octet 0 to 255 8

8.1.2 Interface specification

In order to put a media object in execution, the NCL Player must firstly instantiate the appropriate

media player (there can be more than one instance of a same media player), which shall follow the

API defined in Listing 8.2 to communicate with the NCL Player.

- 85 -
7rTD 130 (WP 2/16)

Implemented by: Operation (input parameters)

Media player prepare (mediaType media)

Host NCL Player notifyAudioBuffer (any buffer)

Host NCL Player notifyVideoBuffer (any buffer)

Media player start (ID eventId)

Media player addEvent (eventType event)

Media player removeEvent (ID eventId)

Media player stop (ID eventId)

Media player abort (ID eventId)

Media player pause (ID eventId)

Media player resume (ID eventId)

Host NCL Player notifyEventTransition (ID eventId, transitionType transition)

Media player requestPropertyValue(string name)

Host NCL Player notifyPropertyValue (string name, string value)

Media player setPropertyValue(string name, string value, string duration,
string by)

Host NCL Player notifyError(string message)

Listing 8.2 – Media Player API.

Since each media player instance controls only one media object, this object does not need to be

identified in any operation. The NCL Player knows the media player instance from the moment it is

created and from then on it begins to communicate directly with this instance. Similarly, media

players know the NCL Player, for example through a registration process executed soon after the

media player instantiation.

The prepare operation, issued by the NCL Player, shall inform the following parameters to the

media player: the properties associated with the media object to which the media player has been

created, the list of events (presentation, selection, attribution, etc.) that need to be monitored by the

media player, and the location of the media content to be executed/presented.

Events that need to be monitored are identified by the eventId parameter. The events derived from

the whole content anchor and main content anchor shall also be identified.

If the content cannot be located, or if the media player does not know how to handle the content

type, the media player shall finish the prepare operation without performing any action and report

an error message. If the operation succeeds, the memory areas to be filled by the media player are

identified and returned, depending on the type of media to be presented, through using the

notifyAudioBuffer and notifyVideoBuffer operations.

Events can be added or removed from the list of events using the addEvent and removeEvent

operations, respectively.

The setPropertyValue interface allows the NCL Player to set values to properties of the media

object in execution controlled by the media player. For example, using the setPropertyValue the

host language player can pass an input parameter used by the media player in running the

presentation. When setting a new value to a property the change is instantaneous by default

(parameter duration=“0”), but the change may also be carried out during an explicitly declared

duration, specified by the duration parameter. In this last case, the change from the old value to the

- 86 -
7rTD 130 (WP 2/16)

new one may be linear by default (parameter by=“indefinite”), or carried out step by step, with the

pace specified by the by parameter.

The requestPropertyValue interface allows the NCL Player to get property values of the media-

object in execution controlled by the media player. The value is returned when the media player

notifies the NCL Player by means of the notifyPropertyValue interface.

Media players must notify the host language player of changes in the event state machines it

controls. Event state changes are notified via notifyEventTransition interface.

8.1.3 Input Device Control Model

Some media players may gain control of the input devices that previously were controlled by the

NCL Player. This control passing is notified to the media player via the notifyInputControl

interface, as shown in Listing 8.4, with the corresponding data types defined in Listing 8.3.

EXAMPLE. NCL player delegates control of its input devices to its media player if the media object

associated to the media player is in focus and the ENTER key is pressed (see Clause 7.2.9).

<!--
XML Schema for the Input Control API data types

This is NCL
Copyright: 005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.
See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.1/ancillary/inputControlAPI.xsd
Author: TeleMidia Laboratory
Revision: 30/06/2013

Schema for the NCL media API data types.
-->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:inputControlAPI="http://www.ncl.org.br/NCL3.1/InputControlAPI"
 targetNamespace="http://www.ncl.org.br/NCL3.1/InputControlAPI"
 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- define the values for deviceTye-->
 <simpleType name="someDevicePrototype">
 <restriction base="string">
 <enumeration value="remoteControl" />
 <enumeration value="keyboard" />
 <enumeration value="motionSensor" />
 <enumeration value="positionSensor" />
 </restriction>
 </simpleType>

 <simpleType name="deviceType">
 <union memberTypes="string inputControlAPI:someDevicePrototype"/>
 </simpleType>

 <!-- declare global elements in this module -->
 <element name="device" type="inputControlAPI:deviceType"/>

 <!-- define the value for the set of keys-->
 <simpleType name="keyListType">
 <list itemType="string"/>
 </simpleType>

 <!-- declare global elements in this module -->
 <element name="keyList" type="inputControlAPI:keyListType"/>

- 87 -
7rTD 130 (WP 2/16)

 <complexType name="sensorType">
 <attribute name="coords" type="string" use="optional"/>
 <attribute name="key" type="string" use="optional" />
 </complexType>

 <!-- declare global elements in this module -->
 <element name="sensor" type="inputControlAPI:sensorType"/>

</schema>

Listing 8.3 – Input Control API.

Implemented by: Operation (input parameters)

Host NCL Player notifyInputControl ()

Media player requestInputControl (deviceType device, keyListType keyList)

Host NCL Player notifyInput (deviceType device, sensorType sensor)

Media player nestInput (unsignedInteger nestingLevel)

Listing 8.3 – Input Control API.

Upon receiving the notification, the media player must register which device types it wants to

control (by default all keyboards, motion sensors, and remote controls) and which particular list of

keys (in the case of keyboards and remote controls). This is done via the requestInputControl

interface. From then on, each registered input is passed to the media player via the notifyInput

interface: a key identification or the sensor position.

As the input control model is recurrent, a media player can also pass the control acquired to an

internal entity, and so on (see Clause 7.2.9). However, each time a descendent entity gains control,

the media player shall notify the host language system via the nestInput interface. When a BACK

key is pressed, control must be passed back to the father entity, until reach the host language player

that can now pass control to another plug-in.

It should be noted that the hierarchical input control may refer to any input device spread in a

distributed environment (in a multiple device execution).

Any Ginga-NCL’s media player has to implement the API of Listing 8.2 and follow the life-cycle

defined in the following sub-clauses of Clause 8. Those media players that may control input

devices have to implement the API of Listing 8.4.

8.2 Expected behaviour of basic media players

This clause deals with media players for <media> elements whose types are different from any

media object containing hypermedia declarative code (for example, “application/x-ginga-NCL”

type or “text/html” type) and different from any media object containing imperative code (for

example, “application/x-ginga-NCLua” type).

A media object being presented is identified by the id attribute of the corresponding <media>

element and the id of the <descriptor> elements that were associated with the media object, if there

is any. This identification is called in this clause as representationObjectId. Since each media player

instance controls only one media object presentation, the representationObjectId also identifies the

corresponding media player.

8.2.1 start action on presentation events

Before sending a start operation, the NCL Player should find the appropriate media player to be

instantiated based on the content type to be exhibited. For this sake, the NCL Player takes into

consideration the player attribute associated with the media object to be exhibit. If this attribute is

- 88 -
7rTD 130 (WP 2/16)

not specified, the NCL Player shall take into account the type attribute of the <media> element. If

this attribute is not specified either, the NCL Player shall consider the file extension specified in the

src attribute of the <media> element.

Before issuing the start operation, the NCL Player shall inform the following parameters to the

media player: the locators of the content of the media object to be controlled, a list of all properties

associated with the media object, and a list of events (presentation, selection or attribution) that

need to be monitored by the media player (defined by the <media> element’s <area> and

<property> child elements, and by the whole content anchor), by issuing a prepare operation. When

the presentation needs to be started the start operation shall be issue, specifying the presentation

event that needs to be started, called here main event.

The src attribute of the <media> element shall be used, by the media player, to locate the content. If

the content cannot be located, or if the media player does not know how to handle the content type,

the media player shall finish the starting procedure without performing any action. An error

condition shall be notified.

The list of all properties associated with the media object must take into account the descriptors (if

any) associated with the media object. The descriptors shall be chosen by the NCL Player following

the directives specified in the NCL document. If the start action results from a link action that has a

descriptor explicitly declared in its <bind> element (descriptor attribute of the child <bind> element

of the <link> element), the resulting descriptor shall merge the attributes of the descriptor specified

in the <bind> with the attributes of the descriptor specified in the corresponding <media> element,

if this attribute is specified. For the common attributes, the information defined by the descriptor

specified in the <bind> shall superpose the information defined by the descriptor specified in the

<media> element. If the <bind> element does not contain an explicit descriptor, the resulting

descriptor shall be the one specified by the <media> descriptor, if this attribute is specified;

otherwise, the resulting descriptor does not exist. Based on this procedure, the resulting descriptor is

used to initialize values of the properties associated with the media object. It should be reiterated

that values defined in <property> child elements of the <media> element that specifies the media

object superpose the corresponding values defined in the resulting descriptors.

The list of events to be monitored by a media player should also be computed by the NCL Player,

taking into account the NCL document specification. It shall check all links where the media object

and the resulting descriptor (if it exists) participate. When computing the events to be monitored,

the NCL Player shall take into account the media-object perspective, i.e., the path of <body> and

descedant <context> elements until reach the <media> element. Only links contained in these

<body> and <context> elements should be considered to compute the monitored events.

Events that would have their end-times previous to the beginning-time of the main event and events

that would have their beginning times after the end-time of the main event do not need to be

monitored by the media player (the NCL Player should do this verification when building the

monitored event list).

Monitored events that would have beginning-times before the start time of the main event and end-

times after the start time of the main event shall be put in the occurring state, but their starts

transitions shall not be notified (links that depend on this transition shall not be fired).

If a media player receives a start operation for an object already being presented (paused or not), it

shall ignore the operation and keep on controlling the ongoing presentation. In this case, the

<simpleAction> element that has caused the start action shall not cause any transition on the

corresponding event state machine.

NOTE. If a video stream of a tuned service, which is not referred by any src attribute of <media> elements,

is being presented on the video plane, the first started media object referring to this stream gets

- 89 -
7rTD 130 (WP 2/16)

control of this content presentation, i.e., no new presentation is started. Any other further <media>

element that refers to this content by using the src attribute, when started, begins a new presentation.

Neverthless, the object presentation shall follow the same other procedures described in this clause.

If an audio stream of a tuned service, which is not referred by any src attribute of <media> elements,

is being presented, the first started media object referring to this stream gets control of this content
presentation, i.e., no new presentation is started. Any other further <media> element that refers to

this content by using the src attribute, when started, begins a new presentation. Neverthless, the

object presentation shall follow the same other procedures described in this clause.

8.2.2 stop action on presentation events

The stop action results in a stop operation to the corresponding media player. The stop operation

does not need to identify any monitored event. Therefore, if a <simpleAction> element with an

actionType attribute equal to “stop” is bound through a link to a node interface, the interface shall

be ignored when the operation is issued.

If the object is not being presented (none of the events in the object’s list of events is in the

occurring or paused state), the stop action shall be ignored.

If the object is being presented, the main event (the event passed as a parameter when the media

object was started) and all monitored events in the occurring or in the paused state with end time

equal or previous to the end time of the main event shall transit to the sleeping state, and their stops

transitions shall be notified. Monitored events in the occurring or in the paused state with end time

posterior to the end time of the main event shall be put in the sleeping state, but their stops

transitions shall not be notified. The object’s content presentation shall be stopped.

NOTE. The stop operation shall transit the monitored events to the sleeping state no matter if a transition

effect is being applied to the media object. In other words, the transition effect shall also be stopped.
Transition effects shall never be applied after an object suffers a stop operation.

When there is no media object being presented on the video plane referring (through its src attribute)
to a video stream of a tuned service, the video streams that were previously being presented in this

plane when there were no application running shall be presented, with the same previous video

parameters, even though not being referred by any media object in exhibition. A video stream
content can only have its propertieschanged using a media object (referring to the video stream) in

presentation. Similarly, when there is no media object being presented referring (through its src

attribute) to an audio stream of a tuned service, the audio streams that were previously being
presented when there were no application running shall be presented, with the same audio

parameters, even though not being referred by any media object in exhibition. An audio stream

content can only have its properties changed using a media object (referring to the audio stream) in
presentation.

8.2.3 abort action on presentation events

The abort action results in an abort operation to the corresponding media player. The abort

operation does not need to identify any monitored event. If a <simpleAction> element with an

actionType attribute equal to “abort” is bound through a link to a node interface, the interface shall

be ignored when the operation is issued.

If the object is not being presented, the abort action shall be ignored. If the object is being

presented, its main event and all monitored events in the occurring or in the paused state shall

transit to the sleeping state, and their aborts transitions shall be notified; moreover, any content

presentation shall stop.

8.2.4 pause action on presentation events

The pause action results in a pause operation to the corresponding media player. The pause

operation does not need to identify any monitored event. If a <simpleAction> element with an

- 90 -
7rTD 130 (WP 2/16)

actionType attribute equal to “pause” is bound through a link to a node interface, the interface shall

be ignored when the operation is issued.

If the object is not being presented (i.e., its main event, passed as a parameter when the media object

was started, is not in the occurring state), the action shall be ignored. If the object is being

presented, the main event and all monitored events in the occurring state shall transit to the paused

state and their pauses transitions shall be notified. The object presentation shall be paused and the

pause elapsed time shall not be considered as part of the object duration. For example, if an object

has an explicit duration of 30s, and after 25s it is paused, then even if the object stays paused for 7

minutes, after resuming the object, the main event shall stay occurring for 5s.

8.2.5 resume action on presentation events

The resume action results in a resume operation to the corresponding media player. The resume

operation does not need to identify any monitored event. If a <simpleAction> element with an

actionType attribute equal to “resume” is bound through a link to a node interface, the interface

shall be ignored when the operation is issued.

If the object is not paused (i.e., its main event, passed as a parameter when the media object was

started, is not in the paused state), the action shall be ignored. If the main event is in the paused

state, the main event and all monitored events in the paused state shall be put in the occurring state

and their resumes transitions shall be notified.

8.2.6 start action on attribution events

The start action results in a setPropertyValue operation to the corresponding media player. The

start action may be applied to an object only if the object is being presented. The setPropertyValue

operation needs to identify a monitored attribution event, to define a value to be assigned to the

property wrapped by the event, to define the duration of the attribution process, and to define the

attribution step. When setting a value to the property, the media player shall set the event state

machine to the occurring state, and after finishing the attribution, again to the sleeping state,

generating the starts transition and afterwards the stops transition.

Durind setting a value to a property, if a media player receives a requestPropertyValue operation

targeting the property, it must return (notifyPropertyValue operation) the initial value of the

property, i.e., the one immediately before the activation of the corresponding setPropertyValue

operation.

For every monitored attribution event, if the media player changes by itself the corresponding

attribute value, it shall also proceed as if it had received an external setPropertyValue operation.

8.2.7 stop, abort, pause, and resume actions on attribution events

The stop, abort, pause and resume actions resut in corresponding stop, abort, pause and resume

operations to the corresponding media player. In this case the operations shall identify the

attribution event being monitored.

The stop operation only stops the property attribution procedure, bringing the attribution event state

machine to the sleeping state, and generating the stops transition.

The abort operation stops the property attribution procedure, bringing the attribution event state

machine to the sleeping state, the property value to its original one, and generating the aborts

transition.

The pause operation only pauses the property attribution procedure, bringing the attribution event

state machine to the paused state, and generating the pauses transition.

- 91 -
7rTD 130 (WP 2/16)

Finally, the resume operation only resumes the property attribution procedure, bringing the

attribution event state machine to the occurring state, and generating the resumes transition.

8.2.8 addInterface NCL Editing Command

The addInterface NCL Editing Command (see Clause 9) results in an addEvent operation to the

corresponding media player. The operation needs to identify a new event that shall be included in

the list of events. In the case of a monitored event, all rules applied to the intersection of monitored

events with the main event shall be applied to the new event. If the new event start time is previous

to the object current time and the new event end time is posterior to the object current time, the new

event shall be put in the same state of the main event (occurring or paused), without notifying the

corresponding transition.

8.2.9 removeInterface NCL Editing Command

The removeInterface NCL Editing Command results in an removeEvent operation to the

corresponding media player. The operation needs to identify the event that should be no more

controlled. In the case of a monitored event, the event state shall be put in the sleeping state before

its removal, without generating any transition.

8.2.10 Natural end of a presentation

Presentation events of an object, with an explicit or an intrinsic duration, normally end their

presentations naturally, without needing external instructions. In this case, the media player shall

transit the event to the sleeping state and notify the stops transition. The same shall be done for

monitored events in the occurring state with the same end time of the main event or with unknown

end time, when the main event ends. Events in the occurring state with end time posterior to the

main event end time shall be put in the sleeping state but without generating the stops transition.

When the main event presentation finishes, the whole media object presentation shall finish.

8.3 Expected behavior of declarative hypermedia players in NCL applications

Declarative hypermedia-objects (media objects whose content are a declarative code specified in

some declarative programming language, for example media objects of “application/x-ginga-NCL”

type or “text/html” type) have their life cycle controlled by their parent NCL application. This

implies an execution model different from when the declarative code runs under the total control of

its own engine.

