
1

Scalable and Resilient Application Sharing System for Internet Collaboration

Agustín José González
Electronic Engineering Department

Universidad Técnica Federico Santa María
Valparaíso, Chile
agv@elo.utfsm.cl

Hussein Abdel-Wahab and J. Christian Wild
Computer Science Department

Old Dominion University
Norfolk, VA, USA.
wahab@cs.odu.edu

Abstract
Increased desktop processing power and network bandwidth have made feasible distributed

multimedia collaborative systems. Such systems are characterized by video, audio and data

exchanges. While there has been much research and development of protocols and services for

video and audio transmission, less work has been focused on data sharing particularly when the

data is being generated by an application in real time and in turns controlled by one or more of

the participants in the collaborative session. While sharing the view of an application can be

thought of as a kind of video stream, the unique characteristics of these dynamic images require

new algorithms and transmission protocols to achieve legibility and size dynamic. This paper

describes a protocol and its implementation for sharing desktop applications in a distributed

collaborative session. Key objectives of this protocol are scalability and resilience to dropped

packages and to participants joining and leaving a session. We describe design decisions and

give results demonstrating the effect two different compression algorithms and protocol

parameters. Finally, Odust a tool sharing system built on the implementation of shared

application views is described.

1. Introduction

The growth of the Internet and the increased performance of desktop computers have made

feasible large-scale multimedia applications over communications networks. This work focuses

on synchronous collaborative multimedia applications. Synchronous collaboration takes place

when the participants involved in common tasks are seated simultaneously at their workplaces.

This is the case of virtual-classroom systems for distance learning and multimedia conferencing

2

systems. In this work we describe a distributed tool for sharing applications to be used in

conjunction with video and audio in these scenarios.

Synchronous multimedia applications are based on three basic components: audio, video, and

shared data. The transmission of audio and video information over digital networks has been

studied for years and the field is relatively mature. However work on the transmission of data

from interactive applications to a large group is still a relatively new area of investigation. The

information shared in a collaborative session is often one of the main foci of the session. Rather

than sending hard copies or faxing the material to remote participants, today’s collaboration

systems use the network to distribute this information on the fly. Many specialized systems have

been developed for that purpose, such as co-browsers [3] [7], and sharing tool engines [1] [21].

In other cases, the collaboration application includes a module for data sharing such as in [16]

[14] [17]. Although all these systems provide a number of features, the major contribution of

them to a collaborative session is the ability of distributing data information on-line by emulating

a virtual projection screen. One approach for tool sharing enables one to share existent

unmodified single-user applications. Examples of such systems are X Teleconferencing and

Viewing (XTV) [1], Virtual Network Computing (VNC) [21], and Java Collaborative

Environment (JCE) [2]. Another technique for tool sharing is to control the execution of multiple

synchronized instances of the same application; an example is Habanero [9]. Our work follows a

similar approach to that taken by VNC, which achieves tool sharing by distributing the desktop

as an active image. This means an image which users can interact with in a similar way they do

with their local desktop. This technique allows one to share visual component of all application

on the screen. Rather than sending the entire desktop, we propose to send the images of the

active windows of the applications running on any of the participants' screens. Unlike the other

approaches our transmission protocol relies on IP multicasting to achieve scalability and a video-

like scheme to overcome packet losses. In this work, we describe a protocol for sending dynamic

images and Odust, a distributed sharing tool application based on this protocol. Odust, users at

the receiving sites cannot only view transmitted images of the shared application, but they can

also request a floor and control the shared tool remotely. Likewise, any participant can share any

local machine-dependent application. Our goal in designing this Odust was to provide a tool for

interactive distance learning systems and large group conferences on the Internet where it should

work in conjunction with distributed audio and video tools. In such scenarios, we used Java and

3

a minimum of unavoidable architectures dependencies to achieve portability. Also, the

robustness of our distributed protocols provide graceful degradations in face of users or

communications failures.

