
A Much-Too-Terse Introduction to Unix
in the ODU Computer Science Dept.

Steven J. Zeil

Aug. 3, 2000

An HTML version of this document designed for reading on the web is available at
http://www.cs.odu.edu/˜zeil/unix/.

Contents

1 Working on the CS Dept Network 2

2 The Basics 2
2.1 Logging In . 2

2.1.1 Making a Connection. 2
2.1.2 Logging In . 4
2.1.3 You’re logged in - What will you see?. 4
2.1.4 Setting Your Terminal Type. 4
2.1.5 Changing Your Password. 4

2.2 The Unix File System. 5
2.3 Shell Games: Typing Unix Commands. 6
2.4 Some Basic Unix Commands. 7
2.5 File Protection. 9

2.5.1 Protections. 9
2.5.2 chmod. 10
2.5.3 Beware the umask!. 10
2.5.4 Planning for Protection. 11

2.6 Getting Help. 11

3 Editing Text Files 11

4 The X Window System 12
4.1 X Window Managers. 12
4.2 Running X. 12
4.3 Working in X . 12

5 Customizing Your Unix Environment 13

6 Using Electronic Mail 14
6.1 E-Mail addresses. 14
6.2 E-Mail Programs . 14

6.2.1 The PINE E-mail program. 15
6.2.2 The Unix mail command. 16

6.3 Forwarding Addresses. 17

7 File Transfer 17
7.1 Text versus Binary Transfers. 18
7.2 Transferring Files. 18

7.2.1 At the console:. 18
7.2.2 Internet:. 18

7.3 Problems and Inconsistencies. 19

8 Using the Internet 19

1

http://www.cs.odu.edu/~zeil/unix/

9 Compilers 20
9.1 Compiling in the Shell . 20
9.2 Compiling in emacs. 22
9.3 Debugging. 22

10 More Shell Games 22
10.1 Redirection and Pipes. 22
10.2 Scripts. 23

11 Project Management with Make 24

12 Where to Go From Here? 26

A Unix Command Summary 27

B Emacs Command Summary 29

C Linking to this Document 29
This document is designed to introduce students to the basic Unix skills that they will

need to work productively on the ODU CS Dept.’s network of Sun workstations and Linux
PC’s.

In addition, some may be interested in theCygwin project’sfree port of the GNU C/C++
compilers for use on Windows 95/98/NT/2000 machines. Along with the compilers, this
package provides a Unix emulation layer including a Unix-style command shell called
“bash ”. Most of what is described in this document applies to working inbash as well.
My own notes on installing and using this package are availablehere.

1 Working on the CS Dept Network

The Computer Science Department maintains a large network of Sun workstations and
Linux PC’s for teaching and research. With only a few exceptions, if you are taking a
CS class, you will receive an account allowing you to work on these machines.

These workstations run the Unix operating system. This document is designed to provide
a quick introduction to the commands and concepts you will need to work under Unix.

If you have worked before with networks of Windows or Mac PCs, you need to understand
that Unix offers a fundamentally different approach to running programs. On PC networks,
when you run a program, you run it on the machine you are sitting at and you see the

output on the machine you are sitting at. Unix programs are designed to run on any machine
where they have been installed, and you still see the output on the machine you are sitting
at. That’s simple enough to accomplish when the program is doing simple text I/O, but the
Unix philosophy also applies to programs that do graphics, windows, etc. That’s one of
the big reasons why Unix skills are so important, especially to distance-learning students.
Both instructors and students can provide, design and build programs on the same machines,
secure in the belief that if it runs properly for them, it will run for others as well.

There are two ways to interact with Unix and Unix programs: through atext-onlyinter-
face, or via awindowsinterface — the Unix windowing system is calledX. Which mode
of interaction you use depends upon how you are accessing to the network, the software on
the machine you are sitting at, and how fast your connection to the network is. But even if
you are running X, one of the first things you are likely to open is an “xterm”, a text-only
command window. Unix users tend to launch programs from the text-only interface. If the
program itself supports windows, mice, etc., then they can point and click to their heart’s
content.

For many of the programs I discuss here, there are alternatives that will accomplish the
same task. Experienced users may well argue with my choices. In particular, the X win-
dowing system provides simpler interfaces for electronic mail, debuggers, etc., but these are
normally available only when seated at the console. I tend to prefer techniques that can be
used in both X and text-only modes, because these offer more flexibility.

2 The Basics

2.1 Logging In

2.1.1 Making a Connection

If you are a student registered for a CS course, and have never had a Unix account on the
CS Dept system, you can get your account by going to theCS Dept home pageand clicking
on the “Account Management” link (under “Online Services”).

If you have had an account in the recent past, it should be regenerated for you in any
semester when you are registered for a CS course. Otherwise, you will need to contact your
instructor or from the CS systems staff to get your account.

The first thing you must do is to decide on what machine you are going to work. If you
are seated at one of the Dept.’s Sun workstations, the answer is easy — you will use the
machine you’re seated at. Otherwise, you need to pick a workstation. The easiest way

2

http://sourceware.cygnus.com/cygwin/
http://www.cs.odu.edu

to do this is to use the name “lab.cs.odu.edu ”, a “fake” machine name that actu-
ally requests that you be assigned a random selection among the more lightly loaded ma-
chines.1 If you’re not into pot-luck, however, you can select a specific machine from the
list at http://www.cs.odu.edu/˜public/telnetmachines.html.Note that you will probably need
to add the string “.cs.odu.edu ” to any of these names.

Next, you need to get a log-in prompt from an ODU CS machine. How you do so depends
upon your access mode:

CS Dept. Sun Workstations If you are seated at one of the Dept.’s Sun workstations, just
hit the return key to bring up the login screen. The screen will offer you the choice of
logging in to the “Common Desktop Environment” (CDE) or to “OpenWindows”. These
are different “flavors” of X. You can use either one, but the CDE offers built-in tutorials for
first-time users.

Other Unix/Linux Machines If you are logged into a non-CS workstation running Unix
or Linux, and your internet connection is reasonably fast2, go ahead and start X on that ma-
chine, if you have not already done so. Get into anxterm window, and issue the commands

xhost +machine-name
xon machine-name

where machine-name is the name of one of the CS Dept. machines (see
http://www.cs.odu.edu/˜public/telnetmachines.html).

Because you are connecting from outside the CS Dept., you must give the full machine
name, ending in.cs.odu.edu . In the above lines, thexhost command gives the se-
lected machine permission to send information to your screen, and thexon command makes
the actual connection.3

1If you know that you are going to be doing somve very CPU-intensive work, you can also opt for the fake
name “fast.cs.odu.edu ”, which makes a random selection among the faster CPU’s in the Dept.

2A 56k modem is OK, but you wouldn’t want anything much slower.
3Note that you cannot use the fake names “lab.cs.odu.edu ” and “fast.cs.odu.edu ” because these

choose a machine at random, and would make a different choice each time. Therefore you would wind up giving
one machine permission to draw on your screen, and then trying to connect to a different machine.

Thexhost command isn’t necessary if your X server is set to give permission by default or to prompt you for
specific permission when a connection is made. Try just doing thexon command and see if that works on your
system. If so, you can uselab.cs.odu.edu andfast.cs.odu.edu .

Win32 machines with X servers If you are seated at a Win95/98/NT (collectively referred
to asWin32) machine with a reasonably fast internet connection4, you might want to see if
it has X server software installed. The most commonly used X-servers appear in the Start
button menu as “Exceed” or “X-Win32”.5

The trickiest part is getting started. There are two techniques:

1. The recommended technique is to create a “session” describing how you want to con-
nect. For Exceed, this is done by running the “Session wizard”. For X-Win32, you
start theX-Util32 program, and select “New session”. In both cases, you want to
create anrexec session running the command

/usr/openwin/bin/xterm -ls -display $DISPLAY

on one of the CS machines (seehttp://www.cs.odu.edu/˜public/telnetmachines.html).
Run this session (e.g., run X-win32, click on the X-win32 icon on the taskbar, and
select your new session) to connect to the CS network.

2. The alternative is to first connect viatelnet, set your DISPLAY variable to point to the
machine you are sitting at and then connect to the remote machine usingxon :

setenv DISPLAY local-machine-name:0
xon remote-machine-name

Other machines If you are seated at a machine that doesn’t have X server software, or
that has a slow internet connection, then you need to run atelnet program. I can’t tell
you where that will be or how to run it, as that information depends upon the machine you’re
sitting at. (I can tell you, however, that the Win32 operating systems come with a program
named (surprise!) “telnet ”.) Use your telnet program to connect tolab.cs.odu.edu
or a specific machine you have chosen.

Before going any further with telnet, find out the kind of terminal being emulated by your
telnet program. Some programs may give you a choice of several terminals. You may want
to try different ones to see which works best for you. Common choices include “vt100”,
“vt102”, “vt52”, “vpoint”, and “adm3a”. You’ll need that information in just a minute.

4Again, a 56k modem is OK, but you wouldn’t want anything much slower.
5If you want to try using X on your own PC, StarNet has afully functional demoof their X-Win32 server

available for free downloading.

3

http://www.cs.odu.edu/~public/telnetmachines.html
http://www.cs.odu.edu/~public/telnetmachines.html
http://www.cs.odu.edu/~public/telnetmachines.html
http://www.starnet.com/demo.htm

2.1.2 Logging In

Now that you have a login prompt, enter your login name. At the “password:” prompt, enter
your password.

2.1.3 You’re logged in - What will you see?

Exactly what will appear on your screen after you successfully enter your password depends
on your access mode and, for console users, the particular machine you chose and how your
account is set up.

Telnet: You will have a “command-line” interface - you can type commands and see the
output, if any, listed immediately after the command.

Console, X: Console users may get nothing more than a command-line interface as well.
If so, you will want to quickly move up to using theX windows interface. Console
users may also find themselves placed automatically into one of two “flavors” of the X
windowing system:

Common Desktop Environment You can recognize this because, when you logged
in, the phrase “Common Desktop Environment” was prominently displayed. You
can also recognize it by the fancy “toolbar” at the bottom of the screen contain-
ing a number of icons and, in the middle, a set of buttons titled “One”, “Two”,
“Three”, and “Four”.

In this environment, look for a window titled “Terminal”, or click on the toolbar’s
picture of a screen and keyboard to get a terminal window. Click on the bar across
the top of the window to select it, and you are ready to begin entering commands.