A declarative hypermedia-object is handled by the NCL parent application as a set of temporal

chains. A temporal chain corresponds to a sequence of presentation events, initiated from the event

that corresponds to the beginning of the declarative hypermedia-object presentation. Sections in

these chains may be associated with declarative hypermedia-object’s <area> child elements using

the clip attribute. For a declarative hypermedia-object with NCL code, a temporal chain is identified

by one of the NCL document entry points, defined by <port> elements, children of the document’s

<body> element. A declarative hypermedia-object’s content anchor can also refer to any content

anchor defined inside the declarative code itself using the label attribute of an <area> child element

As an example, for a declarative hypermedia-object with NCL code (i.e., <media> element of

“application/x-ncl-NCL” type>) one of its <area> elements may refer to a <port> element. In its

turn, the <port> element may be mapped to an <area> element defined in any object nested in the

declarative NCL hypermedia-object. Thus, note that a declarative hypermedia-object can

externalize content anchors defined inside its content to be used in links defined by the NCL parent

object, in which the declarative hypermedia-object is included.

As usual in NCL, a declarative hypermedia-object shall have a content anchor called the whole

content anchor declared by default in NCL documents. This content anchor, however, has a special

- 92 -
7rTD 130 (WP 2/16)

meaning. It represents the presentation of any chain defined by the media-object. Every time a

declarative hypermedia-object is started without specifying one of its content anchors, the whole

content anchor is assumed, as usual, meaning that the presentation of all temporal chain shall be

instantaneously started, in the order they are defined by <area> elements.

Document authors may define NCL links to start, stop, pause, resume or abort the execution of a

declarative code. On the other hand, a declarative code may also command the start, stop, pause or

resume of its associated content anchors and properties. These transitions may be used as conditions

of NCL links to trigger actions on other objects of the same NCL parent application. Thus, a two-

way synchronization can be established between a declarative code and the remainder of the NCL

application.

NCL links may be bound to declarative hypermedia-object interfaces (<area> and <property>

elements, and the default whole content anchor). A declarative player (the language engine) shall

interface its declarative execution environment with the NCL Player. Analogous to basic media

content players, declarative-code players shall control event state machines associated with the

declarative media-object, reporting changes to their parent NCL player. A declarative hypermedia-

object shall be able to reflect in its content anchors and properties behaviour changes in its temporal

chains. As usual, declarative hypermedia-object player shall implement the media player API and

the input control API of Listing 8.2 and 8.3, respectively.

8.3.1 start action on presentation events

Before issuing the start operation, the NCL Player shall inform the following parameters to the

declarative hypermedia-object player: the locator of the content of the declarative hypermedia-

object to be controlled, a list of all properties associated with the media object, the media object

identification during execution (representationObjectId); and a list of events (presentation, selection

or attribution) that need to be monitored by the hypermedia-object player (defined by the <media>

element’s <area> and <property> child elements, and by the whole content anchor), by issuing a

prepare operation. When the presentation needs to be started the start operation shall be issue,

specifying the event (defined by the clip, label, or the whole content anchor), which identifies the

associated temporal chain sections, to be started, called here main event.

From the locator (src attribute of the media object), the player tries to locate of the content of the

declarative hypermedia-object. If the content cannot be located, the player shall finish the starting

procedure, without performing any action. An error condition shall be notified.

From the start operation on, the NCL Player shall follow the same procedure defined for basic

media objects, defined in Clause 8.1.1, with the exception presented in the following three

paragraphs. Similarly to basic media players (see Clause 8.2.1), the list of all properties associated

with the declarative hypermedia-object must take into account the descriptors associated with the

media object, if there is any.

If a declarative hypermedia-object player receives a start operation for a temporal chain already

being presented (paused or not), it shall ignore the operation and keep on controlling the ongoing

presentation. However, unlike what is performed on <media> elements of the basic types, if the

start operation is for a temporal chain that is not being presented, the operation must be executed

even if another temporal chain is being presented (paused or occurring). As a consequence, unlike

what happens for the basic types of <media> elements, a <simpleAction> element with an

actionType attribute equal to “stop”, “pause”, “resume” or ”abort” shall be bound through a link to a

declarative hypermedia-object’s interface, which shall not be ignored when the action is applied.

Every time a declarative hypermedia-object is started without specifying one of its content anchors,

the whole content anchor is passed in the start operation, meaning that the presentation of all

- 93 -
7rTD 130 (WP 2/16)

temporal chains shall be started, in the order they are defined in the event list controlled by the

hypermedia-object player.

Unlike what is performed on <media> elements of the basic types, if any content anchor is started

and the event associated with the whole content anchor is in sleeping or paused state, it shall be put

in the occurring state and the corresponding transition shall be notified.

Likewise the basic media players (see Clause 8.2.1), the list of events to be monitored by a

declarative hypermedia-object player should also be computed by the NCL Player, taking into

account the NCL document specification. The NCL Player shall check all links where the media

object and the resulting descriptor (if any) participate.

Events that would have their end-times previous to the beginning-time of the main event and events

that would have their beginning times after the end-time of the main event do not need to be

monitored by the declarative hypermedia-object player (the NCL Player should do this verification

when building the monitored event list).

Monitored events that would have beginning times before the start time of the main event and end-

times after the start time of the main event shall be put in the occurring state, but their starts

transitions shall not be notified (links that depend on this transition shall not be fired).

8.3.2 stop action on presentation events

The stop action results in a stop operation to the corresponding hypermedia-object player. The stop

operation needs to identify a temporal chain already being controlled (or all of them). To identify

the temporal chain means to identify the corresponding <media> element’s interface.

The stop operation issued by an NCL Player shall be ignored by a declarative hypermedia-object

player if the temporal chain associated with the specified interface is not being presented (if none of

the events in the object list of events is in the occurring or paused state). If the temporal chain

associated with the specified interface is being presented, the main event (the event passed as a

parameter when the temporal chain was started) and all monitored events of this temporal chain in

the occurring or in the paused state with end time equal or previous to the end time of the main

event shall transit to the sleeping state, and their stops transitions shall be notified. Monitored events

in the occurring or in the paused state with end time posterior to the main event end time shall be

put in the sleeping state, but their stops transitions shall not be notified.

Unlike the basic media types, if some content anchor is stopped and all other presentation events are

in the sleeping state the whole content anchor shall be put in the sleeping state. If a content anchor

is stopped and at least another presentation event is in the occurring state the whole content anchor

shall remain in the occurring state. In all other cases, if a content anchor is stopped the whole

content anchor shall be put in the paused state. If the stop operation is applied to a declarative

hypermedia-object specifying the whole content anchor, stop operations shall be issued for all

temporal chains.

8.3.3 abort action on presentation events

The abort action results in an abort operation to the corresponding hypermedia-object player. The

abort operation needs to identify a temporal chain already being controlled (or all of them). To

identify the temporal chain means to identify the corresponding <media> element’s interface.

The abort operation issued by an NCL Player shall be ignored by a declarative hypermedia-object

player if the temporal chain associated with the specified interface is not being presented (if none of

the events in the object list of events is in the occurring or paused state). If the temporal chain

associated with the specified interface is being presented, the main event (the event passed as a

parameter when the temporal chain was started) and all monitored events of this temporal chain in

- 94 -
7rTD 130 (WP 2/16)

the occurring or in the paused state shall transit to the sleeping state, and their aborts transitions

shall be notified. The temporal chain presentation shall be stopped.

Unlike what is performed on <media> elements of the basic types, if any content anchor is aborted

and all other presentation events are in the sleeping state the whole content anchor shall be put in

the sleeping state. If a content anchor is aborted and at least one other presentation event is in the

occurring state the whole content anchor shall remain in the occurring state. In all other cases, if a

content anchor is stopped the whole content anchor shall be put in the paused state. If the abort

operation is applied to a declarative hypermedia-object specifying the whole content anchor, abort

operations shall be issued for all temporal chains.

8.3.4 pause action on presentation events

The pause action results in a pause operation to the corresponding hypermedia-object player. The

pause operation needs to identify a temporal chain already being controlled (or all of them). To

identify the temporal chain means to identify the corresponding <media> element’s interface.

The pause operation issued by an NCL Player shall be ignored by a declarative hypermedia-object

player if the temporal chain associated with the specified interface is not being presented. If the

temporal chain associated with the specified interface is being presented, the main event (the event

passed as a parameter when the temporal chain was started) and all monitored events of this

temporal chain in the occurring shall transit to the paused state and their pauses transitions shall be

notified. The temporal chain presentation shall be paused and the pause elapsed time shall not be

considered as part of its duration.

Unlike what is performed on <media> elements of the basic types, if any content anchor is paused

and all other presentation events are in the sleeping state or paused state the whole content anchor

shall be put in the paused state. If a content anchor is paused and at least one other presentation

event is in the occurring state the whole content anchor shall remain in the occurring state. If the

pause operation is applied to a declarative hypermedia-object specifying the whole content anchor

is assumed, pause operations shall be issued for all other content anchors that are in the occurring

state.

8.3.5 resume action on presentation events

The resume action results in a resume operation to the corresponding hypermedia-object player. The

resume operation needs to identify a temporal chain already being controlled (or all of them). To

identify the temporal chain means to identify the corresponding <media> element’s interface.

The resume operation issued by an NCL Player shall be ignored by a declarative hypermedia-object

player if the temporal chain associated with the specified interface is not in a paused satate. If the

temporal chain is in the paused state, the main event and all monitored presentation events in the

paused state shall be put in the occurring state and their resumes transitions shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor is resumed,

the whole content anchor shall be set to the occurring state. If the resume operation is applied to a

declarative hypermedia-object specifying the whole content anchor and the whole content anchor is

not in the paused state due to a previous receive of a pause operation, the resume operation is

ignored. Otherwise, resume operations shall be issued for all other content anchors that are in the

paused state, except those that were already paused before the whole content anchor has received

the pause operation.

8.3.6 Natural end of a temporal chain section presentation

Events of a declarative hypermedia-object normally end their execution naturally, without needing

external instructions. In this case, the declarative hypermedia-object player shall transit the event to

- 95 -
7rTD 130 (WP 2/16)

the sleeping state and notify the stops transition. The same shall be done for monitored events of the

same temporal chain in the occurring state with the same end time of the main event or with

unknown end time, when the main event ends. Event chains in the occurring state with end time

posterior to the end time of the main event shall be put in the sleeping state but without generating

the stops transition and without incrementing the occurrences attribute.

Unlike what is performed on <media> elements of the basic types, if any content anchor execution

ends and all other presentation events are in the sleeping state the whole content anchor shall be put

in the sleeping state. If the content anchor execution ends and at least one other presentation event is

in the occurring state, the whole content anchor shall remain in the occurring state. In all other

cases, when a content anchor execution ends, the whole content anchor shall be set to the paused

state.

8.3.7 start, stop, abort, pause and resume actions on attribution events

All actions for attribution events have the same effect on the corresponding property attribution as

they have on any property attribution of NCL objects of the basic types, as specified in Clauses

8.2.6 and 8.2.7.

8.3.8 addEvent and removeEvent instructions

The addEvent and removeEvent instructions have the same effect on the list of monitored events, as

specified in Clauses 8.2.8 and 8.2.9.

8.4 Expected behaviour of imperative-object media players in NCL applications

In an implementation in conformance with Ginga-NCL specification, the support to the

“application/x-ginga-NCLua” type is required, which allows for having Lua imperative code (file

extension “.lua”) content associated to <media> element. Other imperative object types are

optional, but their execution engine must follow the same semantics specified in this clause.

Authors may define NCL links to start, stop, pause, resume or abort the execution of an imperative

code. An imperative player (the language engine) shall interface the imperative execution

environment with the NCL Player, and shall follow the Media Player API and the Input Control

API defined in Clause 8.1.

As stated in Clause 7.2.4, imperative code span may be associated with an <area> element (using

the label attribute). If external links start, stop, pause, resume, or abort the anchor presentation,

callback functions in the imperative code span shall be triggered. The way these callbacks are

defined is responsibility of each imperative code associated with the NCL imperative object.

As usual in NCL, an imperative object shall have a content anchor called the whole content anchor,

which is declared by default. However, this content anchor has a special meaning. It represents the

execution of any code span inside the imperative-code object. Another content anchor, called main

content anchor, is also defined by default. Every time an imperative object is started without

specifying one of its content anchors or properties, the main content anchor is assumed and, as a

consequence, the code span associated to it. In all other references to the imperative object without

specifying one of its content-anchors or properties, the whole content anchor shall be assumed.

Imperative objects can also define <property> child elements. The <property> element can be

mapped to a code span (function, method, etc.) through its name attribute. In this case, a “start” link

action applied to the property shall cause the code execution, with the set values interpreted as

parameters passed to the code span. When the <property> element is mapped to an imperative-code

attribute (for example, the object’s properties specifying the screen region in which the result of the

code span execution will be placed), the action “start” shall assign the value to the attribute.

- 96 -
7rTD 130 (WP 2/16)

A <property> element defined as a child of a <media> element representing an imperative code

may be associated with an NCL link assessment role. In this case, the NCL Player shall query the

property value in order to evaluate the link expression. If the <property> element is mapped to a

code attribute, the code attribute value shall be returned by the imperative player to the NCL Player.

If the <property> element is mapped to a code span, it shall be executed and the output value

resulting from the execution shall be returned to the NCL Player.

Analogous to perceptual (i.e., basic) media content players (video, audio, image, etc.), imperative-

code players shall control event state machines associated with the imperative object. As an

example, if a code span finishes its execution, the player shall generate the stops transition in the

event presentation state machine corresponding to the code execution. However, unlike the basic

media content players, an imperative-code player may not have sufficient information to control by

itself its event state machines, and shall rely on programmed code, part of its imperative content, to

accomplish these controls.

On the other hand, an imperative code span may also command the start, stop, pause, or resume of

its <area> and <property> elements through an API offered by the imperative language (see Clause

10.3.2 for the NCLua case). The resulting transitions may be used as conditions of NCL links to

trigger actions on other NCL objects of the same application. Thus, a two-way synchronization can

be established between the imperative code and the remainder of the NCL application.

The lifecycle of an imperative object is controlled by the NCL Player. The NCL Player is

responsible for triggering the execution of an imperative object and for mediating the

communication among this object and other nodes in an NCL document.

As with all media players, once instantiated, the imperative-object media player shall execute an

initialization procedure. However, unlike other media players, this initialization code must be

specified by the author of the imperative code. This initialization procedure is executed only once,

for each imperative-object instance. It creates all code spans and data that may be used during the

imperative-object execution and, in particular, registers one (or more) event handlers for

communication with the NCL Player.

After the initialization, the execution of the imperative object becomes event oriented in both

directions; i.e., any action commanded by the NCL Player reaches the registered event handlers, and

any event state change, controlled by the imperative-object media player, generates a notification

that is sent to the NCL Player (as for example, the natural end of a code span execution). After the

initialization, the imperative-object player is then ready to perform any operation as discussed in the

next clauses.

8.4.1 start action on presentation events

Before issuing the the start insaction, the NCL Player shall inform the following parameters to the

imperative-object player: the locator of the content of the media object to be controlled, a list of all

properties associated with the media object, and a list of events that need to be monitored (defined

by the <media> element’s <area> and <property> child elements, and by the default content

anchors), by issuing a prepare operation. When the presentation needs to be started the start

operation shall be issue, specifying the event (defined by the label, or the main content anchor),

which identifies the associated imperative code to be started.

From the locator (src attribute of the media object), the imperative-object player tries to locate the

imperative code and start its execution. If the content cannot be located, the player shall finish the

starting operation, without performing any action. An error condition shall be notified.

Similarly to the basic media players (see Clause 8.2.1), the list of all properties associated with the

imperative object must take into account the descriptors associated with this media object, if any.

- 97 -
7rTD 130 (WP 2/16)

Besides, the list of events to be monitored should be computed by the NCL Player taking into

account the NCL document specification. It shall check all links where the imperative object and

the resulting descriptor (if any) participate.

Unlike what is performed on basic types of <media> elements, if an imperative-object player

receives a start operation for an event associated with a content anchor and this event is in the

sleeping state, it shall start the execution of the imperative code associated with the element, even

though other portion of the object’s imperative code is being in execution (paused or not). However,

if the event associated with the target content anchor is in the occurring or paused state, the start

operation shall be ignored by the imperative-code player that keeps on controlling the ongoing

execution. As a consequence, unlike what happens with <media> elements of the basic types, a

<simpleAction> element with an actionType attribute equal to “stop”, “pause”, “resume” or ”abort”

shall be bound through a link to an imperative node interface, which shall not be ignored when the

action is applied.

Since neither the NCL Player nor the imperative-code media player have knowledge about the

imperative-object’s content anchors, except their id and label attributes, they do not know which

other content anchors shall have their associated event put in the occurring state when a content

anchor is started or is being in execution. Therefore, except for the event associated with the whole

content anchor, it is the responsibility of the imperative-code span, as soon as it is started, to

command the imperative-code media player to change the state of any other event state machine

that is related to the event state machine associated to the started code and to inform if a transition

associated with a change shall be notified. Moreover, it is the responsibility of the imperative-code

span to command any event state change, and to inform if the associated transition shall be notified,

if the code-span execution starts another code span associated with a content anchor.

Unlike what is performed on <media> elements of the basic types, if any content anchor is started

and the event associated with the whole content anchor is in sleeping or paused state, it shall be put

in the occurring state and the corresponding transition shall be notified.

8.4.2 stop action on presentation events

The stop action results in a stop operation to the corresponding imperative-object player. The stop

instruction needs to identify an imperative code span already being controlled. To identify the

imperative code span means to identify the corresponding <media> element’s interface.