The rest of this paper is organized as follows. The next section describes the Dynamic Image

Transmission Protocol giving results of experiments that were used in developing and tuning its

implementation. Section 3 describes a tool sharing service which uses the dynamic image

transmission protocol. This is followed by a section giving related work and a conclusion.

2. Dynamic Image Transmission Protocol

The protocol for transmitting dynamic images presented here enables data sharing by

disseminating images generated by shared interactive applications. From the communication

point of view, the two main features of this protocol are resiliency and scalability. Resiliency

refers to the ability of the protocol to overcome transmission losses and to accommodate the

leaving and joining of participants. Scalability is achieved by eliminating the need for

acknowledgements or any feedback from the receivers. Dynamic images, like video, contain

spatial and temporal redundancy that the protocol removes. In this respect, the set of views of a

running application can be thought of as a video stream of dynamic images and can utilize

existing video compression technology. Our protocol tiles the image in square blocks, and then

it encodes each block using a standard image coding to remove spatial redundancy. Only blocks

that change between two image samples are encoded, thus some temporal redundancy is also

removed. There are several advantages to dividing the image into tiles that relate to error

recovery, late joins, and transmission efficiency. Temporal redundancy refers to those parts of

the image that remain unchanged from one instant of time to the next. To remove this type of

redundancy motion-compensated prediction [6] has been used in video encoding. It assumes that

pixels within the current picture can be modeled as a translation of those within a previous

picture. Motion prediction is computationally intensive and has limited utility for the synthetic

video streams generated by computer applications when the sample rate is low, therefore we

have chosen to only use motion prediction with null motion vector. Thus blocks that remain

unchanged from one sample to another are detected and not resent. In contrast to video, these

images tend to be of higher and variable resolution than traditional video images and present

lower degrees of motion. In addition, dynamic images often contain information which requires

4

high fidelity rapidly becoming illegible as image quality is reduced. We call this property

legibility. This is especially true for images containing text. We estimate that a sampling rate of

around 2 samples per seconds fulfills the requirements of most types of data sharing. It also

takes into consideration the computation power utilized by multimedia applications; so that given

a bounded CPU allocation for data sharing, the bigger picture processing can only be achieved

by reducing the processing cycle rate. Knowing the expected sampling rates, let’s us revisit our

decision about motion prediction and better justify our argument. We believe that in low

sampling rate, i.e. around 2 Hz, motion prediction loses effectiveness because at this frequency

the motion vector is likely to be out of the reach of the search window of motion-compensated

prediction techniques. For example, in H.263 the search window for motion prediction is such

that motion of at most 16 pixels horizontally and/or vertically can be predicted.

Image size changes are also transmitted by the protocol. The size of an image might change

from one sample to another. In computer application the main cause of images change in size is

window resizing. We observe that window resizing usually preserves the upper left content of

the view regardless the side or corner used for resizing. Therefore, while comparing blocks

between an image and its resized version, the protocol assumes that both samples share a

common upper left region. Consequently, receivers initialize the new version of the image with

the upper left content of the previous instance of the image.

The use of unreliable transport protocol forces our us to take some precautions to overcome

packet losses. We decided against selective retransmission of lost data because of its difficulties

in getting feedback from an undetermined number of receivers [19]. Instead, we send new data

or control the retransmission of the same data to eventually repair the original lost. As

introduced by the principle of Application Level Framing (ALF) [5], we define the protocol data

unit (PDU) such a way that each PDU can be processed out of order with respect to other PDUs.

As a result, each PDU conveys at least a tile, its coordinates within the image, a tile-based

sequence number, and timestamp. In principle, each altered tile needs to be sent once; however,

we schedule its retransmission after random times taken from (0, update_tile] sampling periods.

The protocol accommodates late comers by sending a refresh for each PDU after a random time

taken from the interval (update_tile, refresh_time]. This ensures a full image retransmission

takes place at most every refresh_tile sampling periods. This type of refresh also strengthens

protocol resiliency and enables the detection of removed or closed images as we discuss below.