For help on all the features of this environment, click on the toolbar icon with the
question mark.

other X window managers On those machines that do not run the common desktop
environment, you may find yourself confronted with a screen with one or more
“windows”. The appearance and behavior of these windows is described further
in Section4. For now, though, try moving the mouse to an unoccupied portion
of the screen and holding down the right mouse button. You will probably get
a menu that includes an option to open a “terminal”, “xterm”, or “shell”. Select
this to get a windo3w in which you can enter commands. Click on the bar across
the top of the window to select it before typing anything.

2.1.4 Setting Your Terminal Type

If you are at the console, you may skip this Section. If you are connected via via the Internet
telnet program, you must now tell the Unix workstation what kind of terminal you are
using. The command to do so is

setenv term xxxx

wherexxxxis the kind of terminal (e.g,setenv term vt100).6

Some people also recommend that you follow this command with

tset -Q

which resets the terminal. In my own experience, this is usually unnecessary,and I have
found that many communications programs don’t deal well with this, but try it if your ter-
minal seems to be misbehaving.

Most “dumb” terminals provide for 24 lines of text. Many communications programs,
however, allow more. If yours is one of these, you should tell Unix how many lines you are
using by giving the command

stty rows nn

wherenn is the number of rows/lines.

2.1.5 Changing Your Password

Whether we like it or not, we need to worry about the security of our computing environ-
ment. There are people who would take advantage of this computer system if they had any,
or more complete, access to it. This could range from the use of computer resources they
have no right to, to the willful destruction and/or appropriation of the information we all
have online. In order to maintain the level of security in our computing environment that we
need, there are some things we all have to take responsibility for. Even though you may not
feel like you personally have much to lose if someone had access to your account or files,
you have to realize that as soon as someone gains ANY access to our system, it’s 100 times
easier for them to gain access to ALL of it. So when you are lax with your own account,
you are endangering the work and research of everyone else working here.

Your password is the fundamental element of security not only for your personal account,
but for the whole UNIX system that we share. Without an account and password a person

6The proper terminal name for Internet users depends upon the machine you are actually sitting at. Consult the
documentation for your telnet program, the local staff, or your Internet Service Provider for suggestions.

4

has NO access to our system. If someone discovers (or you tell someone) your password,
not only will they have access to your personal files, but they will have a much better chance
to launch attacks against the security of the entire system.

Your account password is the key to accessing and modifying all of your files. If another
user discovers your password, he or she can delete all your files, modify important data, read
your private correspondence, and send mail out in your name. You can lose much time and
effort recovering from such an attack. If you practice the following suggestions, you can
minimize the risk.

1. NEVER give another user your password. There is no reason to do this. You can
change permissions and have groups set up if you need to share access with other
individuals. Your account should be yours alone.

2. Never write down your password. Another person can read it from your blotter, calen-
dar, etc. as easily as you can.

3. Never use passwords that can be easily guessed. Personal information about you (birth
date, etc.) may be known to the attacker or may be recorded in on-line databases that
the attacker has already obtained.

Passwords should not be single words (in any language) because on-line dictionaries
are widely available for use in spelling checkers. A common approach to cracking
passwords is to compile a set of such words and to run a program that tries each one on
each account on the machine. Consider inserting punctuation and other “odd” charac-
ters into your password to foil such attacks.

A person with local knowledge can also try your spouse’s name, pets’ names, etc.
Your account is vulnerable to this type of cracking unless you choose your password
carefully.

4. Change your password the very first time you log in, and every few months thereafter.
Security problems are often traceable to stale passwords and accounts. These are ac-
counts that have become inactive for one reason or another or the password has not
changed for a long time. In our particular environment we have had break-ins via such
stale accounts. A password that remains the same for a long time provides an intruder
the opportunity to run much more advanced and longer running programs to break such
passwords.

5. Vary the system by which you choose a password. For example, don’t repeatedly use
combinations like BLUEgreen and REDyellow. If an intruder discovers your pattern,
he or she can guess future passwords.

The command to change your password is

yppasswd

This command will first prompt you for your old password (just to check that you really are
you!) and then will ask you to type your new password (twice, so that an inadvertent typing
mistake won’t leave you with a password that even you don’t know!).

2.2 The Unix File System

Files in Unix are organized by listing them indirectories. Directories are themselves files,
and so may appear within other directories. The result is a tree-like hierarchy. At the root of
this tree is a directory known simply as “/”.7 This directory lists various others:

/

bin home usr ...

The bin directory contains many of the programs for performing common Unix com-
mands. Theusr directory contains many of the data files that are required by those and
other commands. Of particular interest, however, is thehome directory, which contains all
of the files associated with individual users like you and me. Each individual user gets a
directory withinhome bearing their own login name. My login name iszeil .

We can expand our view of the Unix files then as:

/

bin home usr ...

... ...cd ls zeil

cd andls are two common Unix commands, as will be explained later.
Within my own home directory, I have a directory also named “bin”, containing my own

personal programs. Two of these are called “clpr” and “psnup”. So these files are arranged
as:

7It may be more precise to say that this directory’s name is the empty string “”.

5

/

bin home usr ...

... ...cd ls zeil

bin

clpr psnup ...

The full name of any file is given by listing the entire path from the root of the directory
tree down to the file itself, with “/” characters separating each directory from what follows.
For example, the full names of the four programs in the above diagram are

/bin/cd
/bin/ls
/home/zeil/bin/clpr
/home/zeil/bin/psnup

There are some common abbreviations that can be used to shorten file names.

• You can refer to the home directory of someone with login namenameas˜ name.

• You can refer to your own home directory simply as˜ .

So you could refer to the file containing myclpr program as either
/home/zeil/bin/clpr or ˜zeil/bin/clpr .

When I myself am logged in, I can refer to this program by either of those two names,
or simply as̃ /bin/clpr .

• At all times when entering Unix commands, you have a “working” directory. If the
file you want is within that directory (or within other directories contained in the work-
ing directory), the name of the working directory may be omitted from the start of the
filename. When you first log in, your home directory is your working directory. For ex-
ample, when I have just logged in, I could refer to my program simply asbin/clpr ,
dropping the leading/home/zeil/ because that would be my working directory at
that time.

• The working directory itself can be referred to as simply “.”.

• The “parent” of the working directory (i.e., the directory containing the working direc-
tory) can be referred to as “..”.

Unix filenames can be almost any length and may contain almost any characters. As
a practical matter, however, you should avoid using punctuation characters other than the
hyphen, the underscore, and the period. Also, avoid blanks, and non-printable characters
within file names. All of these have special meanings when you are typing commands and
so would be very hard to enter within a filename.

Some things to keep in mind about Unix file names that may be different from other file
systems you have used:

• Unix file names are often very long so that they describe their contents.8 The rather
perverse exception to this rule is that program/command names are, by tradition, very
short, often confusingly so.

• Upper and lower case letters are distinct in Unix filenames. “MyFile ” and “myfile ”
are different names.

• Periods (“.”) are not treated by Unix as a special character.
“This.Is.a.legal.name ” is perfectly acceptable as a Unix filename. Many
programs, however, expect names of their data files to end in a period followed by
a short “standard” extension indicating the type of data in that file. Thus data files
with names like “arglebargle.txt ” for text files or “nonsense.p ” for Pascal
source code are common.

By convention, files containing executable programs generally do not receive such an
extension.

• Keep in mind that directories are separated by “/” in file names, not by “\” as is com-
mon in some other operating systems.

2.3 Shell Games: Typing Unix Commands

To run a Unix command (or any program, for that matter), you normally must type the
name of the command/program file followed by any arguments. There is actually a program
running that accepts your keystrokes and launches the appropriate program. The program
that reads and interprets your keystrokes is called theshell. There are many shells available,

8As we will see, one almost never needs to type an entire filename in a Unix command, so long file names are
no harder to work with than short ones.

6

all of which offer different features. The default shell for ODU CS is called tcsh, and we’ll
concentrate on that.

The command/program name is usually not given as a full file name. Instead, certain
directories, such as/bin , are automatically searched for a program of the appropriate name.
Thus, one can invoke thels command as either

/bin/ls

or simply as

ls

As you type, some characters have a special meaning. For example, if you have entered
the first few letters of a file name and hit the “Tab” key, the shell will examine what you have
typed so far and attempt to complete the filename by filling in the remaining characters. If
the shell is unable to complete the filename, a bell or beep sound will be given. Even in this
case, the shell will fill in as many characters as it can.

Most special characters are entered by holding down the “Control” key while typing a
letter. By convention, we designate this by placing the symbol “ˆ” in front of the name of
the second key. For example, if you have typed zero or more letters of a filename and want
to see a list of what filenames begin with what you have typed, you could type ˆD, i.e., hold
down the “Control” key and type “d”.

Some other useful special keys are:

• ˆC is used to abort a program/command that is running too long or working incorrectly.
Beware: aborting a program that is updating a file may leave garbage in that file.

• ˆD is used when a command/program is reading many lines of input from the keyboard
and you want to signal the end of the input.

• ˆH, the “Backspace” key, and the “Delete” key all delete the most recently typed char-
acter.

• ˆB moves the cursorBackwards over what you have just typed, without deleting those
characters. This is useful in correcting typing mistakes. The “left” arrow on your
keyboard may also do the same thing.

• ˆF moves the cursorForwards over what you have just typed, without deleting those
characters. The “right” arrow on your keyboard may also do the same thing.

• ˆP retrieves thePrevious command that you had typed in. Repeated ˆP’s may be used
to look back through a number of commands that you have issued recently.

The “up” arrow on your keyboard may also do the same thing.

• ˆN is the opposite of ˆP. After one or more ˆP’s, a ˆN allows you to move back to the
Next more recent command.

The “down” arrow on your keyboard may also do the same thing.

• In many programs, ˆZ pauses the program and returns you temporarily to the shell. To
return to the paused program, give the command:fg

2.4 Some Basic Unix Commands

If you have not yet done so, log in now so that you can work though the following com-
mands.

Upon logging in, yourworking directoryshould be your home directory. The command
pwd will print theworkingdirectory. Give the command

pwd

You should see something like

˜yourname

Now, let’s make a place to play in.mkdir will make a new directory. Enter the command

mkdir playing

to create a directory named “playing”.
The commandls lists the contents of the working directory. More generally,ls di-

rectoryname will list the contents of any directory.9

Give the command

ls

and you should seeplaying listed. In fact, it may be the only thing listed.
The commandcd is used tochange the workingdirectory. Give the command sequence
9Well, not reallyanydirectory. People can protect their own directories (See Section2.5) from the prying eyes

of others, in which casels will fail.