The stop operation issued by an NCL Player shall be ignored by an imperative-object player if the

imperative code span associated with the specified interface is not being executed (if the

corresponding event is not in the occurring or paused state). If the imperative-object interface is

being executed, its corresponding presentation event shall transit to the sleeping state, and its stops

transition shall be notified. The imperative code execution associated with the interface shall be

stopped.

For the same reason discussed in the start instruction, except for the event associated with the whole

content anchor, it is responsibility of the stopped-code span, before it stops, to command the

imperative-code player to change the state of any other event state machine that is related with the

event-state machine associated to the stopped code, and to inform if a transition associated with a

change shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor is stopped

and all other presentation events are in the sleeping state the whole content anchor shall be put in

the sleeping state. If a content anchor is stopped and at least one other presentation event is in the

occurring state the whole content anchor shall remain in the occurring state. In all other cases, if a

content anchor is stopped the whole content anchor shall be put in the paused state. If the stop

- 98 -
7rTD 130 (WP 2/16)

operation is applied to an imperative object specifying the whole content anchor, stop operations

shall be issued for all other content anchors.

8.4.3 abort action on presentation events

The abort action results in an abort operation to the corresponding imperative-object player. The

abort operation needs to identify an imperative code span already being controlled. To identify the

imperative code span means to identify the corresponding <media> element’s interface.

If the imperative code associated with the object’s interface is not being executed, the abort

operation shall be ignored. If the imperative code associated with the object’s interface is being

executed, its associated event, in the occurring or in the paused state, shall transit to the sleeping

state, and its aborts transition shall be notified.

For the same reason discussed in the start operation, except for the event associated with the whole

content anchor, it is the responsibility of the aborted-code span, before it aborts, to command the

imperative-code player to change the state of any other event state machine that is related to the

event state machine associated to the aborted code, and to inform if a transition associated with a

change shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor is aborted

and all other presentation events are in the sleeping state, the whole content anchor shall be put in

the sleeping state. If a content anchor is aborted and at least one other presentation event is in the

occurring state, the whole content anchor shall remain in the occurring state. In all other cases, if a

content anchor is aborted, the whole content anchor shall be put in the paused state. If the abort

operation is applied to an imperative object specifying the whole content anchor, abort instructions

shall be issued for all other content anchors.

8.4.4 pause action on presentation events

The pause action results in a pause operation to the corresponding imperative-object player. The

pause operation needs to identify an imperative code span already being controlled. To identify the

imperative code span means to identify the corresponding <media> element’s interface.

If the imperative code associated with the object’s interface is not being executed (and not in the

paused state), the operation shall be ignored. If the imperative code associated with the object’s

interface is being executed, its associated event in the occurring shall transit to the paused state, its

pauses transition shall be notified, and the pause elapsed time shall not be considered as part of the

object duration.

For the same reason discussed in the start operation, except for the event associated with the whole

content anchor, it is the responsibility of the paused-code span, before it pauses, to command the

imperative-code player to change the state of any other event state machine that is related to the

event state machine associated to the paused code, and to inform if a transition associated with a

change shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor is paused

and all other presentation events are in the sleeping state or paused state the whole content anchor

shall be put in the paused state. If a content anchor is paused and at least one other presentation

event is in the occurring state, the whole content anchor shall remain in the occurring state. If the

pause operation is applied to an imperative object specifying the whole content anchor, pause

operations shall be issued for all other content anchors that are in the occurring state.

- 99 -
7rTD 130 (WP 2/16)

8.4.5 resume action on presentation events

The resume action results in a resume operation to the corresponding imperative-object player. The

resume operation needs to identify an imperative code span already being controlled. To identify

the imperative code span means to identify the corresponding <media> element’s interface.

If the imperative code associated with the object’s interface is not paused, the operation shall be

ignored. If the imperative code associated with the object’s interface is paused, its associated event

shall transit to the occurring state, and its resumes transition shall be notified.

For the same reason discussed in the start operation, except for the event associated with the whole

content anchor, it is the responsibility of the paused-code span, before it resumes, to command the

imperative-code player to change the state of any other event state machine that is related to the

event state machine associated to the resumed code, and to inform if a transition associated with a

change shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor is resumed,

the whole content anchor shall be set to the occurring state. If the resume operation is applied to an

imperative object specifying the whole content anchor and the whole content anchor is not in the

paused state due to a previous receive of a pause instruction, the resume operation is ignored.

Otherwise, resume operations shall be issued for all other content anchors that are in the paused

state, except those that were already paused before the whole content anchor received the pause

operation.

8.4.6 Natural end of a code execution of presentation events

Events of an imperative object normally end their execution naturally, without needing external

command. In this case, immediately before ending, the code span shall command the imperative-

code player to change the state of any other event state machine that is related to the event state

machine associated to the ending code, and to inform if a transition associated with a change shall

be notified. The ending presentation event shall transit to the sleeping state, and its stops transition

shall be notified.

Unlike what is performed on <media> elements of the basic types, if any content anchor execution

ends and all other presentation events are in the sleeping state, the whole content anchor shall be put

in the sleeping state. If a content anchor execution ends and at least one other presentation event is

in the occurring state, the whole content anchor shall remain in the occurring state. In all other

cases, if a content anchor execution ends, the whole content anchor shall be set to the paused state.

8.4.7 start action on attribution events

The start action results in a setPropertyValue operation to the corresponding imperative-object

media player. The start action issued by an NCL Player may be applied to an imperative object’s

property independently from the fact whether the object is being in execution (the whole content

anchor is in the occurring state) or not (in this latter case, although the object is not being executed,

its imperative-object player shall have already been instantiated). In both cases, the

setPropertyValue instruction needs to identify a monitored attribution event, and, if it is the case, to

define a value to be assigned to the property wrapped by the event, to define the duration of the

attribution process, and to define the attribution step. When setting a value to an attribute, the

imperative-object media player shall set the event state machine to the occurring state, and after

finishing the attribution, again to the sleeping state, generating the starts transition and afterwards

the stops transition.

Durind setting a value to a property, if an imperative-object media player receives a

requestPropertyValue operation targeting the property, it must return (notifyPropertyValue

- 100 -
7rTD 130 (WP 2/16)

operation) the initial value of the property, i.e., the one immediately before the activation of the

corresponding setPropertyValue operation.

If a setPropertyValue operation is applied to an event that calls the execution of a code span, no

event associated to a content anchor has its state affected.

For every monitored attribution event, if an imperative-object’s code span changes by itself the

corresponding attribute value, it shall also command the imperative-code player that shall proceed

as if it had received an external setPropertyValue operation.

8.4.8 stop, abort, pause and resume actions on attribution events

With the exception of the start operation, discussed in the previous clause, all other operations have

the same effect on the corresponding property attribution as they have on any property attribution of

NCL objects of the basic types, as specified in Clause 8.2.7.

8.4.9 addEvent and removeEvent instructions

The addEvent and removeEvent instructions have the same effect on the list of monitored events, as

specified in Clauses 8.2.8 and 8.2.9.

8.5 Expected behavior of media players after actions applied to composite objects

This clause applies only for objects represented by <context>, <body>, and <switch> elements.

8.5.1 Binding a composite node

A <simpleCondition> or <simpleAction> with eventType attribute value equal to “presentation”

may be bound by a link to a composite node (represented by a <context>, <switch>, or <body>

element) as a whole (i.e. without an interface being informed). As usual, the event state machine of

the presentation event defined on the composite node shall be controlled as specified in 7.2.12.

Analogously, an <attributeAssessment> with eventType attribute value equal to “presentation” and

attributeType equal to “state” may be bound by a link to a composite node (represented by a

<context>, <switch>, or <body> element) as a whole, and the attribute value should come from the

event state machine of the presentation event defined on the composite node.

If a <simpleAction> with eventType attribute value equal to “presentation” is bound by a link to a

composite node (represented by a <context> or <body> element) as a whole (i.e. without an

interface being informed), the action shall also be reflected to the event state machines of the

composition’s child nodes, as explained in the following sub-clauses.

8.5.2 Starting a context presentation

If a <context> or <body> element participates on an action role whose action type is “start”, when

this action is fired without referring to any specific interface, the start operation shall also be

applied to all presentation events mapped by the <context> or <body> element’s ports. Moreover,

the start operations shall be applied in the same order the <port> elements are defined in the

composition.

If the author wants to start the presentation using a specific port, it shall, in addition, indicate the

<port> id as the interface value of the corresponding <bind> element.

8.5.3 Stopping a context presentation

If a <context> or <body> element participates on an action role whose action type is “stop”, when

this action is fired without referring to any specific interface, the stop operation shall also be applied

to all presentation events of the composition’s child nodes.

- 101 -
7rTD 130 (WP 2/16)

If the composite node contains links being evaluated (or with their evaluation paused), the

evaluations shall be suspended and no action shall be fired.

8.5.4 Aborting a context presentation

If a <context> or <body> element participates on an action role whose action type is “abort”, when

this action is fired without referring to any specific interface, the abort operation shall also be

applied to all presentation events of the composition’s child nodes.

If the composition contains links being evaluated (or with their evaluation paused), the evaluations

shall be suspended and no action shall be fired.

8.5.5 Pausing a context presentation

If a <context> or <body> element participates on an action role whose action type is “pause”, when

this action is fired without referring to any specific interface, the pause operation shall also be

applied to all presentation events of the composition’s child nodes that are in the occurring state.

If the composition contains links being evaluated, all evaluations shall be suspended until a resume,

stop or abort action is issued.

If the composition contains child nodes with presentation events already in the paused state when

the pause operation is issued, these nodes shall be identified because if the composition receives a

resume operation, these events shall not be resumed.

8.5.6 Resuming a context presentation

If a <context> or <body> element participates on an action role whose action type is “resume”,

when this action is fired without referring to any specific interface, the resume operation shall also

be applied to all presentation events of the composition’s child nodes that are in the paused state,

except those that were already paused when the composition has been paused.

If the composition contains links with paused evaluations, they shall be resumed.

8.6 Relation between the presentation-event state machine of a node and the presentation-

event state machine of its parent-composite node

This clause applies for objects represented by <context>, <body>, and <switch> elements, and

<media> elements of “application/x-ginga-NCL” type.

Whenever a presentation event of a child node (media or composite) goes to the occurring state, the

presentation event of the composite node (or of the NCL node of “application/x- ginga-NCL” type)

that contains the node shall also enter in the occurring state.

When all child nodes of a composite node (or of an NCL node of “application/x- ginga-NCL” type)

have their presentation events in the sleeping state, the presentation event of the composite node (or

of the NCL node of “application/x- ginga-NCL” type) shall also be in the sleeping state.

Composite nodes (or NCL nodes of “application/x- ginga-NCL” type) do not need to infer aborts

transitions from their child nodes. These transitions in presentation events of composite nodes (or of

NCL nodes of “application/x- ginga-NCL” type) shall occur only when operations are applied

directly to composite node presentation events (see Clause 8.4).

When all child nodes of a composite node (or of an NCL node of “application/x- ginga-NCL” type)

have their presentation events in a state different from the occurring state and at least one child

node has its main event in the paused state, the presentation event of the composite node (or of the

NCL node of “application/x- ginga-NCL” type) shall also be in the paused state.

- 102 -
7rTD 130 (WP 2/16)

If a <switch> element is started, but it does not define a default component and none of the

<bindRule> referred rules is evaluated as true, the switch presentation shall not enter in the

occurring state.

9 NCL Editing Commands

NCL Editing Commands (nclEditingCommand) may be issued externally to an NCL application

execution or internally by the execution of an NCL application’s imperative object (Clause 10 deals

with events generated by NCLua objects).

NCL Editing commands allow changing an NCL application behaviour during runtime [b_NCL

Live E.C.].

9.1 Private bases

The core of an NCL presentation engine is composed of the NCL Player and its Private Base

Manager module.

The NCL Player is in charge of receiving an NCL document and controlling its presentation, trying

to guarantee that the specified relationships among media objects are respected. The NCL Player

deals with NCL applications that are collected inside a data structure known as private base. NCL

applications in a private base may be started, paused, resumed, aborted, stopped, and may refer to

each other.

The Private Base Manager is in charge of receiving NCL Editing commands and maintaining the

active NCL applications (applications being presented).

NCL Editing Commands are wrapped in a structure called NCL event descriptors. NCL event

descriptors have a structure composed basically of an eventId (identification), a time reference

(eventNPT) and a private data field. The identification uniquely identifies the NCL Editing

Command. The time reference indicates the exact moment to trigger the event (to execute the

command). A time reference equal to zero informs that the event shall be triggered immediately

after being received (events carrying this type of time-reference are commonly known as “do it

now” events). The private data field provides support for event parameters (see Table 9.1).

Table 9.1 – Editing Command event descriptor

Syntax Number of bits

EventDescriptor () {

 eventId 16

 eventNPT 33

 privateDataLength 8

 commandTag 8

 sequenceNumber 7

 finalFlag 1

 privateDataPayload 8 to 1928

 FCS 8

}

The commandTag uniquely identifies the Editing Commands, as specified in Table 9.2. In order to

allow sending a complete command in more than one event descriptor, all descriptors of the same

- 103 -
7rTD 130 (WP 2/16)

command shall be numbered and sent in sequence (i.e., it cannot be multiplexed with other Editing

Commands with the same commandTag), with the finalFlag equal to 1, except for the last

descriptor that shall have the finalFlag field equal to 0. The privateDataPayload contains the

Editing-Command parameters. Finally, the FCS field contains a checksum of the entire privateData

field, including the privateDataLength.

NCL Editing Commands are divided in three subsets.

The first subset focuses on the private base operation (openBase, activateBase, deactivateBase,

saveBase, and closeBase commands).

The second subset allows for application manipulation in a private base (to add, remove, and save

an application in an open private base, and to start, pause, resume, and stop application

presentations in an active private base).

The third subset defines commands for live editing in an open private base, allowing NCL elements

to be added and removed, and allowing values to be set to NCL <property> elements. Add

commands always have NCL elements as their arguments. The NCL elements are defined using an

XML-based syntax notation defined in Clause 9.2, which is similar to the syntax notation used in

the NCL 3.1 language schemas, with the exception of the addInterface command, in which the

begin or first attribute of an <area> element may receive the “now” value, specifying the current

NPT (Normal Play Time) of the node specified in the nodeId argument. Whether the specified NCL

element already exists or not, document consistency shall be maintained by the NCL Player, in the

sense that all element attributes stated as required shall be defined. There is just one exception to

this rule, the interface attribute of a <bind> child element of a <link> elements may be left

inconsistent, referring to an <area> element to be fulfilled by an addInterface command whose

begin attribute has the “now” value. In this case, the <link> shall be evaluated as soon as the

addInterface command is issued.

If the XML-based command parameter (command arguments) is short enough, it may be

transported directly in the event descriptors’ payload. Otherwise, the privateDataPayload carries a

set of reference pairs. In the case of pushed files (NCL documents or NCL nodes), each pair is used

to associate a set of file paths with their respective location (identification) in the transport system.

In the case of pulled files or files sited in the receiver itself, no reference pairs have to be sent,

except the {uri, “null”} pair associated with the NCL document or XML node specification that is

commanded to be added.

Table 9.2 shows the command strings with their arguments (command parameters) surrounded by

round brackets. The table also gives the unique identifier of each Editing Command (commandTag)

and the command semantics.

Table 9.2 – Editing Commands for Ginga’s private base manager

Command string Command

tag

Description

openBase (baseId, location, meta) 0x00 Opens an existing private base located with the
location parameter. If the private base does not exist

or the location parameter is not informed, a new base

is created with the baseId identifier. The location
parameter specifies the storage device in the receiver

environment and the path for opening the base.

The meta parameter contains information of
accessible network domains from which application

specification can come to be included in the private

- 104 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

base. If not specified only application specifications

coming from the same network domain that issued

the openBase command shall be considered.

If the private base is already opened, ignores the

command.

activateBase (baseId) 0x01 Turns on an open private base. All its applications

are then available to be started.

If the private base is not opened, ignores the

command.

deactivateBase (baseId) 0x02 Turns off an open private base. All its running

applications shall be stopped.

If the private base is not opened, ignores the

command

saveBase (baseId, location) 0x03 Saves the whole private base content into a
persistent storage device (if available). The location
parameter shall specify the device and the path for

saving the base.

If the private base is not opened, ignores the

command

closeBase (baseId) 0x04 Closes the open private base and disposes all private

base content.

If the private base is not opened, ignores the

command

addDocument (baseId, {uri, id}+,

meta)

0x05 Adds an NCL application to an open private base.

The NCL application’s files can be:

i) sent in the datacast network as a set of pushed

files; for these pushed files, each {uri, id} pair is
used to relate a set of file paths in the NCL

document specification with their respective

locations in a transport system;

NOTE. The set of reference pairs shall be sufficient to
enable Ginga mapping any file reference present

in the NCL application specification to its

concrete location in the receiver memory.

ii) received from an IP network as a set of

pulled files, or may be files already present in

the receiver; for these pulled files, no {uri, id}

pairs have to be sent, except the {uri, “null”}

pair associated with the NCL document

specification that the Editing Command requests

to be added in baseId, if this NCL document is

not received as a pushed file.

The meta parameter contains information of

accessible network domains with permission

information to each domain. Permission to

access to network resources is given by

- 105 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

application authentication.