7

pwd
cd playing
pwd
cd ..
pwd
cd ./playing
pwd

to see this in action.
The cp command copies one or more files. You can give this command as

cp file1 file2 to make a copy of filefile1 , the copy being namedfile2 . Al-
ternatively, you can copy one or more files into a directory by giving the command as

cp file$_1$ file$_2$... file$_n$ directory

Now try the following:

ls ˜public/Misc [Notice that there are a number
of files ending with .txt]

cp ˜public/Misc/*.txt ˜/playing
ls ˜/playing

The “* ” is a wildcard character. It tells the shell to substitute any combination of zero
or more characters that results in an existing filename. In cases where there are multiple
possibilities, such as this one, the shell forms a list of all the matches. So thecp command
actually saw a list of all files in thẽpublic/Misc directory whose names ended in “.txt”.

To get a better feel for wildcards, try the following:

ls /usr/include
ls /usr/include/*.* [List only file names con-

taining a "."]
ls /usr/include/f*.*
ls /usr/include/*f*.*

Here are some other common Unix commands. (A longer, more complete list can be
found in AppendixA.) Try experimenting with these in your˜playing directory.

cancelrequest Remove a file from the printer queue, so that it won’t get printed. The
requestidentifier is found using thelpstat command.

cat file1. . .filen Lists the contents of each of the listed files on your screen.

exit Shut down the current shell. If this shell is the one you got at log-in, this command
logs you out.

mv file1 file2 Renamesfile1 asfile2. file2 may be in a different directory.

mv file1 directory Movesfile1 to the given directory.

lp file Send file to printer for printing. Most sites have multiple printers, each having its
own name. One of these will be the “default” printer used by thelp command. For
the others, you must give the printer name as part of the printer command:

lp -d printer file

For example, at the Norfolk ODU campus,lp by itself prints to a fast printer in the
public workstation lab for text only.lp -dcookie prints to “cookie”, a printer in
the same room that offers the extra capability of printing Postscript graphics.

You will need to consult your local staff to see what printers are available at other sites.

lpstat Shows the list of files you have “queued up” awaiting their turn on printers. Entered
by itself,

lpstat

it lists only your own print jobs, giving a unique identifier for each one.

To see the entire list of print jobs on some printer, enter

lpstat -o printer

ls -a By default, filenames beginning with “.” are considered “hidden” and not shown by
the ls command. The-a (for “all”) option causes these files to be shown as well.

ls -l This is the “long” form ofls . It displays additional information about each file, such
as the size and date on which the file was last modified.

Note that options can be combined. For example, you can sayls -la to get extra
information including normally hidden files.

8

ls -F Adds a little bit of extra information to each file name. If the file is an executable
program, its name is marked with an “*”. If the file is a directory, its name is marked
with “/”.

more file1. . .filen Lists files one screen at a time, pausing after each screen-full. Hit the
space bar to advance to the next screen.

A related program isless , which also allows you to move backwards through the files
by hitting “b”.

rlogin machine Logs you in to another machine on the network. Use this if the machine
you are on seems to be running slowly and thewho command indicates that there are
lots of others on the same machine.

rm file1. . .filen Deletes the listed files. Be very careful using wildcards with this command.
rm * will delete everything in the current working directory!

rm -i file1. . .filen Deletes the listed files, but firsts asks permission to delete each one.

rm -r file1. . .filen Deletes the listed files. If any of these files is a directory, it deletes that
directory and everything in it as well.

rmdir directory Deletes a directory.

who Lists everyone logged into the same machine that you are using.

2.5 File Protection

2.5.1 Protections

Not every file on the system should be readable by everyone. Likewise, some files that
everyone needs (such as the executables for commands likecp , mv, etc.) should not be
subject to accidental deletion or alteration by ordinary users. This is where fileprotection
comes into play.

Unix allows three forms of access to any file: read, write, and execute. For an ordinary
file, if you have read (r) permission, you can use that file as input to any command/program.
If you have write (w) permission, you can make changes to that file. If you have execute (x)
permission, you can ask the shell to run that file as a program.

The owner of a file can decide to give any, all, or none of these permissions to each of
three classes of people:

• To the owner of the file him/herself

• To members of a designated “group” established by the systems staff. Groups are
generally set up for people who will be working together on a project and need to share
files among the group members.

• To anyone else in the world.

These three classes are abbreviated “u”, “g”, and “o”, respectively. The “u” is for “user”,
“g” for “ group”, and “o” is for “others”. Until you actually join a project that needs its own
group, you will mainly be concerned with “u” and “o” classes.

The ls -l command will show the permissions granted to each class. For example, if
you said

ls -l ˜/playing

you might see the response

-rwxrwx--- 1 zeil 311296 Jul 21 09:17 a.out
-rw-rw---- 1 zeil 82 Jul 21 09:12 hello.c
-rw-rw---- 1 zeil 92 Jul 21 09:13 hello.cpp
-rw-rw---- 1 zeil 85 Jul 20 15:27 hello.wc

Look at the pattern of hyphens and letters at the left. The first character will be a “d” if
the file is a directory, “-” if it is not. Obviously, none of these are directories. The next 3
positions indicate the owner’s (u) permissions. By default, you get read and write permission
for your own files, so each file has an “r” and a “w”.a.out is an executable program, so
the compiler makes sure that you get execute (x) permission on it. The other files can’t be
executed, so they get no “x”. This way the shell will not even try to let you usehello.c
or any of the other source code files as a program.

The next three character positions indicate the group permissions. In this case, the group
permissions are the same as the owner’s permissions. Knowing the group permissions isn’t
very helpful, however, unless you know to which group it refers. The commandls -g
produces output similar tols -l but lists the files’ groups instead of their owners. For
example, if you said

ls -l ˜/playing

you might see the response

9

-rwxrwx--- 1 student 311296 Jul 21 09:17 a.out
-rw-rw---- 1 student 82 Jul 21 09:12 hello.c
-rw-rw---- 1 student 92 Jul 21 09:13 hello.cpp
-rw-rw---- 1 student 85 Jul 20 15:27 hello.wc

Some typical groups are “wheel”, “faculty”, “gradstud”, and “student”. “Wheel” has no
members, but groups like “student” and “gradstud” have very broad membership, as their
names imply. Although, as we shall see, the files in this example do not give any privileges
to the world (others), they can be read and written by all students because of the group
permissions.

The final three character positions indicate the permissions given to the world (others).
Note that in this case, people other than the owner or members of the same group cannot
read, write, or execute any of these files.

Directories also can get the samerwx permissions, though the meaning is slightly differ-
ent. If you have read permission on a directory, you can see the list of files in the directory
via ls or other commands. If you have execute permission on a directory, then you can
use that directory inside a file name to get at the files it contains. So, if you have execute
permission but not read permission on a directory, you can use those files in the directory
whose names you already know, but you cannot look to see what other files are in there. If
you have write permission on a directory, you can change the contents of that directory (i.e.,
you can add or delete files).

2.5.2 chmod

Thechmod command changes the permissions on files. The general pattern is

chmod class ± permissions files

Use “+” to add a permission, “- ” to remove it. For example,chmod o+x a.out gives
everyone permission to executea.out . chmod g-rwx hello.* denies members of
your group permission to do anything at all with the “hello” program source code files.

You can also add a-r option tochmod to make it “recursive” (i.e., when applied to any
directories, it also applies to all files in the directory (and if any of those are directories, to
the files inside them, and if. . .). For example, if I discovered that I really did not want the
group to have permission to write or execute my files in˜/playing , I could say:

chmod -r g-rx ˜/playing

2.5.3 Beware the umask!

Suppose you never use thechmod command. What would be the protection levels on any
files you created?

The answer depends upon the value ofumask. Look in your˜/.cshrc file for a com-
mand by that name, and note the number that follows it. If you don’t have one, just give the
command

umask

and note the number that it prints.
The umask number is a 3 digit (base 8) number. The first digit describes the default

permissions for the owner (you), the second digit describes the default permissions for the
group,10 and the final digit describes the default permissions for others.

Each of these three numbers is, in turn, formed as a 3-digit binary number where the first
digit is the read permission, the second is the write permission, and the thrid digit is the
execute permission. In each binary digit, a 0 indicates that the permission is given, a 1 that
the permission is denied.

So if my umask is027, that means that

• I (the owner) have000 — permission to read, write and execute my own files.

• The group to which a file belongs has010, permission to read, no permission to write,
and permission to execute that file.

• The rest of the world has111, no permission to read, write or execute.

Of course, these permissions can be changed for individual files via thechmod command.
The umask only sets the default permissions for cases where you don’t saychmod.

If you want to change your default permissions, you do it via theumask command by
giving it the appropriate 3-digit octal number for the new default permissions. Some com-
mon forms are:

umask 022 Owner has all permissions. Everyone else can read and execute, but not write.

umask 077 Owner has all permissions. Everyone else is prohibited from reading, writing,
or executing.

Since the point of theumask command is to establish the default behavior for all your files,
this command is normally placed within your.cshrc file.

10Of course, if the number appears written using only 1 or 2 digits, the missing digits are simply leading zeros.

10

2.5.4 Planning for Protection

At the very least, you will want to make sure that files that you are preparing to turn in for
class assignments are protected from prying eyes. You need to do a little bit of planning to
prepare for this. There are two plausible approaches:

• Use a stringent enough umask (e.g.,umask 077) so that everything is protected by
default.

– The only disadvantage is that files that youwant to share (e.g., the files that
make up your personal Web page) must be explicitly made world-readable
(chmod go+r files).

• Use a more relaxed umask (e.g.,umask 022) so that your files are readable by de-
fault, but establish certain directories in which you carry out all your private work and
protect those directories so that no one can access the files within them. For example,
you might do

cd ˜
mkdir Assignments
chmod go-rwx Assignments

Now you can put anything you want inside˜/Assignments , including subdirecto-
ries for specific courses, specific projects, etc. Even if the files inside˜/Assign-
ments are themselves unprotected, other people will be unable to get into˜/As-
signments to get at those files.

– The one disadvantage to this approach is that it calls for discipline on your part.
If you forget, and place your private files in another directory outside of˜/As-
signments , then the relaxed umask means that those files will be readable by
everyone!