If the application is already added, ignores the

command

removeDocument (baseId,

documentId)

0x06 Removes an NCL application from an open private

base.

If the application is not in the private base, or if the

application is running, ignores the command.

startDocument (baseId,
documentId, interfaceId, offset,

nptBaseId, nptTrigger)

NOTE. The offset parameter is a time
value.

0x07 Starts playing an NCL document in an active private
base, beginning the presentation from a specific

document interface. The time reference provided in
the nptTrigger field defines the initial time

positioning of the application with regards to the

NPT time base identified in the nptBaseId field.

Three cases may happen:

i) If nptTrigger is different from 0 and is greater than
or equal to the current NPT value of the NPT time

base identified by the nptBaseId, the document
presentation shall wait until NPT has the value

specified in nptTrigger to be started from its

beginning time+offset.

ii) If nptTrigger is different from 0 and is less than
the current NPT value of the NPT time base

identified by the nptBaseId, the application shall be
started immediately from its beginning

time+offset+(NPT – nptTrigger)seconds

NOTE. Only in this case, the offset parameter value may

be a negative time value, but offset+(NPT –

nptTrigger)seconds shall be a positive time value.

iii) If nptTrigger is equal to 0, the application shall
start its presentation immediately from its beginning

time+offset

NOTE. If the interfaceId parameter is specified as “null”,
all <port> element of the <body> element shall

be triggered (started).

If the offset parameter is specified as “null”, it

shall assume the “0” as value.

If the application is not in the private base, or if the

application is running, ignores the command.

stopDocument (baseId,

documentId)

0x08 Stops the presentation of an NCL application in an
active private base. All application events that are

occurring shall be stopped.

If the application is not in the private base, or if the

application isnot running, ignores the command.

pauseDocument (baseId,

documentId)

0x09 Pauses the presentation of an NCL application in an
active private base. All application events that are

occurring shall be paused.

If the application is not in the private base, or if the

- 106 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

application is not running, ignores the command.

resumeDocument (baseId,

documentId)

0x0A Resumes the presentation of an NCL application in
an active private base. All previously application
events that were paused by the pauseDocument

Editing Command shall be resumed.

If the application is not in the private base, or if the

application is not running, ignores the command.

saveDocument (baseId,

documented, location)

0x2E Saves an NCL application of an open private base
into a persistent storage device (if available). The

location parameter shall specify the device and the

path for saving the application. If the NCL
application to be saved is running in the open private

base, first stops its presentation (all application

events that are occurring shall be stopped).

If the application is not in the private base, ignores

the command.

addRegion (baseId, documentId,
regionBaseId, regionId,

xmlRegion)

0x0B Adds a <region> element as a child of another
<region> in the <regionBase> or as a child of the

<regionBase> (regionId= “the null string”) of an

NCL document in an open private base.

If the application is not in the private base, or the
destination region base does not exist, ignores the

command.

If the <region> element already exists, first remove

it.

removeRegion (baseId,

documentId, regionId)

0x0C Removes a <region> element from a <regionBase>

of an NCL document in an open private base.

If the application is not in the private base, or the
destination region base does not exist, or the

<region> element does not exist, ignores the

command.

addRegionBase (baseId,

documentId, xmlRegionBase)

0x0D Adds a <regionBase> element to the <head> element
of an NCL document in an open private base. If the

XML specification of the regionBase is sent in a file
system apart; the xmlRegionBase parameter is just a

reference to this content.

If the application is not in the private base, ignores

the command.

If the <regionBase> element already exists, first

remove it.

removeRegionBase (baseId,

documentId, regionBaseId)

0x0E Removes a <regionBase> element from the <head>
element of an NCL document in an open private

base.

If the application is not in the private base, or the
<regionBase> element does not exist, ignores the

command.

addRule (baseId, documentId, 0x0F Adds a <rule> element to the <ruleBase> of an NCL

- 107 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

xmlRule) document in an open private base.

If the application is not in the private base, or the

destination rule base does not exist, ignores the

command.

If the <rule> element already exists, first remove it.

removeRule (baseId, documentId,

ruleId)

0x10 Removes a <rule> element from the <ruleBase> of

an NCL document in an open private base.

If the application is not in the private base, or the
destination region base does not exist, or the <rule>

element does not exist, ignores the command.

addRuleBase (baseId, documentId,

xmlRuleBase)

0x11 Adds a <ruleBase> element to the <head> element
of an NCL document in an open private base. If the
XML specification of the ruleBase is sent in a file

system apart; the xmlRuleBase parameter is just a

reference to this content.

If the application is not in the private base, ignores

the command.

If the <ruleBase> element already exists, first

remove it.

removeRuleBase (baseId,

documentId, ruleBaseId)

0x12 Removes a <ruleBase> element from the <head>
element of an NCL document in an open private

base.

If the application is not in the private base, or the
<ruleBase> element does not exist, ignores the

command.

addConnector (baseId, documentId,

xmlConnector)

0x13 Adds a <connector> element to the
<connectorBase> of an NCL document in an open

private base.

If the application is not in the private base, or the

destination connector base does not exist, ignores the

command.

If the <connector> element already exists, first

remove it.

removeConnector (baseId,

documentId, connectorId)

0x14 Removes a <connector> element from the
<connectorBase> of an NCL document in an open

private base.

If the application is not in the private base, or the
destination connector base does not exist, or the

<connector> element does not exist, ignores the

command.

addConnectorBase (baseId,

documentId, xmlConnectorBase)

0x15 Adds a <connectorBase> element to the <head>
element of an NCL document in an open private

base. If the XML specification of the connectorBase
is sent in a file system apart, the xmlConnectorBase

parameter is just a reference to this content.

If the application is not in the private base, ignores

- 108 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

the command.

If the <connectorBase> element already exists, first

remove it.

removeConnectorBase (baseId,

documentId, connectorBaseId)

0x16 Removes a <connectorBase> element from the
<head> element of an NCL document in an open

private base.

If the application is not in the private base, if the
<connectorBase> element does not exist, ignores the

command.

addDescriptor (baseId, documentId,

xmlDescriptor)

0x17 Adds a <descriptor> element to the
<descriptorBase> of an NCL document in an open

private base.

If the application is not in the private base, or the
destination descriptor base does not exist, ignores

the command.

If the <descriptor> element already exists, first

remove it.

removeDescriptor (baseId,

documentId, descriptorId)

0x18 Removes a <descriptor> element from the
<descriptorBase> of an NCL document in an open

private base.

If the application is not in the private base, or the
destination descriptor base does not exist, or the

<descriptor> element does not exist, ignores the

command.

addDescriptorSwitch (baseId,

documentId, xmlDescriptorSwitch)

0x19 Adds a <descriptorSwitch> element to the
<descriptorBase> of an NCL document in an open

private base. If the XML specification of the

descriptorSwitch is sent in a file system; the
xmlDescriptorSwitch parameter is just a reference to

this content.

If the application is not in the private base, or the
destination descriptor base does not exist, ignores

the command.

If the <descriptorSwitch> element already exists,

first remove it.

removeDescriptorSwitch (baseId,

documentId, descriptorSwitchId)

0x1A Removes a <descriptorSwitch> element from the
<descriptorBase> of an NCL document in an open

private base.

If the application is not in the private base, or the
destination descriptor base does not exist, or the

<descriptorSwitch> element does not exist, ignores

the command.

addDescriptorBase (baseId,

documentId, xmlDescriptorBase)

0x1B Adds a <descriptorBase> element to the <head>
element of an NCL document in an open private
base. If the XML specification of the descriptorBase

is sent in a file system apart; the xmlDescriptorBase

parameter is just a reference to this content.

- 109 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

If the application is not in the private base, ignores

the command.

If the <descriptorBase> element already exists, first

remove it.

removeDescriptorBase (baseId,

documentId, descriptorBaseId)

0x1C Removes a <descriptorBase> element from the
<head> element of an NCL document in an open

private base.

If the application is not in the private base, or the
<descriptorBase> element does not exist, ignores the

command.

addTransition (baseId, documentId,

xmlTransition)

0x1D Adds a <transition> element to the <transitionBase>

of an NCL document in an open private base.

If the application is not in the private base, or the
destination transition base does not exist, ignores the

command.

If the <transition> element already exists, first

remove it.

removeTransition (baseId,

documentId, transitionId)

0x1E Removes a <transition> element from the
<transitionBase> of an NCL document in an open

private base.

If the application is not in the private base, or the
destination transition base does not exist, or the

<transition> element does not exist, ignores the

command.

addTransitionBase (baseId,

documentId, xmlTransitionBase)

0x1F Adds a <transitionBase> element to the <head>
element of an NCL document in an open private
base. If the XML specification of the transitionBase

is sent in a file system apart; the xmlTransitionBase

parameter is just a reference to this content.

If the application is not in the private base, ignores

the command.

If the <transitionBase> element already exists, first

remove it.

removeTransitionBase (baseId,

documentId, transitionBaseId)

0x20 Removes a <transitionBase> element from the
<head> element of an NCL document in an open

private base.

If the application is not in the private base, or the
<transitionBase> element does not exist, ignores the

command.

addImportBase (baseId,
documentId, docBaseId,

xmlImportBase)

0x21 Adds an <importBase> element to the base
(<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, or <connectorBase> element) of

an NCL document in an open private base.

If the application is not in the private base, or the
destination base does not exist, ignores the

command.

- 110 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

If the <importBase> element already exists, first

remove it.

removeImportBase (baseId,
documentId, docBaseId,

documentURI)

0x22 Removes an <importBase> element, whose
documentURI attribute is identified by the
documentURI parameter, from the base

(<regionBase>, <descriptorBase>, <ruleBase>,

<transitionBase>, or <connectorBase> element) of

an NCL document in an open private base.

If the application is not in the private base, or the

destination base does not exist, or the <importBase>

element does not exist, ignores the command.

addImportedDocumentBase
(baseId, documentId,

xmlImportedDocumentBase)

0x23 Adds an <importedDocumentBase> element to the
<head> element of an NCL document in an open

private base.

If the application is not in the private base, ignores

the command.

If the <importDocumentBase> element already

exists, first remove it.

removeImportedDocumentBase
(baseId, documentId,

importedDocumentBaseId)

0x24 Removes an <importedDocumentBase> element
from the <head> element of an NCL document in an

open private base.

If the application is not in the private base, or the
<importDocumentBase> element does not exist,

ignores the command.

addImportNCL (baseId,

documentId, xmlImportNCL)

0x25 Adds a <importNCL> element to the
<importedDocumentBase > element of an NCL

document in an open private base.

If the application is not in the private base, or the
destination imported document base does not exist,

ignores the command.

If the <importNCL> element already exists, first

remove it.

removeImportNCL (baseId,

documentId, documentURI)

0x26 Removes an <importNCL> element, whose
documentURI attribute is identified by the
documentURI parameter, from the

<importedDocumentBase > element of an NCL

document in an open private base.

If the application is not in the private base, or the
destination imported document base does not exist,

or the <importNCL> element does not exist, ignores

the command.

addNode (baseId, documentId,

compositeId, {uri, id}+, meta)

0x27 Adds a node (<media>, <context>, or <switch>

element) to a composite node (<body>, <context>,
or <switch> element) of an NCL application in an

open private base. The XML specification of the

node and its media content may be:

i) sent in the datacast network as a set of pushed

- 111 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

files; the {uri, id}pairs is used to relate file paths in

the NCL document specification of the node with

their respective locations in a transport system;

NOTE. The set of reference pairs shall be sufficient to
enable Ginga mapping any file reference present

in the XML specification to its concrete location

in the receiver memory.

ii) received from an IP network as a set of pulled
files, or may be files already present in the receiver;

for these pulled files, no {uri, id} pairs have to be

sent, except the {uri, “null”} pair associated with the
XML node specification that the Editing Command

requests to be added in compositeId, if this XML

document is not received as a pushed file.

The meta parameter contains information of
accessible network domains with permission

information of each domain.

If the application is not in the private base, or the
destination composite node does not exist, or the

node is being presented, ignores the command.

If the node already exists and it is not being

presented, first remove it.

removeNode(baseId, documentId,

compositeId, nodeId)

0x28 Removes a node (<media>, <context>, or <switch>
element) from a composite node (<body>,

<context>, or <switch> element) of an NCL

application in an open private base.

If the application is not in the private base, or the
destination composite node does not exist, or the

node does not exist, or the node is being presented,

ignores the command.

addInterface (baseId, documentId,

nodeId, xmlInterface)

0x29 Adds an interface (<port>, <area>, <property>, or
<switchPort>) to a node (<media>, <body>,

<context>, or <switch> element) of an NCL

application in an open private base.

If the application is not in the private base, or the
destination node does not exist, or the interface

already exists (including properties defined by the
system) and the destination node is being presented,

ignores the command.

If the interface already exists and the destination

node is not being presented, first remove it.

When an interface is included, only changes on its
corresponding event state machine that will occur

after the moment of the includion shall be reported,

following the rules of Clause 8.

removeInterface (baseId,

documentId, nodeId, interfaceId)

0x2A Removes an interface (<port>, <area>, <property>,
or <switchPort>) from a node (<media>, <body>,
<context>, or <switch> element) of an NCL

- 112 -
7rTD 130 (WP 2/16)

Command string Command

tag

Description

application in an open private base. The interfaceID

shall identify a <property> element’s name attribute

or a <port>, <area>, or <switchPort> element’s id

attribute.

If the application is not in the private base, or the
destination node does not exist, or the interface does
not exist, or the destination node is being presented,

ignores the command.

addLink (baseId, documentId,

compositeId, xmlLink)

0x2B Adds a <link> element to a composite node
(<body>, <context>, or <switch> element) of an

NCL application in an open private base.

If the application is not in the private base, or the
destination composite node does not exist, or the

link is being computed (has been already triggered),

ignores the command.

If the <link> element already exists and it is not

being computed, first remove it.

removeLink (baseId, documentId,

compositeId, linkId)

0x2C Removes a <link> element from a composite node
(<body>, <context>, or <switch> element) of an

NCL application in an open private base.

If the application is not in the private base, or the
destination composite node does not exist, or the

<link> element does not exist, or the <link> element

is being computed (has been already triggered),

ignores the command.

The identifiers used in the commands shall be in agreement with Table 9.3.

Table 9.3 – Identifiers used in Editing Commands

Identifiers Definition

baseId The identifier_of_a_tuned_TV_channel (set of services), or the
identifier_of_a_tuned_TV_channel.identifier_of_one_of_its_services as
specified by the (broadcast, or broadband, or integrated) DTV system, or

the identifier_of_a_Web_service. When the parameter is specified as

“null”, it shall assumed the tuned TV channel or Web service identifier

through which the nclEditingCommand was issued. When the baseId
parameter of an nclEditingCommand coming from an NCLua object

running in a certain private base is specified as “null”, it shall assumed the

same baseId value of this private base.

documentId The id attribute of an <ncl> element of an NCL document

nptBaseId The identifier of an NPT time base

nptTrigger A value of NPT

regionId The id attribute of a <region> element of an NCL document

ruleId The id attribute of a <rule> element of an NCL document

- 113 -
7rTD 130 (WP 2/16)

Identifiers Definition

connectorId The id attribute of a <connector> element of an NCL document

descriptorId The id attribute of a <descriptor> element of an NCL document

descriptorSwitchId The id attribute of a <descriptorSwitch> element of an NCL document.

transitionId The id attribute of a <transition> element of an NCL document

regionBaseId The id attribute of a <regionBase> element of an NCL document

ruleBaseId The id attribute of a <ruleBase> element of an NCL document

connectorBaseId The id attribute of a <connectorBase> element of an NCL document.

descriptorBaseId The id attribute of a <descriptorBase> element of an NCL document

transitionBaseId The id attribute of a <transitionBase> element of an NCL document

docBaseId The id attribute of a <regionBase>, <ruleBase>, <connectorBase>,

<descriptorBase>, or <transitionBase> element of an NCL document

documentURI The documentURI attribute of an <importBase> element or an

<importNCL> element of an NCL document

importedDocumentBaseId The id attribute of a <importedDocumentBase> element of an NCL

document

compositeID The id attribute of a <body>, <context> or <switch> element of an NCL
document. If the parameter is specified as “null”, the <body> element shall

be assumed as the composite to be edited.

nodeId The id attribute of a <body>, <context>, <switch> or <media> element of

an NCL document

interfaceId The id attribute of a <port>, <area>, <property> or <switchPort> element

of an NCL document

linkId The id attribute of a <link> element of an NCL document

propertyId The id attribute of a <property> or <switchPort> element of an NCL

document

9.2 Command parameters XML schemas

NCL entities used in Editing Commands shall be a document in conformance with the NCL 3.1

Command profile defined by the XML Schema that is found in the electronic attachment

NCL31EdCommand.xsd to this Draft Recommendation.

Note that different from NCL documents, several <ncl> elements may be the root element in the

XML command parameters.

9.3 NCL Editing Commands in Ginga-NCL

Some constraints are defined by Ginga-NCL considering private bases.

Ginga associates at least one private base, the default private base, with each IBB (Integrated

Broadband Broadcast) Service. An IBB Service may be a broadcast TV channel, or an IPTV

channel, or a Web service that may use resources from several broadcast and broadband networks.

When an IBB service is tuned, its corresponding default private base is opened and activated by the

Private Base Manager. Other private bases can then be opened (or created), but at most one

associated with each service of an IBB Service (for example, a service of a broadcast TV Channel).