2.6 Getting Help

As you explore Unix, you are bound to have questions. Some ways to get answers include:

• The entire Unix manual is on-line.

man command

displays the manual page for the given command.

man -k keyword

looks up the given keyword in an index and lists the commands that may be relevant.

• The CS Department systems staff has collected a variety of additional help documents.
You can find them by going to the Dept home page (http://www.cs.odu.edu/) and se-
lecting “General Help”.

and then selecting “Unix & Labs”.

• A staff member is generally on duty in the public CS workstation room of the Norfolk
campus whenever that room is open.

• If none of the above help, then send e-mail to “root”. This is also how you report bugs,
machine failures, etc.

3 Editing Text Files

An editor is a program that allows you to easily create and alter text files. There are a variety
of editors on the system, of which the most popular arevi andemacs. Neither is exactly
the easiest thing in the world to learn to use. I suggest learningemacs, because

• It offers a built-in tutorial to get you started.

• As you gain more facility withemacs and with Unix in general, you will find that
emacs offers many advanced facilities for doing specific tasks. For example, I use
emacs to compile my programs, and to aid in debugging them.

• emacs is widely available (for free) for all Unix systems and also for MSDOS.

To runemacs, make sure that you have correctly identified your terminal kind (see Sec-
tion 2.1). Then give the command

emacs

Then follow the directions given to bring up the tutorial (i.e., type ˆ\ followed by “t”.).
When you are done with the tutorial, here are few extra things you should know about

emacs:

11

http://www.cs.odu.edu/

• emacs offers a customized modes for different kinds of files that you might be editing.
Some of these are chosen automatically for you depending upon the file name you
give. Others can be chosen automatically by giving the commandM-x name-mode
wherenameindicates the desired mode. Some of the most popular modes are:text ,
pascal , c , andc++ . The programming language modes generally offer automatic
indenting at the end of each line, though you may have to end lines with the “Line
feed” or “C-j” key rather than “Return” or “Enter” to get this.

• The commandM-/ is a special friend to all programmers who use long variable names
but hate to type them. Type a few letters of any word, then hitM-/ . emacs will search
backwards through what you have previously typed looking for a word beginning with
those letters. When it finds one, it fills in the remaining letters. If that wasn’t the word
you wanted, just hitM-/ again andemacs will search for a different word beginning
with the same characters.

• Before starting up,emacs tries to read a filẽ/.emacs Many people store special
commands in there to customizeemacs to their own liking. (Reading the.emacs file
of an experienceemacs user can be instructive although, unfortunately, sometimes a
bit intimidating. (Feel free to take a look at mine: ˜zeil/.emacs

4 The X Window System

If you are working at theconsole, you can take advantage of theX windowing system. By
runningX, you can have several windows on the screen open at once, each devoted to a
different task. For example, you can be reading electronic mail in one window while a
lengthy compilation is running in another.X also allows the display of graphics and of a
variety of fonts.

4.1 X Window Managers

X is a windowing system that can present a number of different appearances to the user.
The appearance and behaviors that you actually see is controlled by awindow manager, a
program that is generally run as part of theX start-up procedure.

The most common window manager in our Dept. is theCommon Desktop Environment.
Most of our workstations are set up to run this all the time, as soon as you log in. Help and
tutorial information is available by clicking on the picture of a set of books with a question
mark in front, usually located near the bottom right corner of the screen.

On the other hand, if you are running X on a Windows PC, the window manager is likely
to be the “native” Windows system.

4.2 Running X

If, however, you log in at a console and find yourself staring at a simple command-line
interface, try giving the command

˜public/xdemo/demo

to run an on-line tutorial of X under the default window manager for our environment, or
give the command

X

to runX “for real”.
On Windows PCs, you will need to look for the X server software as described in Sec-

tion 3.

4.3 Working in X

I will simply note a few important items, including some not described in the tutorials:

• One of the first things you will want to do is to get a working window where you can
enter Unix commands.

In the Common Desktop Environment, look for a window titled “Terminal”, or click
on the toolbar’s picture of a screen and keyboard to get a terminal window.

In other X window managers, try moving the mouse to an unoccupied portion of the
screen and holding down the right mouse button. You will probably get a menu that
includes an option to open a “terminal”, “xterm”, or “shell”. Select this to get a window
in which you can enter commands. Click on the bar across the top of the window to
select it before typing anything.

Click on the bar across the top of the window to select it, and you are ready to begin
entering commands.

• Any time you enter commands in Unix, you can place an ampersand (“&”) at the
end of the command to run that command in the background. This “disconnects” the

12

command from your keyboard (in that window). You get a prompt immediately and
can enter your next command even if the one you just launched has not yet completed.

Now this capability is not all that useful if you’re not running X. After all, if the pro-
gram you are running needs input from you, it has been disconnected and can’t see
your subsequent keystrokes. Also, if that program produces output, it will still appear,
but will be intermingled with the outputs of any new commands you have entered in
the meantime. So, if you’re not in X, the & is useful only for commands and programs
that need no additional inputs and produce no additional outputs.

Under X, however, many useful programs open their own windows and direct their
inputs and outputs through those new windows. For example, you would enter “emacs
&” rather than “emacs”, and “netscape & ” rather than “netscape ”. Without the
&, the window where you entered the command to launch a program would be useless
to you until that program has finished. With the &, that program runs in its own window
and the old window gets a new prompt and can still be used to issue more commands.

• Most programs that run underX support a very simple “cut-and-paste” facility. Simply
drag the mouse across a block of text in any window while holding down the left mouse
button. Then position the mouse into a window where you would like that text to be
“typed”. Click the middle mouse button, and the selected text will be sent to that
window just as if you had typed it yourself.

• Whenemacs is run underX, this cut-and-paste feature is supported, but in a different
fashion. Text that has been selected in another window by dragging the mouse can be
retrieved inemacs by the command C-Y (ˆY). Text that has been “killed” inemacs by
C-K, C-W, or M-W can be inserted into other windows by clicking the middle mouse
button.

5 Customizing Your Unix Environment

By now, you are probably tired of typing “setenv term . . . ” and other initial commands
each time you log in. Now that you can edit files, one of the first things to do is to customize
your login procedure.

The shell uses two important files to customize behavior. When the shell is started up, it
executes the commands in a file called˜/.cshrc Now, in a typical Unix session, you may
actually be running many copies of the shell at the same time, perhaps without even being

aware of it. The first time, however, that a shell is started because you have just logged in, it
also executes the commands in a file called˜/.login

You may or may not already have versions of these files.11 You can check by giving the
command

ls -a ˜

If you don’t have either of these, you should make one. If you do, consider changing it as
described here.

First, let’s create a.login file. Enter emacs, and create a file with the following:

if ("$TERM" == "vt100" || "$TERM" == "network") then
set term=vt102

tset -Q
endif

Instead of “vt102”, you should enter whatever terminal type you use most often. If you find
that thetset command has been necessary for you in the past, delete the # character. If
you usually reset the number of lines withstty , add that command as well. Now your
terminal kind will be set automatically for you whenever you dial in.

If you would like to automatically runX whenever you are working at the console, add
the following lines:

if ("‘tty‘" == "/dev/console") then
echo -n "Entering X windows (Control-C to interrupt)"
sleep 5
X

endif

Be sure to enter everything exactly as shown above, including the quotes. Note that"
is the double-quotation key, and that the‘ characters around the wordtty are the “back-
wards” apostrophe (You may need to hunt around on your keyboard to find this one, but it
will notbe on the same key as the").

Now let’s add a few useful items to the.cshrc file. Edit your .cshrc file and insert
the following:

11Note that because each of these filenames starts with a “.”, you won’t see these files with als command unless
you use the-a option (See Section9).

13

setenv EDITOR emacs
limit coredumpsize 0
#
skip remaining setup if not an interactive shell
#
if ($?USER == 0 || $?prompt == 0) exit
set history=40
set ignoreeof
set prompt="‘hostname‘: "
alias cp ’cp -i’
alias mv ’mv -i’
alias rm ’rm -i’
alias ls ’ls -F’
alias ff ’find . -name \!* -print’

Thesetenv line indicates thatemacs is your editor of choice. Some programs, includ-
ing the e-mail programs introduced in Section6, will use this information to load an editor
when you have large amounts of text to enter/alter.

Of the remaining lines, the most interesting are thealias commands. These set up
“abbreviations” for commands. In this case, we are mainly adding options to familiar com-
mands. The first three aliases add a-i option to thecp , mv, and rm commands. This
option causes each command to prompt for a confirmation whenever its action would result
in a file being deleted. The fourth alias adds the-F option to all ls commands, making
it easier to tell the difference between ordinary files, directories, and executable programs.
The final alias sets up a “find-file” command,ff . This will search the current directory and
all subdirectories within it for a file matching a given pattern. For example the command
sequence

cd ˜
ff ’*.txt’

will list all of your files with the.txt extension.

After you have checked these two files and saved them, you will have to log out and then
log back in again before they take effect.

6 Using Electronic Mail

Electronic mail, or “e-mail”, for short, is an important part of the ODU CS environment.
Besides being a useful way to exchange personal messages, e-mail is used by the Department
for official announcements. Many instructors distribute grades by e-mail. They may send
hints and corrections for projects and assignments that way, or distribute special files needed
by all students in the class. E-mail may be the best way to pose a short question to your
instructor outside of class, since you don’t actually need to catch your instructor in person
at a time when he/she’s not busy with someone else.

Of course, you may already have an e-mail account at work, with the University, or with
your own Internet Service Provider (ISP). If you prefer to receive all your mail at another
account, see section6.3for instructions.

6.1 E-Mail addresses

Just as with physical mail, you can’t send someone e-mail unless you know their name and
address. For e-mail, the name and address are usually combined as

name@machine

wherenameis the login name of the recipient andmachineis the full name of the computer
that processes their mail. This combination is generally called the person’s “e-mail address”.

For example, my login name is “zeil”, and my mail is handled by the machine
“cs.odu.edu”, so my e-mail address iszeil@cs.odu.edu .

Actually all e-mail for CS Dept. login accounts is handled bycs.odu.edu . When
you are sending mail to a user with the same mail handling machine, you can omit the
“@” and everything that follows it. So if you are logged in to a CS Dept machine and
want to send me e-mail you could just send it tozeil . But if you are logged in to a
Teletechnet PC or a machine elsewhere on the Internet, you would need to give the full
form, zeil@cs.odu.edu .