When an IBB Service has just one service it shall have just one private base associated with it, the

default private base.

http://www.ncl.org.br/NCL3.1/ancillary/NCL31EdCommand.xsd

- 114 -
7rTD 130 (WP 2/16)

NCL Editing Commands that manipulates private bases (the first subset of commands) created for

an IBB Service shall be considered only if they come from the tuned IBB Service. The other NCL

Editing Commands targeting a private base of an IBB Service shall be considered only if they come

from the tuned IBB service, or result from running NCL applications include in the private bases

associated with this IBB Service.

NOTE. The private base associated with an IBB Service shall have the identifier (baseId parameter) equal to

IBB Service identifier (identifier_of_a_tuned_TV_channel). The possible private base associated
with an IBB Service’s service shall have the identifier (baseId parameter) equal to the “vale of the

identifier one of its services” prefixed by “value of the IBB Service identifier”

(identifier_of_a_tuned_TV_channel.identifier_of_one_of_its_services).

NCL resident applications are managed in a specific private base. Resident application can only

issue NCL Editing Commands targeting targeting this specific private base.

The number of private bases that may be kept open is a specific middleware implementation

decision.

In brief: NCL Editing Commands sent from an IBB Service can control only the private bases

created by previous NCL Editing Commands sent through the open IBB Service and the

default private base associated with the IBB Service. In other words, NCL Editing

Commands coming from an IBB Service have no effect on private bases associated with

other IBB Services. For example, NCL Editing Commands coming from a tuned broadcast

TV channel have no effect on private bases associated to other TV channels.

NCLua events (NCL Editing Command events) generated by NCLua objects running in

private bases may control just these private bases.

In Ginga-NCL, event descriptors (defined in 9.1) can be transported using any protocol, in special

those for pushed data transmission.

In environments that adopt DSM-CC for digital media transport, Ginga-NCL defines how this can

be done. In this case, NCL Editing Commands are transported in DSM-CC stream-event

descriptors. As specified on [ISO/IEC 13818-6], a DSM-CC stream-event descriptor has a very

similar structure to the event descriptor presented in Table 9.1 (see Table 9.4).

Table 9.4 - Editing command stream event descriptor

Syntax Number of bits

StreamEventDescriptor () {

 descriptorTag 8

 descriptorLength 8

 eventId 16

 reserved 31

 eventNPT 33

 privateDataLength 8

 commandTag 8

 sequenceNumber 7

 finalFlag 1

 privateDataPayload 8 to 2008

 FCS 8

- 115 -
7rTD 130 (WP 2/16)

Syntax Number of bits

}

Several alternatives have been defined by Ginga-NCL to transport unsolicited NCL Editing

Commands parameters. All alternatives are optional, but if one of them is chosen, it shall be in

agreement with this Draft Recommendation, as stated in Clauses 9.3.1 and 9.3.2.

9.3.1 DSM-CC transport of Editing Command parameters using object carousels

The DSM-CC object carousel protocol allows the cyclical transmission of stream event objects and

file systems. Stream event objects are used to map event names into event ids defined in event

descriptors. The Private Base Manager should register itself as a listener of event descriptors it

handles using event names; in the case of Editing Commands the name “nclEditingCommand”.

Besides stream event objects the DSM-CC object carousel protocol can also be used to transport

files organized in directories. A DSM-CC demultiplexer is responsible for mounting the file system

at the receiver device. XML-based command parameters specified as XML documents (NCL

documents or NCL entities to be added) can thus be organized in file system structures to be

transported in these carousels, as an alternative to the direct transportation in the payload of stream

event descriptors. A DSM-CC carousel generator is used to join the file systems and stream event

objects into data elementary streams.

Thus, when an NCL Editing Command needs to be sent, a DSM-CC stream event object shall be

created, mapping the string “nclEditingCommand” into a selected event id, and shall be put in a

DSM-CC object carousel sent in a elementary stream of type = “0x0B”. If DSM-CC stream event

descriptors are used, one or more of these descriptors, with a previous selected event id, are then

created and sent in another MPEG-2 TS elementary stream. These stream events usually have their

time reference set to zero, but may be postponed to be executed at a specific time. The Private Base

Manager shall register itself as an “nclEditingCommand” listener in order to be notified when this

kind of stream event arrives.

The commandTag of the received stream event descriptor is then used by the Private Base Manager

to interpret the complete command string semantics. If the XML-based command parameter is short

enough it is transported directly in the event descriptor payload. Otherwise, the privateDataPayload

field carries a set of reference pairs. In this case, the XML specification shall be placed in the same

object carousel that carries the stream event object. The uri parameter of the first reference pair

shall have the schema (optional) and the absolute path of the XML specification (the path in the

data server). The corresponding id parameter in the pair shall refer to the XML specification IOR

(carouselId, moduleId, objectKey; see [ISO/IEC 13818-6]) in the object carousel. If other file

systems need to be transmitted using other object carousels to complete the Editing Command with

media contents (as it is usual in the case of addDocument or addNode commands), other {uri, id}

pairs shall be present in the command. In this case, the uri parameter shall have the schema

(optional) and the absolute path of file system root (the path in the datacast server), and the

corresponding id parameter in the pair shall refer to the IOR (carouselId, moduleId, objectKey) of

any root child file or child directory in the object carousel (the carousel service gateway).

9.3.2 Transport of editing commands parameters using specific Ginga-NCL structures

Three data structure types are defined to support the transmission of NCL Editing Command

parameters: maps, metadata and data files.

For map structures, the mappingType field identifies the map type. If the mappingType is equal to

“0x01” (“events”), an event-map is characterized. In this case, a list of event identifiers comes after

the mappingType field, as defined in Table 9.5. Other mappingType values may also be defined.

- 116 -
7rTD 130 (WP 2/16)

Table 9.5 – List of event identifiers defined by the mapping structure

Syntax Number of bits

mappingStructure () {

 mappingType 8

 for (i=1; i<N; i++){

 eventId 8

 eventNameLength 8

 eventName 8 to 255

 }

}

Maps of type “events” (event maps) are used to map event names into eventIds of event descriptors

(see Table 9.1). Event maps are used to inform which events shall be received. Event names allow

specifying types of events, offering a higher abstraction level for middleware applications. The

Private Base Manager, as well as NCL imperative and declarative media objects, should register

themselves as listeners of events they handle, using event names.

When an NCL Editing Command needs to be sent, an event map shall be created, mapping the

string “nclEditingCommand” into a selected event descriptor id (see Table 9.1). One or more event

descriptors with the previous selected eventId are then created and sent (for example, it can be sent

in an MPEG-2 TS elementary stream, or using some protocol for pushed data transmission). These

event descriptors may have their time reference set to zero, but may be postponed to be executed at

a specific time. The Private Base Manager shall register itself as an “nclEditingCommand” listener

in order to be notified when this type of event arrives.

Each data file structure is indeed a file content that composes an NCL application or an NCL entity

specification: the XML specification file or its media content files (video, audio, text, image, ncl,

lua, etc.).

A metadata structure is an XML document, as defined by the schema in the electronic attachment

file NCLSectionMetadataFile.xsd. Note that the schema defines, for each pushed file, an

association between its location in a transport system (transport system identification

(component_tag attribute) and the file identification in the transport system (structureId attribute)),

and its Universal Resource Identifier (uri attribute).

For each NCL Document file or other XML Document files used in addDocument or addNode

Editing Command parameters, at least one metadata structure shall be defined. Only one NCL

application file or XML document file representing an NCL node to be inserted may be defined in a

metadata structure. More precisely, there can be only one <pushedRoot> element in a metadata

XML document. However, an NCL application (and its content files) or an XML document (and its

content files) may extend for more than one metadata structure. Moreover, there may also be a

metadata structure without any NCL application or XML document described in its <pushedRoot>

and <pushedData> elements.

Some alternatives have been defined by Ginga-NCL to transport these three aforementioned data

structures. All alternatives are optional, but if one of them is chosen, it shall be in agreement with

this Recommendation, as stated in 9.3.2.1.

http://www.ncl.org.br/NCL3.1/ancillary/NCLSectionMetadataFile.xsd

- 117 -
7rTD 130 (WP 2/16)

9.3.2.1 Transporting in unsolicited NCL Sections

The use of NCL Sections may allow the transmission of the three data structure types: maps,

metadata and data files. Every NCL Section contains data of a single structure. However, one

structure may extend through several Sections. Every data structure can be transmitted in any order

and how many times it is necessary. All NCL Section transmitted in sequence compound an NCL

Section stream.

NCL Sections have a header and a payload. The first byte of an NCL Section payload identifies the

structure type (0x01 for metadata; 0x02 for data files, and 0x03 for event-map). The second payload

byte carries the unique identifier of the structure (structureId).

The NCL Section stream and the structure identifier are those that are associated by the metadata

structure to a file locator (URL), through the component_tag and structureId attributes of the

<pushedRoot> and <pushedData> elements.

After the second byte comes a serialized data structure that can be a mappingStructure (as depicted

by Table 9.3), or a metadata structure (an XML document), or a data file structure (a serialized file

content). The NCL Section demultiplexer is responsible for mounting the application’s structure at

the receiver device.

In the same NCL Section stream that carries the XML specification (the NCL Document file or

other XML Document file used in NCL Editing Commands), an event-map file should be

transmitted in order to map the name “nclEditingCommand” to the eventId of the event descriptor,

which shall carry an NCL Editing Command, as described in 9.1. The privateDataPayload of the

event descriptor shall carry a set of {uri, id} reference pairs. The uri parameters are always “null”.

In the case of addDocument and addNode commands, the id parameter of the first pair shall identify

the NCLSection stream (“component_tag”) and its metadata structure (“structureId”) that carries the

absolute path of the NCL document or the NCL node specification (the path in the data server) and

the corresponding related structure (“structureId”) transported in NCL Sections of the same NCL

Section stream. If other additional metadata structures are used in order to complete the

addDocument or addNode command, other {uri, id} pairs shall be present in the command. In this

case, the uri parameter shall also be “null” and the corresponding id parameter in the pair shall refer

to the component_tag and the corresponding metadata structureId.

NCL Sections can be wrapped in other protocol data format like FLUTE packets, or MPEG-2

specific Section type.

NCL Sections can also transport the aforementioned data structures encapsulated in other data

structures. For example, MPEG-2 MPE (Multi-protocol Encapsulation) can be used and be wrapped

in MPEG-2 Sections; in this case, NCL Sections are MPEG-2 Datagram Sections.

Instead of transporting metadata structures directly inside NCL Sections, a second alternative

procedure is treating metadata structures as command parameters, which are transported in the

privateDataPayload field of an event descriptor.

In this situation, the set of {uri, id} parameter pairs of addDocument and addNode command is

substituted by metadata structure parameters that define a set of {“uri”, “component_tag,

structureId”} pairs for each pushed file.

Still another alternative is transporting NCL Sections containing metadata structures as MPEG-2

Metadata Sections, transported in MPEG-2 stream type = “0x16”.

- 118 -
7rTD 130 (WP 2/16)

10 Lua imperative objects in NCL presentations

The scripting language adopted by Ginga-NCL to implement imperative objects in NCL documents

is Lua (<media> elements of type “application/x-ginga-NCLua”). In the NCL Recommendation, the

support to NCLua objects (<media> element of “application/x-ginga-NCLua” type) is optional. Any

imperative scripting language could be used as NCL scripting language. However, in the Ginga-

NCL Recommendation, Lua is required as an NCL scripting language. The complete definition of

Lua is presented in [b_H.IPTV-MAFR.14].

10.1 Lua language - functions removed from the standard Lua library

The following functions are platform dependent and were removed in the implementation:

1) in module package: loadlib;

2) in module os: clock, execute, exit, getenv, remove, rename, tmpname and setlocale;

3) in module debug: all functions.

10.2 Execution model

The lifecycle of an NCLua object is controlled by the NCL Player. The NCL Player is responsible

for triggering the execution of an NCLua object and for mediating the communication between an

NCLua object and other nodes in an NCL application, as defined in Clause 8.5.

As with all media object players, once instantiated, the Lua player shall execute an initialization

procedure. However, different from other media players, this initialization code is specified by the

NCLua object author. This initialization procedure is executed only once, for each instance, and

creates functions and objects that may be used during the NCLua object execution and, in

particular, registers one (or more) event handler for communication with the NCL formatter.

After the initialization, the execution of the NCLua object becomes event oriented in both

directions; i.e., any action commanded by the NCL Player reaches the registered event handlers, and

any NCL event state change notification is sent as an event to the NCL Player (as for example, the

natural end of a procedure execution). After the initialization, the Lua Player is then ready to

perform any start operation (see Clause 8.3).

10.3 Additional modules

Besides the Lua standard library, the following modules shall be implemented and automatically

loaded:

1) module canvas: offers an API to draw graphical primitives and manipulate images;

2) module event: allows NCLua applications to communicate with the middleware through

events (NCL, pointer and key events);

3) module settings: exports a table with variables defined by the NCL document author and

reserved environment variables contained in an “application/x-ncl-settings” node;

4) module persistent: exports a table with persistent variables, which may be manipulated only

by imperative objects.

The definition of the prototypeof each function, in the above modules, uses the following naming

schema:

funcname (arglist [optarglist]) -> retlist

- 119 -
7rTD 130 (WP 2/16)

where funcname denotes the name of the function, parname denote the list of required parameters,

optarglist denote the list of optional parameters, and retlist denote the list of results returned by the

function. The lists arglist, optarglist, and retlist are variable size lists of the form

var11, ...,var1i:type1; ...; varn1, ...,varnj:typen

where var denotes a variable name and type denotes a type name, for some i, j, and n greater than or

equal to zero. Thus, for example, the prototype

func (x, y:number; s, t:string; [b:boolean]) -> t:table

denotes a function, called func, that expects the required number arguments x and y, the required

string arguments s and t, and the optional boolean argument b, and that returns a table.

The functions of the canvas; event; settings; persistent modules shall use the following policy for

error handling (in this order):

1. If the number of parameters of a call is greater than the one expected, the functions shall

ignore the additional parameters;

2. If a parameter P of a call is omitted, the function shall assume the default value of P, as

defined in this Draft Recommendation;

3. If the type of a parameter P is different from the one expected, the function shall convert P to

the expected type, if the conversion is possible. Otherwise, the function shall produce an

error.

4. If the value of a parameter P is invalid, the function shall assume the recommended value for

P, as defined in this Draft Recommendation. If there is no recommended value, the function

must produce an error;

5. If the parameters of a call are valid and the call fails, the function must produce an error.

In items 3 to 5, “produce an error” means:

1. If the function has an error status return, for example, event.post() -, then the function returns

the value that indicates the error followed by an error message (a string);

2. If the function has no error status return, then it triggers a Lua exception - error() or

lua_error() call – having an error message (a string). If the script does not capture this

exception, –pcall() call– the associated media object shall be aborted.

10.3.1 The canvas module

10.3.1.1 The canvas object

When an NCLua media object is initialized, the corresponding region of the <media> element (of

type “application/x-ginga-NCLua”) is available as the global canvas variable for the Lua script. If

the <media> element has no associated region defined (left, right, top, and bottom properties), then

the value for canvas is set to “nil”.

As an example, assume an NCL document region defined as:

<region id="luaRegion" width="300" height="100" top="200" left="20"/>

The canvas variable in an NCLua media object referring to “luaRegion” is bound to a canvas

object of size 300x100, associated with the specified region at position (20,200).

A canvas offers a graphical API to be used in an NCLua application. Using the API, it is possible to

draw lines, rectangles, texts, images, etc.

- 120 -
7rTD 130 (WP 2/16)

A canvas keeps in its state a set of attributes under which the drawing primitives operate. For

instance, if its color attribute is blue, a call to canvas:drawLine() will draw a blue line on the

canvas.

The coordinates are always relative to the top-leftmost point in canvas, i.e., coordinate (0,0).

10.3.1.2 Constructors

From any canvas object, it is possible to create new canvas and combine them through composite

operations.

canvas.new (image_path: string) -> canvas: object

Arguments

image_path Path to the image file

Return values

canvas Canvas representing the image

Description

Returns a new canvas whose content is the image received as a parameter.If the image_path path is

invalid, the function shall return nil and an error message.

canvas.new (width, height: number) -> canvas: object

Arguments

width Canvas width

height Canvas height

Return values

canvas New canvas

Description

Returns a new canvas of the given size.

Initially, all pixels shall be transparent.

If width, height < 0, the function shall assume 0.

10.3.1.3 Attributes

All attribute methods have the prefix “attr” and are used to get and set attributes (with the

exceptions specified).

If a method is invoked without input parameters, the current attribute value is returnedIf a method is

invoked with input parameters, these parameters are used as the new attribute values.

- 121 -
7rTD 130 (WP 2/16)

canvas:attrSize () -> width, height: number

Arguments

Return values

width Canvas width

height Canvas height

Description

Returns the canvas dimensions.

Note that it is not possible to change the dimensions of an existing canvas.

canvas:attrColor (R, G, B, A:number)

Arguments

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Change canvas’ attribute color.

The colors are given in RGBA, where A varies from 0 (full transparency) to 255 (full opacity).

The primitives (see Clause 10.3.1.4) are drawn with the color set to this attribute.

The initial value is black ‘0,0,0,255’.