6.2 E-Mail Programs

There are several programs that you can use to get e-mail, and people tend to become rather
fanatical about their personal favorite. The most basic of these is the Unixmail command,
which also has the advantage of being universally available on any Unix machine. Butmail
is showing its age. New standards (the Multipurpose Internet Mail Extensions or MIME for
short) have evolved to allow people to package files, graphics, sounds, etc., as part of an

14

PINE 3.90 MAIN MENU Folder: INBOX 22 Messages

? HELP - Get help using Pine

C COMPOSE MESSAGE - Compose and send/post a message

I FOLDER INDEX - View messages in current folder

L FOLDER LIST - Select a folder OR news group to view

A ADDRESS BOOK - Update address book

S SETUP - Configure or update Pine

Q QUIT - Exit the Pine program

Figure 1:Pine Main Menu

“extended” e-mail message. Themail command predates these standards and so cannot
handle MIME e-mail. Also,mail is not the easiest e-mail program to learn.

I recommend thepine program for e-mail on our system. It is menu-driven, includes a
substantial built-in help system, and can process and send MIME mail. I do occasionally
fall back on the basicmail command, so I describe both of these in the following sections.

Later, you may want to check out the X-Windows mail tool, themush, or elm programs,
or thevmcommand for reading e-mail from within theemacs editor.

6.2.1 The PINE E-mail program

To run pine , make sure that you have correctly identified yourterminal kind. Then give
the command

pine

You should see a menu resembling Figure1. If you get a garbled screen instead, you
probably have not set yourterminal kindcorrectly.

The most important choices are “C” to compose a message and send it to someone, and
“I” to view an index of messages sent to you.

Sending Messages Type “C” to compose a message to send to someone. You should see a
screen resembling Figure2. One thing to note is the list of possible commands in the lower
two lines of the screen. In almost any context,pine will list the commands available to
you, including a command to get “help” information.

Use your up/down arrow keys to select the “To:” line at the top of the screen. Here you
can enter the e-mail address you want to send a message to. Just below that, on the “CC:”

To :
Cc :
Attchmnt:
Subject :
----- Message Text -----

ˆG Get Help ˆX Send ˆR Rich Hdr ˆY PrvPg/Top ˆK Cut Line ˆO Postpone
ˆC Cancel ˆD Del Char ˆJ Attach ˆV NxtPg/End ˆU UnDel LineˆT To AddrBk

Figure 2:Sending mail with Pine

line, you can add the e-mail addresses of any other people to whom you would like copies
of your message sent. Two lines down is the “Subject:” line. Although you are not required
to put anything here, proper e-mail “etiquette” calls for all messages to carry a useful entry
in the “Subject:” line.

Finally, move the cursor below the “Message Text” line, and you can begin typing your
message.

When you are done and are ready to send your message, type ˆX to send it.
A common variation on this procedure is when you need to send someone a copy of a file

as part of your message. For example, if you are sending your instructor a question about
some code you are writing, you might want to include the code in question as part of the
message. Pine provides two ways to do this. The easiest is to go up to the “Attchmnt:” line
near the top of the screen. Any file names you type on this line will be “attached” to the
final message when it is sent (i.e., a copy is sent — your original files will be untouched).
Alternatively, while you are typing your message you can ˆR to insert a file directly into the
text of your message.

Some point to keep in mind when deciding which approach to use are:

Attachment:

• Recipient of message must be usingpine or some other MIME-capable mail
program.

• Can be used to send non-text files (e.g., programs, graphics, etc) as well as stan-
dard text.

• Can send multiple files without confusion. File names are preserved as part of the
attachment.

15

PINE 3.90 FOLDER INDEX Folder: INBOX Message 5 of 5

+ A 1 Nov 6 JohnDoe@elsewhere. (34,483) Looking for volunteers
+ 2 Nov 8 JohnDoe@elsewhere. (2,472) Still need volunteers

3 Nov 13 MaryJones@aol.com (4,310) Conference on Programming
4 Nov 20 Root (1,432) Re: your account
5 Nov 22 Professor Z (747) Overdue Homework

? Help M Main Menu P PrevMsg - PrevPage D Delete R Reply
O OTHER CMDS V [ViewMsg] N NextMsg Spc NextPage U Undelete F Forward

Figure 3:Reading mail with Pine

ˆR

• Recipient of message can use any mail program.

• Can only be used to send text files.

• File names are lost. If you try to include more than one file in a message, the
boundaries between the files are likely to be unclear to the reader.

Receiving Messages From the main menu screen, type “I” to get a list of the messages
in your system “mail-box”. It will look something like Figure3. The plus signs in front
of some messages indicate that you have already read them. The “A” in front of message 1
indicates that you have already sent an answer to that message.

Using your up/down arrow keys, you can select any of these messages and then type “V”
to view the message.

While viewing messages, refer to the bottom two lines of your screen for the commands
to page up/down through long messages, to compose and send replies to a message, to
“forward” a copy of the message to someone else, or to return to the main menu (Figure1).

If the message you are viewing is a MIME style message with attached files, another “V”
command will allow you to view these files (if they are text, graphics, etc) or to save them
in a directory of your choice. Also, the “E” (Export) command will allow you to save the
text of the current message in a file even if it is not a MIME message.

Folders After you have read some messages and try to exit frompine , pine will ask if
you wish it to move your read messages out of your system mail-box (called the “INBOX”)
into a “read-messages folder”. Afolder is simply a container that can hold mail messages.
Pine treats your system mail-box as simply a special form of folder. To see a list of your

folders and to select one in which you want to view messages, use the “L” command from
thepine main menu.

Moving read messages out of your system mail-box into another folder is often a good
idea. It eases strain on the system resource area used for incoming e-mail. It means that
when you enterpine and immediately hit the “I” key, you see your new mail right way
instead of having it mixed in with old stuff. Finally, you can organize your saved mail by
creating your own folders to save messages in. For example, you might have a folder for
each class you are taking, to keep e-mail about different classes in separate containers. You
can create new folders from inside the “L” command. To move a mail message that you are
viewing into a folder, use the “S” save command.

6.2.2 The Unix mail command

Sending To send mail to someone with e-mail addressaddr, give the command

mail addr

For example, you could send me mail via the command

mail zeil@cs.odu.edu

Although, if you are logged in to a CS Dept machine and want to send me e-mail you could
just say

mail zeil

After you have given themail command, you will be prompted for a subject line to
indicate what your message is about. After that, you begin typing your message on the next
line. When you are done, type ˆD on a line by itself. You will then be prompted with “Cc: ”,
which allows you to add the login names of other people to whom you would like to send a
copy of your message. (Many people like to make a habit of cc’ing a copy to themselves.)
If you do not want to send any extra copies, just hit the “Return” key. Your message will
then be sent.

As you type your message, you can send special instructions to the mail program by
entering any of the following at the start of a line:

˜e Enter the editor named by the EDITOR environment variable (see Section5). This is a
good way to correct mistakes made on previous lines.

˜r filename Insert the contents of a file into your mail message.

16

˜p Print the message as it appears so far.

˜m # If you are actually replying to a mail message that you received (see Receiving, be-
low), this inserts the text of mail message number# into your reply.

Receiving When you first log in, you will be informed if you have received e-mail. At that
time, or anytime thereafter, you can use thefrm command to list the messages awaiting.

To actually read your mail, give the commandmail with no arguments. You should see
a numbered list of your messages. If not, the command “h” (for headers) will list them. You
can then read a message by typing it’s number.12

After reading the message, you can take any of several actions:

r Send areply to the author of the message you just read.

R Send areply to the author of the message you just read and to anyone in the Cc: list of
that first message.

dp Delete this message and move on to the next (if any).

n Move on to the next message.

s filename Save a copy of this message in the specified file. If the file already exists, the
message is added to the end.

6.3 Forwarding Addresses

If you prefer to read your e-mail on a different system, you can easily tell the Unix mailing
system to forward all mail sent to your Unix e-mail address to a different address.

You will want to create, in your home directory (i.e.,cd ˜) a file named “.forward ”.
The contents of this file should be a single line of text containing your preferred e-mail
address.

You can create this file using your favorite text editor, or you can simply use the Unix
echo command to write the desired text into the file. For example, if you wanted all your
e-mail to be sent tobogus@megacorp.com , you would do the following

12If you have no messages at the moment but would like to practice reading mail, try following the instructions
under Section6.2.2to send yourself a couple of messages. Then just wait a few minutes untilfrm indicates that
your messages have arrived.

cd ˜
echo "bogus@megacorp.com" > .forward
cat .forward

The finalcat command should show the contents of the.forward file to be your de-
sired address. (Note: Unix files that start with a “.” are invisible to the normalls command.
To see them in a directory listing, you have to add the-a option: ls -a .)

Now, test it out! If you have a bad e-mail address in your.forward file, you could
lose messages. So send yourself mail (to your ODU CS account). It should appear, in
due course, at your preferred e-mail address. How long it actually takes depends on many
factors. It may take only a few minutes. If after a few hours, you have not received the
e-mail, delete your.forward file. Try again, if you wish. Or you might try on another
day just in case the CS Dept. mail server, or the one at your preferred site, was temporarily
out of commission. If you have repeated problems getting mail forwarded quickly, you
might want to rethink your desire to use this feature. For most people, this procedure works
without much trouble.

You can actually have more than one forwarding address. The.forward file can contain
a comma-separated list of forwarding addresses. For example, you might use

bogus@megacorp.com, bogus@home.net

Some people like to keep a backup copy of their mail on the CS Dept system, but to get their
”normal” mail somewhere else (e.g., because their mail server at work is crash-prone). This
is possible, by making your e-mail address on the CS Dept. system one of the forwarding
addresses, so that you forward a copy right back to yourself:

\yourLoginName, bogus@megacorp.com

The backslash is required: it helps prevent the mailer from consulting your.forward file
a second time (which would lead to an infinite cycle of mail forwarding).

7 File Transfer

If you prepare files on one machine but want to use them on another, you need some means
of transferring them. For example, if you edit files on your home PC or on a PC at one of
the Teletechnet sites, you will eventually need to get those files onto the CS Department
network. On the other hand, you may want to take files your instructor has provided off of
that network for use on your home PC.

17

Exactly how you do this depends upon your usual access to the CS network. You may
need to try several approaches until you find one that works well for you.