If r, g, b, a < 0, the function should assume 0. If r, g, b, a > 255, the function shall assume 255.

canvas:attrColor (clr_name:string)

Arguments

clr_name Color name

Change canvas’ attribute color.

The colors are given as a string corresponding to one of the 16 pre-defined NCL colors:

 “white”, “aqua”, “lime”, “yellow”, “red”, “fuchsia”, “purple”, “maroon”,

 “blue”, “navy”, “teal”, “green”, “olive”, “silver”, “gray”, “black”

The values given have their alpha equal to full opacity (i.e., “A = 255”).

The primitives (see Clause 10.3.1.4) are drawn with the color set in this attribute.

If clr_name is different from every valid color, the function shall assume “black”.

- 122 -
7rTD 130 (WP 2/16)

canvas:attrColor () -> R, G, B, A:number

Return values

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Retorns the canvas’ color.

canvas:attrFont (face:string; size:number; [style:string])

Arguments

face Font name

size Font size

style Font style

Description

Changes canvas’ font attribute.

The following fonts shall be available: “Tiresias” and “Verdana”.

The size is in pixels, and it represents the maximum height of a line written with the chosen font.

The possible style values are: “bold”, “italic”, or “bold-italic”. F no style is given, no style is used.

Any invalid input value shall raise an error.

The initial font value is undefined.

If face is not supported or face=nil, the function shall assume “Tiresias” (default). If size < 0, the

function shall assume 0. If style is different from “bold”, “italic” and “bold-italic”, the function

shall assume style=nil.

canvas:attrFont () -> face:string; size:number; style:string

Return values

face Font name

size Font size

style Font style

Description

Returns the canvas font.

- 123 -
7rTD 130 (WP 2/16)

canvas:attrClip (x, y, width, height:number)

Arguments

x Clipping area coordinate

y Clipping area coordinate

width Clipping area width

height Clipping area height

Description

Changes the canvas clipping area.

The drawing primitives (see Clause 10.3.1.4) and the method canvas:compose() only operate

inside this clipping region.

The initial value is the whole canvas.

If x, y, width, height < 0, the function shall assume 0. If x is greater than the canvas width

(canvas.width), the function shall assume canvas.width. If y is greater than the canvas height

(canvas.height), the function shall assume canvas.height. If x+width > canvas.width, the function

shall assume width=canvas.width–x. If y+height > canvas.height, the function shall assume

height=canvas.height–y.

canvas:attrClip () -> x, y, width, height:number

Return values

x Clipping area coordinate

y Clipping area coordinate

width Clipping area width

height Clipping area height

Description

Returns the canvas clipping area.

- 124 -
7rTD 130 (WP 2/16)

canvas:attrCrop (x, y, w, h:number)

Arguments

x Crop region coordinate

y Crop region coordinate

w Crop region width

h Crop region height

Description

Sets the canvas crop region used when the canvas is composed.

The initial crop region is the whole canvas.

If x, y, width, height < 0, the function shall assume 0. If x is greater than the canvas width

(canvas.width), the function shall assume canvas.width. If y is greater than the canvas height

(canvas.height), the function shall assume canvas.height. If x+width > canvas.width, the function

shall assume width=canvas.width–x. If y+height > canvas.height, the function shall assume

height=canvas.height–y.

canvas:attrCrop () -> x, y, w, h:number

Return values

x Crop region coordinate

y Crop region coordinate

w Crop region width

h Crop region height

Description

Returns the canvas crop region.

canvas:attrFlip (horiz, vert:boolean)

Arguments

horiz If canvas should be flipped horizontally

vert If canvas should be flipped vertically

Description

Sets the canvas flipping mode used when the canvas is composed.

canvas:attrFlip () -> horiz, vert:boolean

Return values

horiz If canvas is flipped horizontally

vert If canvas is flipped vertically

Description

Returns the current canvas’ flipping setup.

- 125 -
7rTD 130 (WP 2/16)

canvas:attrOpacity (opacity:number)

Argument

opacity Canvas opacity

Description

Sets the canvas opacity used when the canvas is composed.

The opacity values varies between 0 (full transparency) to 255 (full opacity).

If opacity < 0, the function shall assume 0. If opacity > 255, the function shall assume 255.

canvas:attrOpacity () -> opacity:number

Return value

opacity Canvas opacity

Description

Returns the current canvas opacity.

canvas:attrRotation (degrees:number)

Argument

degrees Canvas rotation in degrees.

Description

Sets the canvas rotation attribute used when the canvas is composed.

The rotation value must be multiple of 90
o
, and follows the clockwise motion.

canvas:attrRotation () -> degrees:number

Return value

degrees Canvas rotation in degrees

Description

Returns the current canvas rotation value.

- 126 -
7rTD 130 (WP 2/16)

canvas:attrScale (w, h:number)

Arguments

w Canvas scaling width

h Canvas scaling height

Description

Sets the canvas scale used when the canvas is composed.

If the width parameter is nil, then the scaling width is computed from the given height by assuming

that the aspect ratio is kept. If the height parameter is nil or is omitted, then the scaling height is

computed from the given width by assuming that the aspect ratio is kept.

The scaling attribute is independent of the size attribute, which shall remain the same.

If width, height < 0, the function shall assume 0. If the implicit parameter “canvas” is the main

canvas, the function must produce an error. Note that “scale” a canvas means to alter the scale

(default 1.0) used when this canvas is composed with other canvas objects. Thus, the

canvas:attrScale() function does not change the pixel matrix of the canvas. It only specifies the

(horizontal and vertical) factors used to interpolate the pixel matrix of this canvas at a moment

immediately before the composition operation.

canvas:attrScale () -> w, h:number

Return values

w Canvas scaling width

h Canvas scaling height

Description

Returns the current canvas scaling values.

10.3.1.4 Primitives

The following methods take into account the canvas attributes defined in the previous clause.

NOTE. In all primitives, the line width shall be assumed as 1 pixel.

canvas:drawLine (x1, y1, x2, y2:number)

Arguments

x1 Line extremity 1st coordinate

y1 Line extremity 1st coordinate

x2 Line extremity 2nd coordinate

y2 Line extremity 2nd coordinate

Description

Draws a line with its extremities in coordinates (x1,y1) and (x2,y2).

If the draw operation exceeds the canvas size, the function shall draw only the points that are within

the canvas.

canvas:drawRect (mode:string; x, y, width, height:number)

Arguments

- 127 -
7rTD 130 (WP 2/16)

mode Drawing mode

x Rectangle coordinate

y Rectangle coordinate

width Rectangle width

height Rectangle height

Description

Method for rectangle drawing and filling.

The parameter mode may receive “frame” or “fill” values, for drawing the rectangle without filling

it or filling it, respectively.

If mode is different from “frame” and “fill”, the function shall assume “fill”. If width, height < 0,

the function shall assume 0. If the draw operation exceeds the canvas size, the function shall draw

only the points that are within the canvas.

canvas:drawRoundRect (mode:string; x, y, width, height, arcWidth, arcHeight:number)

Arguments

mode Drawing mode

x Rectangle coordinate

y Rectangle coordinate

width Rectangle width

height Rectangle height

arcWidth Rounded edge arc width

arcHeight Rounded edge arc height

Description

Function for rounded rectangle drawing and filling.

The parameter mode may be “frame” to draw the rectangle frame or “fill” to fill it.

If arc_width, arc_height < 0, the function shall assume 0. The handling of the other parameters is

similar to the canvas:drawRect() handling.

canvas:drawPolygon (mode:string) -> drawer:function

Arguments

mode Drawing mode

Return values

f Drawing function

Description

Method for polygon drawing and filling.

The parameter mode may receive the “open” value, to draw the polygon not linking the last point to

the first; the “close” value, to to draw the polygon linking the last point to the first; or the “fill”

value, to draw the polygon linking the last point to the first and painting the region inside.

The function canvas:drawPolygon returns an anonymous function “drawer” with the signature:

- 128 -
7rTD 130 (WP 2/16)

 function (x, y) end

The returned function, receives the next polygon vertex coordinates and returns itself as the result.

This recurrent procedure allows the idiom:

 canvas:drawPolygon('fill')(1,1)(10,1)(10,10)(1,10)()

When the function “drawer” receives nil as input, it completes the chained operation. Any

subsequent call shall raise an error.

If mode is different from “open”, “close” and “fill”, the function shall assume “fill”. If the draw

operation exceeds the canvas size, the function shall draw only the points that are within the canvas.

If the drawer() function, returned by canvas:drawPolygon(), is called more than once with the “nil”

parameter, the function shall produce an error.

canvas:drawEllipse (mode:string; xc, yc, width, height, ang_start, ang_end:number)

Arguments

mode Drawing mode

xc Ellipse center

yc Ellipse center

width Ellipse width

height Ellipse height

ang_start Starting angle

ang_end Ending angle

Description

Draws an ellipse and other similar primitives as circle, arcs and sectors.

The parameter mode may receive “arc” to only draw the circunference or “fill” for internal painting.

The angle units shall be assumed as degrees. The 0 degree angle is in the higher Y coordinate of the

ellipse and the angle progression follows the clockwise motion.

If mode is different from “arc” and “fill”, the function shall assume “fill”. Se width, height < 0, the

function shall assume 0. If the draw operation exceeds the canvas size, the function shall draw only

the points that are within the canvas. If ang_start or ang_end are nil, an error condition shall be

reported.

canvas:drawText (x, y: number; text: string)

Arguments

x Text coordinate

y Text coordinate

text Text do be drawn

Description

Draws the given text at coordinate (x,y) in the canvas, using the font set by
canvas:attrFont().

If the draw operation exceeds the canvas size, the function shall draw only the points that are within

the canvas.

- 129 -
7rTD 130 (WP 2/16)

10.3.1.5 Miscellaneous

canvas:clear ([x, y, w, h:number])

Arguments

x Clear area coordinate

y Clear area coordinate

w Clear area width

h Clear area height

Description

Clears the canvas with the color set by canvas:attrColor.

If the area parameters are not given, the whole canvas surface should be cleared.

If width, height < 0, the function should assume 0. If the draw operation exceeds the canvas size,

the function shall clear only the area that is within the canvas.

canvas:flush ()

Description

Flushes the canvas after a set of drawing and composite operations.

It is enough to call this method only once, after a sequence of operations.

canvas:compose (x, y:number; src:canvas; [src_x, src_y, src_width, src_height:number])

Arguments

x Position of the composition

y Position of the composition

src Canvas to compose with

src_x Position in the canvas src

src_y Position in the canvas src

src_width Composition width in the canvas src

src_height Composition height in the canvas src

Description

Composes the canvas src on the current canvas (the implicit first argument) at position (x,y).

The other parameters are optional and indicate which region in the canvas src is used to compose

with. When absent the whole canvas is used.

This operation calls src:flush() automatically before the composition.

The composition operation satisfies the following equation:

αR = αA + αB ∙ (1 – αA)

cR = [cAαA + cBαB ∙ (1 – αA)] ÷ αR

in which:

- 130 -
7rTD 130 (WP 2/16)

cR = resulting color normalized between 0 and 1

αR = resulting alfa component normalized between 0 and 1

cA = color of the source canvas (src) normalized between 0 and 1

αA = alpha component of the source canvas (src) normalized between 0 and 1

cB = color of the destination canvas (canvas) normalized between 0 and 1

αB = alpha component of the destination canvas (canvas) normalized between 0 and 1

After the operation, the destination canvas has the resulting content and the canvas src remains

intact.

If src_width, src_height < 0, the function shall assume 0. If the draw operation exceeds the canvas

size, the function shall draw only the points that are within the canvas.

canvas:pixel (x, y, R, G, B, A:number)

Arguments

x Pixel position

y Pixel position

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Changes the color of a given pixel.

If r, g, b, a < 0, the function shall assume 0. If r, g, b, a > 255, the function shall assume 255. If the

draw operation exceeds the canvas size, the function shall draw only the points that are within the

canvas.

canvas:pixel (x, y:number) -> R, G, B, A:number

Arguments

x Pixel position

y Pixel position

Return values

R Color red component

G Color green component

B Color blue component

A Color alpha component

Description

Returns the color of a given pixel.

- 131 -
7rTD 130 (WP 2/16)

canvas:measureText (text:string) -> dx, dy: number

Arguments

text Text to be measured

Return values

dx text width

dy text height

Description

Returns the dimensions that the given text would have if it were drawed with the font configured by

canvas:attrFont().

The rendered text size depends only on the used text font.

10.3.2 The event module

This module offers an API for event handling. Using the Event API, the NCL Player may

communicate with an NCLua application asynchronously.

An application may also use this mechanism internally, using the “user” event class.

The typical use of NCLua application is to handle events: NCL events (see Clause 7.2.12) or events

coming from user interactions (for example, through the remote control).

During its initiation, before becoming event oriented, a Lua script may register an event handler

function. After the initialization any action performed by the script will be in response to an event

notified to the application, i.e., to the event handler function, if any.

=== example.lua ===

... -- initializing code

function handler (evt)

 ... -- handler code

end

event.register(handler) -- register as an event listener

=== end ===

Among the event types that may be received by the handler function are all those generated by the

NCL Player. As aforementioned, Lua scripts are also capable of generating events, through a call to

the event.post(evt) function.

- 132 -
7rTD 130 (WP 2/16)

10.3.2.1 Functions

event.post ([dst:string]; evt:event) -> sent:boolean; err_msg:string

Arguments

dst Event destination

evt Event to be posted

Return values

sent If the event was successfully sent

err_msg Error message in case of errors

Description

Posts the given event.

The parameter “dst” is the event destination and may assume the values “in” (send to itself) and

“out” (send to the NCL Player). The default value is ‘out’.

If dst is different from “in” and “out”, the function shall assume “out”. If evt.class is a known class

and evt does not have the required fields of this class, or the values of some fields are invalid, the

function shall produce an error.

event.timer (time:number, f:function) -> cancel:function

Arguments

time Time in milliseconds

f Callback function

Return value

cancel Function to cancel the timer

Description

Creates a timer that expires after a timeout (in milliseconds) and then call the callback function f.

The signature of f is simple, no parameters are received or returned:

 function f () end

The value of 0 milliseconds is valid. In this case, event.timer() shall return immediately and f shall

be called as soon as possible.

If time < 0, the function should assume 0.

- 133 -
7rTD 130 (WP 2/16)

event.register ([pos:number]; f:function; [class:string]; […:any])

Arguments

pos Register position

f Callback function

class Class filter

… Class dependent filter

Description

Registers the given function as an event listener, i.e., whenever an event happens, f is called (the

function f is an event handler).

The optional parameter pos indicates the position where f is registered. If pos is not given, the

function is registered in the last position. The initial position is 1.

The optional parameter class indicates the class of events the function shall receive. If class is

given, other class dependent filters may be defined. In this case, a nil value in any position indicates

that the parameter shall not be filtered.

The signature for f is:

 function f (evt) end -> handled: boolean

Where evt is the event that triggers the function.

The function may return “true”, to signalize that the event was handled and, therefore, should not be

sent to other handlers.

It is recommended that the function, defined by the application, returns fast, since while it is

running no other event may be processed.

The NCL Player shall notify the listeners in the order they were registered and if any of them

returns true, the formatter shall not notify the remaining listeners.

If pos < 0 or pos is greater than the queue of registered handlers, the function registers f at the end

of the queue. When a handler is registered in a position occupied by another one, every handler

position from that position on shall be incremented, in order to give place to the new insertion.

When a handler is removed, all other handler positions, from the removed handler position on shall

be decremented.

event.unregister (f:function)

Arguments

f The handler function to be unregistered

Description

Unregisters the given function as a listener, i.e., new events will no longer be notified to f.

If f is not registered, the call shall be ignored.

- 134 -
7rTD 130 (WP 2/16)

event.uptime () -> ms:number

Return values

ms Time in milliseconds

Description

Returns the number of milliseconds elapsed since the beginning of the NCLua execution.

10.3.2.2 Event classes

The function event.post() and the registered handler in event.register() receive events

as parameters.

An event is described by a common Lua table, where the class field is mandatory and identifies the

event class.

The following event classes are defined:

key class:

evt = { class=“key”, type:string, key:string}

* type may be “press” or “release”.

* key is the value of the pressed or released key; the “event.keys” table holds all key codes

available in the NCL.

EXAMPLE evt = { class=“key”, type=“press”, key=“0”}

NOTE. The class dependent filters of the “key” class are type and key, in this order.
The NCLua script can post events of this class

pointer class:

evt = { class=“pointer”, type:string, x, y:number }

* type may be “press”, “release”, or “move”

* x and y refer to the coordinates of the pointer event occurrence

EXAMPLE evt = { class=“pointer”, type=“press”, x=20, y=50}

NOTE. The class dependent filter of the “pointer” class is type.

ncl class:

Relationships among NCL media nodes are based on events. Lua has access to these events through

the ncl Class.

Events may transit in two directions: from the NCL Player to the NCLua Player and from the

NCLua Player to the NCL Player. The NCL Player may send action events to change the state of

the NCLua player, which, in turn, may trigger transition events to signal state changes.

In events of the “ncl” class , the type field shall assume one of the following three values:

“presentation”, “selection” or “attribution”.

Events may be directed to specific anchors or to the whole content anchor. If the event is directed to

the whole content anchor, the label field is equal to the empty string “”.

In the case of an event generated by the NCL Player the action field shall have one of the following

- 135 -
7rTD 130 (WP 2/16)

values: “start”, “stop”, “abort”, “pause” or “resume”.

Type ‘presentation’:
evt = { class='ncl', type='presentation', label='?', action='?'}

Type ‘attribution’:
evt = { class='ncl', type='attribution', name='?', action='?', value=’?’ }

For events generated by the Lua player, the action field shall assume one of the following values:

“start”, “stop”, “abort”, “pause, or “resume”, depending on the type field

Type ‘presentation’:
evt = { class='ncl', type='presentation', label='?',

 action='start'/'stop'/'abort'/'pause'/'resume'}

Type ‘selection’:
evt = { class='ncl', type='selection', label='?', action='start'/'stop' }

Type ‘attribution’:
evt = {class='ncl', type='attribution', name='?',

 action='start'/'stop'/'abort'/'pause'/'resume', value=’?’}

NOTE. The class dependent filter of the “ncl”class are type, label or name, and action, in this order.

- 136 -
7rTD 130 (WP 2/16)

edit class:

This class reproduces the Editing Commands for the Private Base manager (see Clause 9).

However, there is an important difference between Editing Commands coming from systems

external to private bases, and the Editing Commands performed by Lua scripts (NCLua objects).

The first ones may alter not only the NCL running application, but also the NCL document

specification; i.e., in the end of the process a new NCL document is generated incorporating all

editing results. On the other hand, Editing Commands coming from NCLua media objects may only

alter the NCL running application. The original document is preserved.

Just like in other event classes, an editting command is represented by a Lua table. All events shall

contain the command field: a string with the command name. The other fields depend on the

command type (see Table 9.1). The only difference is with regard to the field that defines the

reference pairs {uri,ior}, called data in the edit class. This field’s values may be not only the

reference pairs mentioned in Table 9.1, but also XML strings with the content to be added.

Example:

evt = {

 command = ‘addNode’,

 compositeId = ‘someId’,

 data = ‘<media>...’,

}

The baseId e documentId fields are optional (when applicable) and they assume by default the base

and document identifiers where the NCLua object is in execution.

The event describing the editting command may also receive a time reference as an optional

parameter (optional parameters are indicated in the function signatures as arguments between

brackets). This optional parameter may be used to specify the exact moment when the Editing

Command shall be executed. If this parameter is not provided in the function call, the Editing

Command shall be executed immediately. When provided, this parameter may have two different

types of values, with two different meanings. If it is a number value, it defines the amount of time,

in seconds, for how long the command shall be postponed. However, this parameter may also

specify the exact moment, in absolute values, the command shall be executed. In this case, this

parameter shall be a table value with the following fields: year (four digits), month (1-12), day (1-

31), hour (0-23), min (0-59), sec (0-59), and isdst (a daylight saving flag, a boolean).

If the data field is not a valid XML, the event shall be ignored.

tcp class:

In order to send or receive a tcp data, a connection shall be firstly established through posting an

event in the form:

evt = { class='tcp', type='connect', host=addr, port=number,

 [timeout=number] }

The connection result is returned in a pre-registered event handler for the class. The returned event

is in the form:

evt = { class='tcp', type='connect', host=addr, port=number,

 connection=identifier, error=err_msg}

The error and connection fields are mutually exclusive. If there is a communication error, an error

message is returned in the error field. If, however, the connection is successfully established, the

- 137 -
7rTD 130 (WP 2/16)

connection identifier is returned in the connection field.

An NCLua application sends data, using TCP protocol, by posting events of the form:

evt = { class=’tcp’, type='data', connection=identifier,

 value=string, [timeout=number] }

Similarly, an NCLua application receives data transported by TCP protocol y receiving events of

the form:

evt = { class=’tcp’, type=’data’, connection=identifier,

 value=string, error=msg}

The error and value fields are mutually exclusive. If there is a communication error, an error

message is returned in the error field. Otherwise, the message is passed in the value field.

In order to close the connection, an event of the following form shall be posted:

evt = { class='tcp', type='disconnect', connection=identifier }

NOTE. A specific Ginga-NCL implementation should handle issues like authentication, connection
timeout/retry, whether a connection should keep open, etc.

The class dependent filter of the “tcp” class is connection.

udp class:

In order to send or receive a tcp data, an association shall be firstly established through posting an

event in the form:

evt = { class='udp', type='connect', host=addr, port=number,

 [timeout=number] }

The connection result is returned in a pre-registered event handler for the class. The returned event

is in the form:

evt = { class='udp', type='connect', host=addr, port=number,

 association=identifier, error=err_msg}

The error and association fields are mutually exclusive. If there is a communication error, an error

message is returned in the error field. If, however, the association is successfully established, the

association identifier is returned in the association field.

An NCLua application sends data, using UDP protocol, by posting events of the form:

evt = { class=’udp’, type='data', association=identifier,

 value=string, [timeout=number] }

Similarly, an NCLua application receives data transported by UDP protocol y receiving events of

the form:

evt = { class=’udp’, type=’data’, association=identifier,

 value=string, error=msg}

The error and value fields are mutually exclusive. If there is a communication error, an error

message is returned in the error field. Otherwise, the message is passed in the value field.

In order to releas the association, an event of the following form shall be posted:

evt = { class='tcp', type='disconnect', association=identifier }

NOTE. A specific Ginga-NCL implementation should handle issues like authentication, association
timeout/retry, whether an association should keep open, etc.

- 138 -
7rTD 130 (WP 2/16)

The class dependent filter of the “udp” class is association.

http class:

An NCLua application sends data, using HTTP protocol, by posting events in the form:

evt = { class=‘http’, host=addr, port=number, path=string (i.e.,

file_path/#fragment_identifier), type=method (i.e., ‘get’, ‘post’, etc.)

value=string, [timeout=number] }

Similarly, an NCLua application receives data transported by http protocol using events in the form:

evt = { class=‘http’, host=addr, port=number, path=string, type=method,

value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message

is returned in the error field. When the communication is succeeded, the message is passed in the

value field.

NOTE. An specific Ginga-NCL implementation should handle issues like authentication, connection
timeout/retry, whether a connection should keep open, etc.

The class dependent filter of the “http” class, are host, and port, in this order.

sms class:

The behaviour for sending and receiveing data using SMS is very similar to the one of the tcp class.

The “sms” class is optional in a Ginga_NCL conformant implementation.

An NCLua application sends data, using SMS, through posting events in the form:

evt = { class=’sms’, type=’send’, to=’string’, value=string [, id:string]}

The to field contains the destination number (phone number or large account number). If they are

not specified, region and country code prefixes will receive the respective region and country codes

from where the message is being sent.

The value field contains the message content.

The id field can be used to identify the SMS that will be dispatched. The application is responsible

for defining the id value and for guaranteeing its uniqueness.

A confirmation event must be sent back to the NCLua application, following the format:

evt = { class=’sms’, type=’send’, to:string, sent:boolean [,error:string] [,

id:string] }

In the confirmation message the to field shall have the same value as in the original event posted by

the NCLua application. The sent field notify if the SMS was dispatched by the device (true) or not.

The error field is optional. If the sent field value is false, it may contain a detailed error message. If

the original SMS is posted with the id field defined, the confirmation event shall arrive with the

same id value. Thus, the NCLua application will be able to make an association between both

events, and deal with multiple SMS messages being dispatched simultaneously.

Similarly, an NCLua application registers itself to receive SMS messages by posting events in the

form:

evt = { class=’sms’, type =’register’, port:number }

The port field shall receive a valid TCP port number. For compliance with the GSM Standards

- 139 -
7rTD 130 (WP 2/16)

(3GPP TS 23.040 V6.8.1, of 2006-10), this value should be in the interval [16000,16999].

Events received by the handler have the following format:

evt = { class=’sms’, type=’receive’, from:string, port:number, value:string }

The port field is defined as in the type = “register”. The from field contains the source message

number (phone number or large account number). Region and country code prefixes may be

omitted if they are equal to the receiver ones. The value field contains the message content.

At any moment, the application can request to stop receiving SMS messages in a given port, posting

the event:

evt = { class=’sms’, type=’unregister’, port:number }

The port field is defined as in the type = “register”.

At the moment the NCLua media presentation stops, the Ginga-NCL implementation shall ensure

that all ports will be unregistered.

NOTE. An specific Ginga-NCL implementation should handle issues like authentication, etc.

The class dependent filter of the “sms” class, are from and port, in this order.

The purpose of the port number is to avoid conflicts between common SMS messages received by a

user, and SMS messages that should be handled only by the application.

A Ginga-NCL implementation shall immediately return false in every call to event.post() that uses

an event class that is not supported. The NCLua application must capture this error condition in

order to verify if the SMS dispatch failed.

si class:

The si event class provides access to a set of information multiplexed in a transport stream and

periodically transmitted.

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event is received in return, to be delivered to the registered-event handlers of an NCLua

script, whose data field contains a set of subfields and is represented by a Lua table. The set

of subfields depends on requested information.

NOTE - In the si class, the class dependent filter could only be type.

Three event types are defined by the following tables:

type = ‘services’

The table of ‘services’ event type is made up by a set of vectors, each one with information related

with a multiplexed service of the tuned transport stream.

Each request for a table of ‘services’ event type shall be carried out through the following call:

event.post('out', { class='si', type='services'[, index=N][, fields={field_1, field_2,…, field_j}]}),

where:

i) the index field defines the service index, when specified; if not specified, all services of the tuned

transport stream shall be present in the returned event;

ii) the fields list may have as a value any subset of subfields defined for the data table of the

returned event (thus, field_i represents one of the subfields of the data table). If the fields list is not

specified, all subfields of the data table shall be filled.

- 140 -
7rTD 130 (WP 2/16)

The returned event is created after all requested information is processed by the middleware

(information that is not received within a maximum interval shall be returned as ‘nil’).

NOTE. In order to compute the values of the data-table subfields to be returned in events of services type, SI
tables should be used as a basis, as well as the descriptors associated with the service [i].

Some information from SI may be specific for a country, service provider or system used.

Therefore, data-table subfields are left to be defined for each case.

type = ‘epg’

The table of the ‘epg’ event type is made up by a set of vectors. Each vector contains information

about an event of the content being transmitted.

Each request for a table of ‘epg’ event type shall be carried out through one of the following

possible calls:

1) event.post('out', { class='si', type='epg', stage=’current’[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the

returned event (thus, field_i represents one of the subfields of the data table). If the fields list is

not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the current content (from now on called TV-event

in order to differentiate from the NCL and Lua events) being transmitted.

2) event.post('out', {class='si', type='epg', stage='next'[, eventId=<number>][, fields={field_1,

field_2,…, field_j}]})

where:

i) the eventId field, when specified, identifies the TV-event immediately before the

TV-event whose information is required. When not specified, the requested

information is for the event that immediately follows the current TV event.

ii) the fields list may have as a value any subset of subfields defined for the data table

of the returned event (thus, field_i represents one of the subfields of the data table).

If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the TV-event immediately after the TV-event

defined in eventId, or information regarding to the TV-event immediately after the current TV-

event, when eventId is not specified.

3) event.post('out', {class='si', type='epg', stage=’schedule’, startTime=<date>, endTime=<date>[,

fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the

returned event (thus, field_i represents one of the subfields of the data table). If the fields list is

not specified, all subfields of the data table shall be filled.

Description: returns information regarding to TV-events within the time interval defined by the

startTime and endTime fields, which have tables in the <date> format as values.

The returned event is created after all request information is processed by the middleware

(information that is not broadcasted within a maximum interval shall be returned as ‘nil’).

NOTE. In order to compute the values of the data-table subfields to be returned in events of epg type, SI
tables should be used as a basis, as well the descriptors associated with the TV-event [i].

Some information from SI may be specific for a country, service provider or system used.

- 141 -
7rTD 130 (WP 2/16)

Therefore, data-table subfields are left to be defined for each case.

type=’time’

The table of the ‘time’ event type contains information about the current UTC (Universal Time

Coordinated) date and time, but in the official country time zone in which the receptor is located.

Each request for a table of ‘time’ event type shall be carried out through the following call:

event.post('out', { class='si', type=’time’})

The returned event is created after all request information is processed by the middleware

(information that is not broadcasted within a maximum interval shall be returned as ‘nil’). The data

table is returned as follows:

evt = {

 class = 'si',

 type = 'time',

 data = {

 year = <number>,

 month = <number>,

 day = <number>,

 hours = <number>,

 minutes = <number>,

 seconds = <number>

 }

NOTE. In order to compute the values of the data-table subfields to be returned in events of time type, the
appropriate SI table should be used as a basis.

The SI table used is left to be defined for each case, since some information from SI may be specific

for a country, service provider or system used.

metadata class:

The metadata event class provides access to information about content, users, systems, providers,

etc., as defined in the high-level specification of metadata for IPTV services [ITU-T H.750].

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event is received in return, to be delivered to the registered-event handlers of an NCLua

script, whose data field contains a set of subfields and is represented by a Lua table. The set of

subfields depends on the requested information.

In the metadata class, no fields are defined (with the exception of the class field), they are left to be

specified by vendors, operators and providers, for example.

user class:

By using the user class, applications may create their own events.

This class defines no fields (with the exception of the class field).

NOTE. The “user” class has no class dependent filters.

- 142 -
7rTD 130 (WP 2/16)

10.3.3 The settings module

The settings module exports a global table, called settings, which contains the reserved environment

variables and the variables defined by the NCL document author, as defined in the “application/x-

ncl-settings” node.

The table fields that represent variable in the settings node are read-only, i.e., the NCLua script

cannot change their values. If the script tries to change the value of a read-only variable, then an

error shall be raised. Properties of the “application/x-ncl-settings” node may only be changed by

using NCL links.

The settings table contains subtables, corresponding to each “application/x-ncl-settings” node’s

group. For instance, in an NCLua object, the settings node’s variable “system.CPU” is referred to as

settings.system.CPU.

Examples:

 lang = settings.system.language

 age = settings.user.age

 val = settings.default.selBorderColor

 settings.service.myVar = 10

 settings.user.age = 18 --> ERROR!

10.3.4 The persistent module

NCLua applications may save data in a restricted middleware area and recover it between

executions. NCLua player allows an NCLua application to persist a value to be used by itself or by

another imperative object. In order to do that the NCL player defines a reserved area, inaccessible to

non-imperative NCL media objects. This area is split into the groups “service”, “channel” and

“shared”, with same semantics, concerning persistent duration, of the homonym groups of the NCL

settings node. There are no predefined or reserved variables in these groups, and imperative objects

are allowed to change variable’s values directly. Other imperative languages should offer an API to

access this same area.

In this module, Lua offers an API to export the persistent table with the variables defined in the

reserved area.

The use of the persistent table is very similar to the settings table, except that, in this case,

imperative codes may change field values.

Examples of use:

 persistent.service.total = 10

 color = persistent.shared.color

11 Security API

11.1 Security control in Ginga-NCL

Usually, in NCL applications security issues are not handled by their authors. It is assumed that

media players provide support to protocols required for secure communication (e.g., via HTTPS /

TLS).

It is also assumed that permission to access resources in specific network domains is given by

application authentication, and that Ginga-NCL and its media players are responsible for this task,

based on permission information received when an NCL application or an NCL node is added to an

NCL private base.

- 143 -
7rTD 130 (WP 2/16)

In order to apply other specific security mechanisms, NCL application authors must use the NCLua

security API.

12.2 The NCLua Security API

The Security Extensions of NCLua API provides basic functions such as the generation and

verification of digital signatures, message digest generation, and data encryption.

12.2.1 NCLua event classes for security control

Operations for security management are asynchronous and work by sending and receiving events.

Each operation is performed by sending an event that is associated with an arbitrary identifier

(request_id). The identifier will be used by registered event handlers for retrieving the result of each

call. The following additional event classes shall be implemented: signature, digest and cipher.

signature class:

The signature event class provides the ability to generate and verify data signed by digital

signatures. One can determine which algorithm should be used in each call for generation or

verification. The signature verification shall be performed from a key contained in an X.509 v3

certificate [X.509], an ITU-T standard for public key infrastructure (PKI).

To sign data with a private key, in the format of a specified algorithm, an event of type “sign” must

be posted, following the form described below:

evt = {class = “signature”, type = “sign”, algorithm = string, request_id = identifier,

private_key = string, data = string}

The signed information is returned on a pre-registered event handler for the class. The returned

event has the following form:

evt = {class = “signature”, type = “sign”, algorithm = string, request_id = identifier,

signed_data = string, error = err_msg}

The signed_data and error fields are mutually exclusive. If there is an error in the generation

process of the signed information, an error message must be returned in the error field. Otherwise,

the generated value is returned in the signed_data field (encoded in Base64).

To verify that data has been signed with a particular key, an event of “verify” type must be used. A

certificate can be used (coded in PEM format, in Base64, according to RFC 1421) to recover the

public key to be verified. Events of “verify” type have the following form:

evt = {class = “signature”, type = “verify”, algorithm = string, request_id = identifier, data = string,

signature = string, public_key = string}

Similarly, an NCLua application receives the return of the signature verification by means of events

of the form

evt = {class = “signature”, type = “verify”, algorithm = string, request_id = identifier,

result = boolean}

The result field indicates the result of the operation. The possible values are: valid signature (1) and

invalid signature (0).

The signature class shall support the algorithms listed in Table 11.1.