7.1 Text versus Binary Transfers

A further complicating factor is that you must decide whether the files you want to transfer
should be treated as “text” of as “binary”. Files that contain simple text, including pro-
gram source code, should be transferred in “text” mode. Compiled programs, compressed
files (e.g., *.zip or *.Z files), and word processor files with embedded formatting codes are
generally transferred in “binary” mode.

The reason for this binary/text confusion is that Unix, MSDOS, IBM, and other sys-
tems disagree on how to represent basic text. For example, the end of a line in a Unix
text file is represented by a single character (the ˆJ or “line-feed” character) while MSDOS
uses a pair of characters at the end of each line (a ˆM or “return” character followed by a
ˆJ). Other operating systems have their own peculiarities. Most file transfer programs will,
when transferring text, try to convert the transferred file into the appropriate format for the
destination machine. These conversions may involve changing, adding, or deleting charac-
ters. Of course, if the file being transferred were not text but a compiled program, any such
changes to individual bytes would be disastrous. Consequently, you need to be aware at all
times whether the files you are working with are text or binary.

The easiest way to tell (though not foolproof) is to try listing the file on your screen using
the Unix“cat” commandor the MSDOStypecommand. If it looks OK, its probably text. If
not, or if in doubt, transfer it in binary mode.

7.2 Transferring Files

7.2.1 At the console:

If you have physical access to the CS workstations, either on the Norfolk campus or at the
Peninsula Graduate Center, you may be able to transfer your files via 3.5” floppies. The
floppies must have been previously formatted on an IBM PC compatible machine, for either
720k or 1.44M capacity.

Look for a workstation with a floppy disk drive (not all have them). Insert the disk into
the drive, and typevolcheck to notify the workstation that a disk has been inserted.

You can now access the floppy disk as the Unix directory/floppy/floppy0/ , just as
you would any Unix directory. You canls to see the contents,cp andmvfiles to and from
the disk, etc.

When you are done, typeeject and the workstation will eject your disk from its drive.
There are, however, just a few cautions to keep in mind:

• The Unix commands manipulate the files inbinary mode. So your text files may wind
up with the wrong form of line terminators unless you usedos2unix andunix2dos .

• The files on the disk will be known via their “short” MSDOS file names. If you have
gotten used to the long filenames of Windows 95/NT, you will need to remember that
all filenames will be truncated to “8.3 form”. For example, the command

cp -t longfilename.tar.gz /floppy/floppy

will actually result in a filelongfile.gz appearing on the disk.

7.2.2 Internet:

If you are on a machine that has an Internet connection, you can transfer files to other such
machines using theftp program. This would be the means of choice, for example, for
exchanging files between the laboratories at the Peninsula Graduate Center and the main
Norfolk campus.

All ftp file transfers to the ODU CS Dept. network go through a single machine:
ftp.cs.odu.edu .

As with all internet client programs, the way you actually launch and run the client is
determined by the particular software you run on your Internet Service Provider. You
might, for example, just need to click on an “ftp” icon and then enter the machine name
(ftp.cs.odu.edu).

If you are already logged in on a Unix system, give the command

ftp ftp.cs.odu.edu

Teletechnet students can useftp from the Teletechnet PC’s by selecting “Mainframe &
TCPIP Access” from the main menu, then “FTP to another host”. When prompted for a
“hostname/IP address”, respond with “ftp.cs.odu.edu ”.

You will then be prompted for your login name and your password. Enter those as usual.13

13Some classes may provide materials in the “anonymous” area, especially early in the semester when not
everyone has their login names and passwords yet. To enter this area, use the login name “anonymous” and for a
password give your e-mail address. If you don’t have a login name yet, and therefore have no e-mail address, just
enter your last name followed by “@cs.odu.edu”.

18

What follows thereafter depends upon your particularftp program. The detailed in-
structions below are correct for the Unix ftp and for the ftp program used by the Teletechnet
PC’s. For others, the steps are much the same, but the exact commands may differ.

Your next command should be

hash

This simply increases the amount of feedback you get about the progress made during file
transfers.

Before actually transferring files, you must decide whether to usebinary or text file trans-
fer. If you want binary transfers, give the command

binary

and if you want text transfers, give the command

ascii

You can switch back and forth between these modes as necessary if you are transferring
multiple files, some text and some binary.

Now you can use the commandscd , pwd, andls to navigate the Unix directory structure
as if you were in the shell. To get a file from the CS Unix machine to your local machine,
the command is

get filename

To put a file form your local machine onto the CS Unix machine, the command is

put filename

Neither theget norput commands can include wildcards in the filename, but by changing
the commands tomget andmput , you are allowed to use wild cards.

To end yourftp session, the command is

quit

7.3 Problems and Inconsistencies

If you don’t know whether to use binary or text transfer mode, try binary first.
If, however, you have transferred files to a Unix system and discover them to be full of

ˆM characters (you can see this by viewing the file inemacs), this is a sign that you should
have used text mode. You can still recover, however, by using the commanddos2unix :

dos2unix file$_1$ file$_2$

to produce a new filefile2 from file1 by converting the line ends to the Unix format.
On the other hand, if you have transferred files from a Unix system and find that the

received files appear to consist of a single, extremely long line, you can use the command
unix2dos :

unix2dos file$_1$ file$_2$

to get a new filefile2 with ˆMˆJ line terminators that can be transferred to your non-Unix
machine instead of the originalfile1.

Finally please note that, although easily transferred files may allow you to do most of the
work of a programming assignment on your home PC, do not fall into the trap of believing
that you can simply transfer the source code and submit it unchanged to your instructor for
grading on the Unix system. Different compilers for the same language often allow a variety
of non-standard language extensions (or because of bugs, fail to properly compile standard
language constructs). Allow yourself ample time (at least a few days) to port your code from
one compiler to another.

8 Using the Internet

If you have an account on the CS Dept. network, then you have access to the Internet through
that account. Of course, if you connected to the CS Dept. via the Internet, you obviously
have access to it already! But even if you are logged in at a console or via a terminal, you
can use the most popular Internet tools.

Console: You can open a terminal session on another machine anywhere on the Internet via
telnet(below). Note, however, that you can more easily log into other machines within
the CS Dept network usingrlogin (See Section9).

You can transfer files to or from another machine anywhere on the Internet viaftp.

Finally, you can “surf” the World Wide Web using thenetscape command (if you
are running X windows). For example, try

19

netscape http://www.cs.odu.edu &

to see the CS Dept home page. Or look at

netscape http://www.cs.odu.edu/˜zeil/zeil.html &

for information about me.

Terminal: You can open a terminal session on another machine anywhere on the Internet
via telnet. Note, however, that you can more easily log into other machines within the
CS Dept network usingrlogin (See Section9).

You can transfer files to or from another machine anywhere on the Internet viaftp.

9 Compilers

9.1 Compiling in the Shell

Now that you know how to create and edit files, you can generate new programs. The most
commonly used languages in the CS Department at the moment are C++ and C. The most
popular C++ and C compilers areg++ andgcc .14

The simplest case for each compiler involves compiling a single-file program (or a pro-
gram in which all files are combined by#include statements). For example, use an editor
to prepare the following files:

hello.cc

#include<iostream.h>
int main ()
{

cout << ”Hello from C++ !” << endl;
return 0;

}

hello.c
14Actually, gcc andg++ are the same compiler being invoked with slightly different options.

#include<stdio.h>
int main ()
{

printf (”Hello from C!\n”);
return 0;

}

To compile and run these, the commands are:

g++ -g hello.cpp
./a.out
gcc -g hello.c
./a.out

The compiler generates an executable program calleda.out . If you don’t like that name,
you can use themv command to rename it. Alternatively, use a-o option to specify the
name you would like for the compiled program:

g++ -g -o hello1 hello.cpp
./hello1
gcc -g -o hello2 hello.c
./hello2

When you have a program consisting of multiple files to be compiled separately, add a-c
option to each compilation. This will cause the compiler to generate a.o file instead of an
executable. Then invoke the compiler on all the.o files together without the-c to produce
an executable:

g++ -g -c file1.cpp
g++ -g -c file2.cpp
g++ -g -c file3.cpp
g++ -g -o programName file1.o file2.o file3.o

(If there are no other .o files in that directory, the last command can often be abbreviated to
“g++ -o programName -g *.o ”.) The same procedure works for thegcc compiler
as well.

Actually, you don’t have to type separate compilation commands for each file. You can
do the whole thing in one step:

g++ -g -o programName file1.cpp file2.cpp file3.cpp

20

But the step-by-step procedure is a good habit to get into. As you begin debugging your
code, you are likely to make changes to only one file at a time. If, for example, you find and
fix a bug infile2.cpp , you need to only recompile that file and relink:

g++ -g -c file2.cpp
g++ -g -o programName file1.o file2.o file3.o

An even better way to manage multiple source files is to use the (See section11).
Another useful option in these compilers is-D . If you add an option-D name=value ,

then all occurrences of the identifiernamein the program will be replaced byvalue. This
can be useful as a way of customizing programs without editing them. If you use this option
without a value,-D name, then the compiler still notes thatnamehas been “defined”. This
is useful in conjunction with compiler directive#ifdef , which causes certain code to be
compiled only if a particular name is defined. For example, many programmers will insert
debugging output into their code this way:

...
x = f(x, y, z);
#ifdef DEBUG

cout << "the value of X is: " << x << endl;
#endif
y = g(z,x);
...

The output statement in this code will be ignored by the compiler unless the option-
DDEBUGis included in the command line when the compiler is run.15

Sometimes your program may need functions from a previously-compiled library. For
example, thesqrt and other mathmatical functions are kept in the “m” library (the filename
is actuallylibm.a). To add functions from this library to your program, you would use the
“ -lm ” option. (The “m” in “-lm ” is the library name.) This is a linkage option, so it goes
at the end of the command:

g++ -g -c file1.cpp

15Zeil’s 1st Rule of Debugging: Never remove debugging output. Just make it conditional. If you remove it,
you’re bound to want it again later.

Zeil’s 2nd Rule of Debugging: Never leave your debugging code active when you submit your programs for
grading. If the grader is using an automatic program to check the correctness of the output, unexpected output will
make your program fail the tests. On the other hand, if the grader is reading the output to check its correctness,
wading through extra output really ticks the grader off!

g++ -g -c file2.cpp
g++ -g -c file3.cpp
g++ -g -o programName file1.o file2.o file3.o -lm

The general form of gcc/g++ commands is

g++ compilation-options files linkage-options

By default, gcc and g++ produce simple text applications — applications designed to run
from within a shell (bash). They can, however, produce GUI applications with windows,
menus, etc., by using-l to link in the windowing libraries.

Programming windowing code is a fairly involved process. I suggest getting a li-
brary that simplifies this process for beginners. The V library (seehttp://www.
objectcentral.com) is a good choice, and has the additional advantage that code writ-
ten for use with V can be compiled to produce either Microsoft Windows or Unix X windows
programs.

Here is a summary of the most commonly used options for gcc/g++:

Compilation Flags
-c compile only, do not link
-o filename Usefilenameas the name of the compiled pro-

gram
-Dsymbol=value Definesymbolduring compilation.
-g Include debugging information in compiled

code (required if you want to be able to run
the debugger.

-O Optimize the compiled code (produces
smaller, faster programs but takes longer to
compile)

-I directory Add directory to the list of places
searched when a “system” include (#in-
clude <...>) is encountered.

Linkage Flags
-L directory Add directoryto the list of places searched for

pre-compiled libraries.
-llibname Link with the precompiled library

lib libname.a

21

http://www.objectcentral.com
http://www.objectcentral.com

9.2 Compiling in emacs

When your programs contain mistakes, compiling them in the shell can result in large num-
bers of error messages scrolling by faster than you can read them. For this reason, I find it
best to compile from within theemacs editor.

Get intoemacs and call up one of the “hello” programs. Change it so that it contains one
or more syntax errors, and save this file. Now give theemacs command:M-x compile .
At the bottom of the screen, you will be asked for the compile command. If the suggested
command is not what you want (it won’t be, the first time you compile), then type in the
proper command just as if you were typing it into the shell.emacs will invoke the compiler,
showing it’s output in a window.

In this case, there should be one or more error messages. Theemacs commandC-x ‘
will move you to the source code location of the first error. Each subsequent use ofC-x ‘
will move you to the next error location in turn, until all the reported error messages have
been dealt with.16

9.3 Debugging

In the compilation commands given above, the-g option causes the compiler to emit in-
formation useful for a run-time debugger. The debugger of choice with these compilers is
calledgdb . The easiest way to rungdb is, again, from insideemacs.

Try creating a longer program in the language of your choice, and compile it to produce
an executable programa.out . From withinemacs, look at one of the source code files
for that program and then give the commandM-x gdb .

At the prompt “Run gdb like this: ”, type the program namea.out . emacs will
then launchgdb , and eventually you will get the prompt “(gdb) ” in a window. You can
now controlgdb by typing commands into thegdb window. The most important commands
are:

set args . . . If your program expects arguments on its command lane when it is invoked
from the shell, list those arguments in this command before running the program.17.

break function Sets a breakpoint at the entry to the named function (i.e., indicates that you
want execution to pause upon entry to that function).

16Note carefully that the second character in theC-x ‘ command is the “backwards” apostrophe, not the regular
one.

17These may include redirection of the input and output (See Section10.1).

run Starts the program running.

c Continues execution after it has been paused at a breakpoint.

n Executes thenext statement, then pauses execution. If that statement is a func-
tion/procedure call, the entire call is performed before pausing.

You can also do this by giving theemacs commandC-C C-N.

s Like n, executes the next statement, but if that statement is a function procedure call, this
commandssteps into the body of the function/procedure and pauses there.

You can also do this by giving theemacs commandC-C C-S .

p expressionPrints the value ofexpression, which may include any variables that are visible
at the current execution location.

quit Ends yourgdb session.

In addition to the above, theemacs commandC-C < moves your view of the code up the
call stack, allowing you to see the caller of the current procedure/function. The command
C-C > moves you back down. If you change to a window containing the source code and
give the commandC-X space , a breakpoint will be set at the line of code where the cursor
is positioned.

10 More Shell Games

10.1 Redirection and Pipes

One of the interesting ideas that pervades Unix is that many, if not most, programs can be
viewed as “filters” or “transforms” that take a stream of text as input and produce an altered
stream of text as output. Many Unix commands are designed to perform relatively trivial
tasks, perhaps not very useful by themselves, that can be chained together in interesting and
useful ways.

The practical consequence of this is that Unix shells devote special attention to astan-
dard inputstream that forms the main input to most programs/commands, and to astandard
outputstream that forms the main output from most programs/commands.18 The shell at-
tempts to make it easy either toredirectone of these standard streams to a file or topipethe
standard output stream of one program into the standard input of another.

18There is actually a second output stream supported by many programs, thestandard errorstream, used for
writing error/debugging messages.

22

For example, the programwc (for word count) reads text from its input stream and pro-
duces as its output stream three number indicating the number of lines, words, and characters
that it saw. You could invoke this directly:

wc
Hello.
How are you?
ˆD

in which case, you would see as output:

2 4 20

For this to be very useful, however, we need to make it accept a file as input. This is done by
using the< operator in the shell. Think of the< as an arrow indicating data flowing towards
the command from a filename:

wc < hello.c

wherehello.c is the file from Section9.1, produces the output

6 13 80

On the output end, the shell operator> directs the standard output into a file (again, think
of this as an arrow indicating data flowing into a filename from the command):

wc < hello.p > hello.wc

produces no output on the screen, but creates a file calledhello.wc . That file will contain
the output

6 13 80

of thewc command.
The output redirection operator has a couple of important variants. First, the shell gener-

ally does not allow you to redirect into an existing file. If you give the command

wc < hello.c > hello.wc

a second time, the shell will refuse to perform the command. You can force the shell to
delete an existing file and create a new one for redirection by changing the> to >! .

Second, sometimes we would like to add output to the end of an existing file instead of
replacing that file. This is done with the operator>>. So the code sequence

wc < hello.c >! hello.wc
wc < hello.c >> hello.wc

would result in a filehello.wc with contents

6 13 80

6 13 80

regardless of whetherhello.wc had existed previously.
To pipe the output of one command into the input of another, use the shell operator| . A

common example of a pipe is to take a command that may have a large amount of output
and to pipe it throughmore to facilitate viewing. For example, try

ls /bin | more

As you gain facility with a greater variety of Unix text manipulation commands, you will
find that redirection and pipes can be a powerful combination. For example, suppose that
you have written programmyprog that emits a great deal of output, among which might
be some error messages starting with the phrase “ERROR:”. If you wanted to read only the
error messages, you could, of course, just viewall the output, watching for the occasional
error message:

myprog | more

But if the program produces a lot of output, this will quickly become tedious. However, the
programgrep searches its input stream for a given character string,19 emitting at its output
only the lines containing that string. By piping throughgrep , we can limit the output to
the part we really want to see:

myprog | grep "ERROR:" | more

10.2 Scripts

You can put any sequence of Unix commands into a file and turn that file into a command.
Such a file is called ascript. For example, suppose that you are working on a program
myprog and have several files of test data that you run through it each time you make a
change. Create a filedotest1 with the following lines:

19Actually, grep is far more powerful, enabling you to search for strings matching elaborate patterns.

23

myprog < test1.dat > test1.dat.out
myprog < test2.dat > test2.dat.out
myprog < test3.dat > test3.dat.out
myprog < test4.dat > test4.dat.out
myprog < test5.dat > test5.dat.out

Now, you can’t executedotest1 , because you don’t have execute permission. (Dols -
l dotest1 to see this.) So use thechmod command to add execute permission:

chmod u+x dotest1

Now you can executedotest1 by simply typing

dotest1

Most shells provide special facilities for use in scripts. Since these differ from one shell
to another, it’s a good idea to tell Unix which shell to use when running the script. You do
this by placing the command#!/bin/csh in the first line of the script.20

One such special feature is the use of the symbol$k to stand for thekth argument given
to the script. For example, suppose that we wanted the ability to use a different set of test
files each time we used the test script. One approach would be to create a scriptdotest2 ,
as follows:

#!/bin/csh
myprog < $1 > $1.out
myprog < $2 > $2.out
myprog < $3 > $3.out
myprog < $4 > $4.out
myprog < $5 > $5.out

After the appropriatechmod, this could then be invoked as

dotest2 test1.dat test2.dat test3.dat test4.dat test5.dat

or with any other five test files. Of course, if we want to test with only four files, or with
six files, we’re out of luck. It would be nicer if we could have the script loop through as
many files as we list on the command line each time we run it. Such a script begins to sound
more like a program, and in fact most shells provide loops, if’s, and other programming
language-like statements. Here, for example, is the scriptdotest3 that will process each
argument in turn, however many there are:

20In fact, you can list any program there, not just/bin/csh , and Unix will use that program to process the
remainder of the lines in the script.

#!/bin/csh
foreach file ($*)

myprog < $file > $file.out
end

Here we use another special feature, the use of$ to indicate that we want to retrieve a value
from a variable, in this case the variablefile which is assigned by theforeach loop.
Also, we use$* , which denotes the entire list of arguments given to the script.

After the appropriatechmod, this script could then be invoked as

dotest3 test1.dat test2.dat test3.dat test4.dat test5.dat test6.dat

or perhaps as easily as

dotest3 test*.dat

Either way, theforeach statement will loop though all files named in the argument list,
settingfile to each file name in turn.

11 Project Management with Make

When you begin to develop projects that involve multiple files that need to be compiled or
otherwise processed, keeping them all up-to-date can be a problem. Even more of a problem
is passing them on to someone else (e.g., your instructor) and expecting them to know what
to do to build your project from the source code.

The Unix programmake is designed to simplify such project management. In amakefile,
you record the steps necessary to build both the final file (e.g., your executable program) and
each intermediate file (e.g., the.o files produced by compiling a single source code file).

We say that a filefile1 depends upona second filefile2 if the file2 is used as
input to some command used to producefile1 .

When themake program is run, it then checks to be sure that all of the needed files exist,
and that each needed file has been updated more recently than all of the files it depends
upon. The key bits of information in a makefile, therefore are

• For each file, a list of other files it depends upon, and

• The command used to produce the dependent file from the files it depends upon.

24

A makefile may also include various macros/abbreviations designed to simplify the task of
dealing with many instances of the same commands or files.

Suppose that we are engaged in a project to produce 2 programs,progA andprogB .
progA is produced by compiling filesutilities.c , progA1.cpp , andprogA2.cpp
and linking together the resulting.o files. ProgramprogB is produced by compiling file
utilities.c andprogB1.cpp and linking together the resulting.o files. All of the
.c and.cpp files have#include statements for a fileutilities.h . Also, both of the
.cpp files have an#include statement for a fileprogA1.h .