Table 11.1 – Algorithms supported by the signature class

Mnemonic Meaning

- 144 -
7rTD 130 (WP 2/16)

SHA1withRSA
Algorithm SHA 1 [SHS] for resume generation with RSA public

key algorithm, as defined by [PKCS#1].

SHA256withRSA
Algorithm SHA 256 [SHS] for resume generation with RSA

public key algorithm, as defined by [PKCS#1].

SHA384withRSA
Algorithm SHA 384 [SHS] for resume generation with RSA

public key algorithm, as defined by [PKCS#1].

SHA512withRSA
Algorithm SHA 512 [SHS] for resume generation with RSA

public key algorithm, as defined by [PKCS#1].

SHA1withDSA
Algorithm SHA 1 [SHS] for resume generation with DAS public

key algorithm, as defined by [DSS].

Additionally, it is recommended that the “signature” class supports the algorithms listed in Table

11.2.

Table 11.2 – Optional algorithms for the signature class

Mnemonic Meaning

SHA1withECDSA
Algorithm SHA 1 [SHS] for resume generation with ECDSA

public key algorithm, as defined by [ANSI X9.62].

SHA256withECDSA
Algorithm SHA 256 [SHS] for resume generation with ECDSA

public key algorithm, as defined by [ANSI X9.62].

SHA384withECDSA
Algorithm SHA 384 [SHS] for resume generation with ECDSA

public key algorithm, as defined by [ANSI X9.62].

SHA512withECDSA
Algorithm SHA 512 [SHS] for resume generation with ECDSA

public key algorithm, as defined by [ANSI X9.62].

digest class:

The digest event class provides functionality for checking the data integrity, through the

generation of message digests. The message digests are generated from asynchronous requests that

identify which algorithm should be used for hashing.

To generate a message digest for a set of data using a specified algorithm, an event of type

“generate” must be posted, following the form:

evt = {class = “digest”, type = “generate”, algorithm = string, request_id = identifier, data = string}

The result of the generation of message digest is returned in a pre-registered event handler for this

class. The returned event is of the form:

evt = {class = “digest”, type = “generate”, algorithm = string, request_id = identifier,

message_digest = string, error = err_msg}

The message_digest and error fields are mutually exclusive. If there is an error in the generation of

the message digest, an error message should be returned in the error field. Otherwise, the digest

value is returned in the message_digest field.

The “digest” class shall support the algorithms listed in Table 11.3.

- 145 -
7rTD 130 (WP 2/16)

Table 11.3 – Algorithms supported by the digest class

Mnemonic Meaning

sha1 Algorithm SHA 1 [SHS] for resume

generation.

sha256 Algorithm SHA 256 [SHS] for resume

generation.

sha384 Algorithm SHA 384 [SHS] for resume

generation.

sha512 Algorithm SHA 512 [SHS] for resume

generation.

cipher class

The cipher event class is used to encrypt and decrypt data from symmetric and asymmetric key

algorithms that are identified on each request. If a symmetric encryption algorithm is specified, the

key used will be considered symmetric. Otherwise, it will be considered a private key (which can be

retrieved from a certificate containing an asymmetric key).

An NCLua application encrypts data (using a valid key) by sending events of “encrypt” type that

follow the form described below:

evt = {class = “cipher”, type = “encrypt”, algorithm = string, padding = boolean,

request_id = identifier, data = string, key = string}

The padding field indicates that standard filling must not be used (PKCS5Padding [PKCS # 5])

when encrypting. The default value of this field is false.

An NCLua application receives the encrypted data through events of the form:

evt = {class = “cipher”, type = “encrypt”, algorithm = string, request_id = identifier,

encrypted_data = string, error = err_msg}

The encrypted_data and error fields are mutually exclusive. If there is an error in data encryption,

an error message must be returned in the error field. Otherwise, the generated value is returned in

the encrypted_data field.

To decrypt data from a valid key and from a specified algorithm, an event of “decrypt” type must be

posted, following the form:

evt = {class = “cipher”, type = “decrypt”, algorithm = string, padding = boolean,

request_id = identifier, data = string, key = string}

The application receives decrypted data through events of the form:

evt = {class = “cipher”, type = “decrypt”, algorithm = string, request_id = identifier,

decrypted_data = string, error = err_msg}

The decrypted_data and error fields are mutually exclusive. If there is an error in the decrypting

data process, an error message must be returned in the error field. Otherwise, the generated value is

returned in the decrypted_data field.

The “cipher” class shall support the algorithms listed in Table 11.4, with their respective modes of

operation:

- 146 -
7rTD 130 (WP 2/16)

Table 11.4 – Algorithms supported by the cipher class

Mnemonic Meaning

des-ede-cbc Triple DES/EDE with two keys in CBC [ISO 18033-3] mode.

des-ede Triple DES/EDE with two keys in ECB [ISO 18033-3] mode.

des-ede-cfb Triple DES/EDE with two keys in CFB [ISO 18033-3] mode.

des-ede-ofb Triple DES/EDE with two Keys in OFB [ISO 18033-3] mode.

des-ede3-cbc Triple DES/EDE with three keys in CBC [ISO 18033-3] mode.

des-ede3 Triple DES/EDE with three keys in ECB [ISO 18033-3] mode.

des3 Alternative for des-ede3-cbc [ISO 18033-3].

des-ede3-cfb Triple DES/EDE with three keys in CFB [ISO 18033-3] mode.

des-ede3-ofb Triple DES/EDE with three keys in OFB [ISO 18033-3] mode.

aes-128-cbc

aes-192-cbc
aes-256-cbc

AES with 128/192/256 bits in CBC [ISO 18033-3] mode.

aes-128

aes-192

aes-256

Alternative for aes-[128|192|256]-cbc [ISO 18033-3]

aes-128-cfb

aes-192-cfb
aes-256-cfb

AES with 128/192/256 bits inCFB mode of 128 bits [ISO

18033-3].

aes-128-cfb1

aes-192-cfb1

aes-256-cfb1

AES with 128/192/256 bits in CFB mode of 1 bit [ISO 18033-

3].

aes-128-cfb8

aes-192-cfb8
aes-256-cfb8

AES with 128/192/256 bits in CFB mode of 8 bits [ISO 18033-
3].

aes-128-ecb

aes-192-ecb

aes-256-ecb

AES with 128/192/256 bits in ECB [ISO 18033-3] mode.

aes-128-ofb

aes-192-ofb
aes-256-ofb

AES with 128/192/256 bits in OFB [ISO 18033-3] mode.

- 147 -
7rTD 130 (WP 2/16)

Annex A

NCL 3.1 module schemas used in the Enhanced DTV profile

(This annex forms an integral part of this Recommendation.)

The following NCL 3.1 module schemas used in the Enhanced DTV profile are available as an

electronic attachment to this Recommendation:

 Structure module: NCL31Structure.xsd

 Layout module: NCL31Layout.xsd

 Media module: NCL31Media.xsd

 Context module: NCL31Context.xsd

 MediaContentAnchor module: NCL31MediaContentAnchor.xsd

 CompositeNodeInterface module: NCL31CompositeNodeInterface.xsd

 PropertyAnchor module: NCL31PropertyAnchor.xsd

 SwitchInterface module: NCL31SwitchInterface.xsd

 Descriptor module: NCL31Descriptor.xsd

 Linking module: NCL31Linking.xsd

 ConnectorCommonPart Module: NCL31ConnectorCommonPart.xsd

 ConnectorAssessmentExpression Module: NCL31ConnectorAssessmentExpression.xsd

 ConnectorCausalExpression Module: NCL31ConnectorCausalExpression.xsd

 CausalConnector module: NCL31CausalConnector.xsd

 ConnectorBase module: NCL31ConnectorBase.xsd

 NCL31CausalConnectorFunctionality.xsd

 TestRule module: NCL31TestRule.xsd

 TestRuleUse module: NCL31TestRuleUse.xsd

 ContentControl module: NCL31ContentControl.xsd

 DescriptorControl module: NCL31DescriptorControl.xsd

 Timing module: NCL31Timing.xsd

 Import module: NCL31Import.xsd

 EntityReuse module: NCL31EntityReuse.xsd

 ExtendedEntityReuse module: NCL31ExtendedEntityReuse.xsd

 KeyNavigation module: NCL31KeyNavigation.xsd

 TransitionBase module: NCL31TransitionBase.xsd

- 148 -
7rTD 130 (WP 2/16)

 Animation module: NCL31Animation.xsd

 Transition module: NCL31Transition.xsd

 Metainformation module: NCL31Metainformation.xsd

- 149 -
7rTD 130 (WP 2/16)

Appendix I

Ginga architecture

Ginga-NCL was originally built as a component of the middleware Ginga [b_ABNT

NBR 15606-2], as depicted in Figure I.1-1.

A Ginga implementation should be open, flexible, granular, self-contained and component-based.

However, this Draft Recommendation does not specify any Ginga implementation in a compliant

receiver. The architecture presented in this Draft Recommendation only helps to present the

requirements and recommendations of a Ginga implementation. A receiver manufacturer may

implement all subsystems and their modules as a single subsystem; alternatively, all modules may

be implemented as distinct components with well-defined interfaces.

Ginga-NCL is the logical subsystem of the Ginga System that processes NCL documents. Ginga

allows some extensions, but they are optional. To be Ginga complaint, the Ginga-NCL subsystem is

required. This avoids the threat of market fragmentation and ensures that Ginga always offer

backward-compatible profiles.

Media players serve application needs for decoding and presentation content types such as PNG,

JPEG, MPEG, and other formats. The Ginga Common Core is composed of media players,

procedures to obtain contents transported in the several networks accessed by a receiver, the

conceptual display graphical model defined by the receiver platform, and other functions. The

Ginga Common Core is also responsible to gather metadata information and to provide this

information through NCL settings media object (see 7.2.3).

It is also recommended that the Ginga Common Core provides an API to communicate with DRM

system; pulls together context information (like user profiles and receiver profiles available on a

local or removable storage device) and provides context awareness through NCL settings media

object (see Clause 7.2.3); and supports software version management (update) of Ginga’s

components.

- 150 -
7rTD 130 (WP 2/16)

Ginga Common -Core

DRM

CA

Tuner

Search Engine

G. Manager

Data
Processing

Context Manager

Players

Protocol Stack

RSTP RTCP

RTP
TS and Others

HTTPFTP
IGMP

TCP UDP

IP

Media StreamsSI MPE DSM-CC

IPTV Services / Applications

PPV VOD

Gaming

VOIP EPG

Update Manager

Adapters

Ginga-Imp Execution Environment

Ginga -NCL Presentation Engine

Formatter

Private Base
Manager

NCL Context
Manager

Player
Manager Layout Manager

Scheduler

XML Parsers

Converters
Bridge

Ginga Optional Extensions

NCL Player

Ginga-NCL Presentation Environment

Figure I.1-1: Ginga architecture

The core of Ginga-NCL Presentation Environment is the NCL Player. This component is in charge

of receiving and controlling multimedia applications written in NCL. Applications are delivered to

the NCL Player by the Ginga Common Core subsystem. Upon receiving an application, the NCL

Player requests the XML Parser and Converter component to translate the NCL application to the

Ginga-NCL internal data structures necessary for controlling the application presentation. From

then on, the Scheduler component is started in order to orchestrate the NCL document presentation.

The pre-fetching of media object’s contents, the evaluation of link conditions and the scheduling of

corresponding link’s actions that guide the presentation flow are some tasks performed by the

Scheduler component. In addition, the Scheduler component is responsible for command the Player

Manager component to instantiate an appropriate Player, according to the media content type to be

exhibited in a given moment in time. Media contents are acquired through the Protocol Stack, and

can come from different communication (broadband and broadcast) networks.

One important player, part of Ginga-NCL, is the Lua Engine, responsible for the execution of

NCLua objects, i.e., media objects with Lua code [b_H.IPTV-MAFR.14].

In Ginga-NCL, a generic API (see 8.1) is defined to establish the necessary communication between

Players components and the Presentation Engine (Scheduler component). Thanks to this API, the

Ginga-NCL Presentation Environment and the Ginga Common Core are strongly coupled but

independent subsystems. Ginga Common Core may be substituted for other third part

implementations, allowing Ginga-NCL to be integrated in other DTV middleware specifications,

extending their functionalities with NCL facilities.

Players are responsible for notifying the NCL Player about presentation, selection and attribution

events (see Clause 7.12) defined in NCL applications. Players that do not follow the generic API

(see Clause 8.1) are required to use the services provided by Adapters. Any declarative or

imperative language engine can be adapted to act as a Ginga-NCL’s media player, e.g., XHTML

browsers or a Java engine.

- 151 -
7rTD 130 (WP 2/16)

In Ginga-NCL, a declarative application can be generated or modified on-the-fly, using Ginga-NCL

Editing Commands (see Clause 9).

The Presentation Engine deals with NCL applications collected inside a data structure known as

private base. A Private Base Manager component is in charge of receiving NCL Editing Commands

and maintaining the NCL documents being presented.

Ginga-NCL Presentation Engine supports multiple presentation devices through its Layout Manager

module. This component is responsible for mapping all presentation regions (see Clause 7.2.5)

defined in an NCL application to canvas on receiver’s exhibition devices.

In particular, Ginga-NCL provides declarative support to IPTV specific services, such as VoD

(Video on Demand, datacasting, etc. Thus, a VoD service may, for example, play an NCL

application besides the main audiovisual stream. Moreover, an IPTV service itself can be an NCL

application.

- 152 -
7rTD 130 (WP 2/16)

Appendix II

An NCL example

(This appendix does not form an integral part of this Recommendation.)

An example NCL application is available as an electronic attachment to this Recommendation. The

example explores many NCL functionalities, including NCLua objects. This is intended to illustrate

how NCL applications are usually structured. The example is composed of the following files:

– main.ncl

– causalConnBase.ncl

– counter.lua

Media objects used in this example are not included in the attachment but can be freely obtained

from http://club.ncl.org.br/node/48.

http://club.ncl.org.br/

- 153 -
7rTD 130 (WP 2/16)

Bibliography

[b_H.IPTV-MAFR.14] Draft Recommendation ITU-T H.IPTV-MAFR.14 Lua script language

for IPTV.

[b_H.IPTV-SDC] Draft Recommendation ITU-T H.IPTV-SDC Mechanisms for service

discovery up to consumption for IPTV.

[b_ABNT NBR 15606-2] ABNT NBR 15606-2 (2007), Digital Terrestrial TV – Data Coding and

transmission specification for digital broadcasting – Part 2: Ginga-NCL

for fixed and mobile receivers: XML application language for

application coding.

[b_NCM Core] Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM

Core, Technical Report, Departamento de Informática PUC-Rio, May

2005, ISSN: 0103-9741. Also available in http://www.ncl.org.br.

[b_NCL DTV] Soares L.F.G; Rodrigues R.F. Nested Context Language 3.0: Part 8 –

NCL (Nested Context Language) Digital TV Profiles, Technical Report,

Departamento de Informática PUC-Rio, No. 35/06, October 2006, ISSN:

0103-9741. Also available in http://www.ncl.org.br.

[b_NCL Live E.C.] Soares L.F.G; Rodrigues R.F; Costa, R.R.; Moreno, M.F. Nested

Context Language 3.0: Part 9 – NCL Live Editing Commands.

Technical Report, Departamento de Informática PUC-Rio, No. 36/06,

December 2006, ISSN: 0103-9741. Also available at

http://www.ncl.org.br.

[b_NCL Imp. Obj.] Soares L.F.G.; Sant’Anna F.F.; Cerqueira R.F.G. Nested Context

Language 3.0: Part 10 – Imperative Objects in NCL: The NCLua

Scripting Language. Technical Report, Departamento de Informática

PUC-Rio, No. 02/08. Rio de Janeiro. January 2008. ISSN 0103-9741.

Also available at http://www.ncl.org.br

[b_NCL Decl. Obj.] Soares L.F.G. Nested Context Language 3.0: Part 11 – Declarative

Hypermedia Objects in NCL: Nesting Objects with NCL Code in NCL

Documents. Technical Report, Departamento de Informática PUC-Rio,

No. 02/09. Rio de Janeiro. January 2009. ISSN 0103-9741. Also

available at http://www.ncl.org.br

[b_NCL Multi. Dev.] Soares L.F.G.; Batista C.E.F. Nested Context Language 3.1 Part 12 –

Support to Multiple Exhibition Devices. Technical Report,

Departamento de Informática PUC-Rio, No. 12/13. Rio de Janeiro.

September 2013. ISSN 0103-9741. Also available at

http://www.ncl.org.br

 [b_W3C CSS2] W3C Recommendation CSS2 (1998) - Cascading Style Sheets, level 2.

[b_W3C XMLNAMES1] W3C Recommendation. XML_Names 1.0 (1999) – Namespaces in

XML.

http://www.ncl.org.br/
http://www.ncl.org.br/
http://www.ncl.org.br/
http://www.ncl.org.br/

- 154 -
7rTD 130 (WP 2/16)

[b_W3C RDF] W3C Recommendation. RDF (1999) - Resource Description Framework

(RDF) Model and Syntax Specification.

[b_W3C XHTML] W3C Recommendation. XHTML 1.0 (2002) - Extensible HyperText

Markup Language

[b_W3C SMIL 2.1] W3C Recommendation. SMIL 2.1 (2005) - Synchronized Multimedia

Integration Language – SMIL 2.1 Specification