Here is a makefile for this project. This file should reside in the project directory, and
should be called “Makefile ” or “ makefile ”.

Macro definitions for "standard" language compilations
#
First, define special compilation flags. These may change when
we’re done testing and debugging.
FLAGS=-g -DDEBUG
#
The following is "boilerplate" to set up the stan-
dard compilation
commands:
.SUFFIXES:
.SUFFIXES: .cpp .c .cpp .h .o
.c.o: ; gcc $(FLAGS) -c $*.c
.cc.o: ; g++ $(FLAGS) -c $*.cc
.cpp.o: ; g++ $(FLAGS) -c $*.cpp
#
Targets:
#
progA: utilities.o progA1.o progA2.o

g++ $(FLAGS) utilities.o progA1.o progA2.o
mv a.out progA

progB: utilities.o progB1.o
g++ $(FLAGS) utilities.o progB1.o
mv a.out progB

utilities.o: utilities.c utilities.h

progA1.o: progA1.cpp utilities.h progA1.h

progA2.o: progA2.cpp utilities.h progA1.h

progB1.o: progB1.cpp
In the “SUFFIXES” area, standard commands are defined for producing a.o file from a
.c , .cc , or .cpp file. Of course these standard commands simply invoke the C orC++
compilers.

The key information is in the area Labeled “Targets”. Each target begins with a single
line containing the name of the file to produce, a colon, and then a list of all files that

25

serve as inputs to the commands that produce the file. Following that are any number of
command lines that give the Unix commands to actually produce the file. Each command
line starts with a “Tab” character (invisible in this listing). Command lines are not needed if
the standard commands form the “Suffixes” area can be used to build the desired file.

Suppose that, with just thisMakefile and the various source code files in your direc-
tory, you issued the commandmake progB . make reads theMakefile and notes that
progB depends uponutilities.o and progB1.o . Since neither of these files ex-
ists, make sets out to create them.utilities.o depends uponutilities.c and
utilities.h . Since these files exist and do not themselves depend upon anything else,
make will issue the command to createutilities.o from them. This command is the
“standard” command for making a.o file from a.c file:

gcc -g -DDEBUG -c utilities.c

Nextmake looks atprogB1.o . It depends uponprogB1.cpp which exists and does not
depend upon anything else. Somake uses the standard command forC++ files:

g++ -g -DDEBUG -c progB1.cpp

Now that both.o files have been created,make proceeds to build its main target,progB ,
using the command lines provided for that purpose:

g++ -g -DDEBUG utilities.o progB1.o

and theprogB program has been created.
Now suppose that we immediately give the command “make progA ” (or just “make”,

since by defaultmake builds the first target when none is explicitly given). Then the fol-
lowing commands would be performed:

g++ -g -DDEBUG -c progA1.cpp
g++ -g -DDEBUG -c progA2.cpp
g++ -g -DDEBUG utilities.o progA1.o progA2.o
mv a.out progA

Note thatutilities.c is not recompiled, becausemake would notice thatutili-
ties.o already exists and was created more recently than the last time when eitherutil-
ities.c or utilities.h was changed.

Now, creating a makefile may seem like a lot of trouble the first time that you want to
compile your program. The payoff comes while you are testing and debugging, and find
yourself making changes to two or three files and then needing to recompile. Which files

do you really need to recompile? It can be hard to remember some times, and the errors
resulting from an incorrect guess may be hard to understand.make eliminates this problem
(as well as just being easier to type than a whole series of recompilation commands). (This
is why, when you give theM-x compile command inemacs, the default compilation
command is “make” rather than a direct use of any particular compiler.)

If you want to test your makefile without actually performing the commands, add a-n
option to your command (e.g.,make -n progB) andmake will simply list the commands
it would issue without actually doing any of them.

Most of the details of generating a makefile can be automated. Although the details are
beyond the scope of this tutorial, you can obtain my“self-constructing” Makefile. To use
it, copy it into your working directory where you keep the source code files for any single
program. Your copy must be named “Makefile”. Edit your copy of the file to supply the
appropriate program name, list of source code files needed for that program, and to indicate
whether the final step (linking) should be done with theC (gcc) or C++ (g++) compiler.

Now you can compile your program by sayingmake.
As you continue to work with your code, just remember to keep theOBJS list in the

Makefile up to date.

12 Where to Go From Here?

We’ve only scratched the surface in this document. There are many more useful commands
and programs available on the CS Department Unix machines, and many of the commands
that we have covered have additional options that have not been mentioned here. Remember
that you can use the Unixman command to call up documentation on any command. The
appendix lists a number of additional commands that you may want to check out as you
become more familiar with Unix.

26

http://www.cs.odu.edu/~zeil/Makefile

A Unix Command Summary

[] denotes options

{} denotes required argument

ˆ denotes control key (depress while typing listed letter).

. . . indicates that command has many options. Useman to learn about this command.

awk . . . a pattern matching and text manipulation language.
bg puts process in background after ˆz
cal [month]{year} displays calendar for that month
cal displays calendar for current month
cat{filename} displays filename
cat [options]

-b number the lines, as -n, but omit
the line numbers from blank lines.

-n precede each line output with its
line number.

cd [directoryname] changes to directoryname, no argument
indicates home directory

cd .. changes to directory one above current
cp{file1} {file2} copy file1 naming it file2
mv {file1} {file2 or directoryname} move files or rename them
date displays date
diff {file1} {file2} compares two files, reporting any differences
echo repeats line; useful when using∗ and ?

in filenames
fg puts first command in background into

the foreground
grep{pattern} {filename} find pattern in filename
head -n Prints the firstn lines of its input,

ignoring the rest

kill [option] {process id #} stop a process
-9 kill no matter what: can be DANGEROUS

logout end session, must be in login shell
lpr {filename} send file to printer for printing
lprm {request} {userid} remove a file from the printer queue
lpq check status of printer and jobs
ls [options] list files

-l long form
-a all files, including .files
-g groups

mail see ”man mail” and /home/public/help
for more information

man [option]{command} display manual page for command
mesg{y or n} enable/disable messages to terminal
mkdir {directoryname} create a directory
more{filename} list filename one screen at a time
nroff,troff . . . text formatting programs
ps show processes you are running
pwd print working directory
rm [option]{filename} remove files

-i interactive
-r recursive (use with caution)

27

rmdir {directoryname} remove directoryname
rwho who is on your current network
X X windows environment
openwin openwindows environment
sed . . . A non-interactive editor, useful for

writing scripts that involve string
replacements, line deletions, etc.

sort [options]{filename} sort filename
-b ignore spaces and tabs
-f sort upper- and lower-case together
-r reverse the sorting order
-o filename save the output of sort in filename
-t letter set field separator to letter
-u remove duplicate lines

spell{filename} check spelling of filename
tail -n Prints the lastn lines of its input,
tr Replaces/deletes characters

ignoring the rest
wc [options]{filename} count words, lines, and characters

-c characters only
-l number of lines only
-w number of words only

who who is running remote logins on your
machine

write {user} write message to user, ˆd to
quit

yppasswd change password, follow prompts

? matches any single character in a
filename

∗ matches any number of characters in a
filename (or no characters)

& puts command in background when
appended to a command line

| pipe, connects output of one command
with input of another

> redirects output of a command to a
file, erasing current contents
of a file

>> appends output of a command to an
existing file

< uses the file as an input for a command
ˆc aborts process (useful when ”hung-up”)
ˆd stops a process or signals ”done”

on console, indicates logout

28

B Emacs Command Summary

EMACS command summary

C Linking to this Document

Instructors interested in linking directly to specific sections of this document may do so by
appending the appropriate anchor name to the URL of this documents, using a “?” instead
of the normal “#”, e.g.,

http://www.cs.odu.edu/˜zeil/unix/unix.html?loggingin

The defined anchors are listed in the tables below.

Anchor Section Section Title
theBasics 2 The Basics
loggingin 2.1 Logging In
xon 1 Other Unix/Linux Machines
telnet 5 Other machines
termtypes 2.1.4 Setting Your Terminal Type
unixFiles 2.2 The Unix File System
shellgamesi 2.3 Shell Games: Typing Unix Commands
basicUnix 2.4 Some Basic Unix Commands
fileprot 2.5 File Protection
emacs 3 Editing Text Files
Xwin 4 The X Window System
custom 5 Customizing Your Unix Environment

Anchor Section Section Title
mail 6 Using Electronic Mail
pinemain 1 pinemain
pinecompose 2 pinecompose
pineindex 3 pineindex
mailsend 6.2.2 Sending
forwarding 6.3 Forwarding Addresses
filetransfer 7 File Transfer
xfermode 7.1 Text versus Binary Transfers
ftp 7.2.2 Internet:
dostounix 7.3 Problems and Inconsistencies
unixtodos 7.3 Problems and Inconsistencies
gccCompilation 9 Compilers
compshell 9.1 Compiling in the Shell
emacscompile 9.2 Compiling in emacs
debugging 9.3 Debugging
shellgamesii 10 More Shell Games
redirect 10.1 Redirection and Pipes
make 11 Project Management with Make
commands A Unix Command Summary
linking C Linking to this Document

29

http://www.cs.odu.edu/~zeil/emacs19refcard.pdf
file:unix.html?loggingin

	Working on the CS Dept Network
	The Basics
	Logging In
	Making a Connection
	Logging In
	You're logged in - What will you see?
	Setting Your Terminal Type
	Changing Your Password

	The Unix File System
	Shell Games: Typing Unix Commands
	Some Basic Unix Commands
	File Protection
	Protections
	chmod
	Beware the umask!
	Planning for Protection

	Getting Help

	Editing Text Files
	The X Window System
	X Window Managers
	Running X
	Working in X

	Customizing Your Unix Environment
	Using Electronic Mail
	E-Mail addresses
	E-Mail Programs
	The PINE E-mail program
	The Unix mail command

	Forwarding Addresses

	File Transfer
	Text versus Binary Transfers
	Transferring Files
	At the console:
	Internet:

	Problems and Inconsistencies

	Using the Internet
	Compilers
	Compiling in the Shell
	Compiling in emacs
	Debugging

	More Shell Games
	Redirection and Pipes
	Scripts

	Project Management with Make
	Where to Go From Here?
	Unix Command Summary
	Emacs Command Summary
	Linking to this Document