5

Image creation is simple and signaled by the reception of the first PDU; however image

removal is a little more involved since there is no guarantee that any explicit close image

message will reach all the receivers. Close image messages are used in conjunction with a

refresh image timeout to determine that the dynamic image was closed.

In the following sections we discuss the parameters of the protocols and their impacts on

performance. First, we analyze the effect of two common compression standards for still image

encoding that we tested for tile compression, and we discuss the tradeoffs in selecting the tile

size. Then, we measure the protocol processing times and used them to estimate the sampling

rate. Finally, we extend these ideas for the transmission of multiple possible overlapped images.

To evaluate our protocol, we implemented it on Java 2 SDKv1.2.2 and employed Java Advanced

Imaging 1.0.2 for tile compression [22].

2.1. Tile Compression Format Study

We considered and compared Joint Photographic Experts Group (JPEG) [24] and Portable

Network Graphics (PNG) [4] for tile coding. The criteria for selecting the compression

technique were compression time, compression ratio, and legibility. These factors were evaluated

as a function of the tile size around 32x32 pixels (the selection of tile size is covered in the next

subsection). We compared two image types shown in Figure 1. While Figure 1a is a real world

picture, Figure 1b shows a synthetic image containing text generated by a word processing

program. These two types of images were picked as representative of the differences between

natural and synthetic images. As shown in Table 1., there are significant compression ratio

variations between these two images. For the natural world image, JPEG compression

outperforms PNG by a factor of almost 10. For the synthetic image, PNG outperforms JPEG by a

factor around 4.5. Another factor in consideration is the lossy and lossless nature of JPEG and

PNG respectively. Due to the lossy nature of JPEG, a quality factor needs to be provided for

compression. While quality values of around 50% are normally acceptable for pictures, higher

values are required for legible text images. PNG, on the other hand, is lossless and offers good

compression rates for text and line type of images, but it does not compress well the information

of real-world scenes.

6

TABLE 1. PNG/JPEG comparison for two types of images.

Image PNG size [Kbyte] JPEG size [Kbyte] PNG/JPEG Ratio

388x566 Real-wold 340 36 (Q=50%) 9.4

680x580 Text 21 94 (Q=75%) 0.22

a) b)

Fig. 1. Test images a) 388x566-pixel real-world image and b) 680x580-pixel Text image.

In addition to comparing these two formats for full-size images, we also compared them for

tile-size images including two representative backgrounds typical on many synthetic images.

JPEG (at 50% quality) has an overhead of around 600 bytes while PNG overhead is near 100

bytes; however, JPEG image size grows with a lower slope compared with PNG’s as image size

grows. By overhead we mean the size of the compressed image as its size approaches zero.

As a result, there is lesser variation of compression ratio with JPEG, but it imposes a higher

overhead in each tile. This defines the compression limit. As for these results, it appears that

tiling decreases the performance; nonetheless, the counter argument is that smaller tiles enable

more temporal redundancy removal. In addition, network packet fragmentation also plays a role

in determining an optimal tile size. We discuss these tradeoffs in the following section.

7

2.2. Selecting Tile Size

The definition of the tile size has a crucial effect on performance. As stressed by the

principle of Application Level Framing (ALF) [5], loss of data unit fragments prevent data unit

reconstruction and cause bandwidth misusage due to the reception of data that cannot be

processed. We measured packet size after compression using PNG and JPEG coding formats.

For PNG encoding, only 16x16-pixel tile size leads to a single network frame per packet for

all tiles on Ethernet, and fragmentation is unavoidable for any other size on real-word images.

For text-like images, on the other hand, PNG does a very good job in producing a single

fragment even for 64x64-pixel tiles. In contrast, the average and maximum packet sizes do not

vary much with the image content in JPEG. As a result, we selected JPEG compression and

40x40-pixel tile by being the biggest tile that does not lead to fragmentation on Ethernet.

Fragmentation imposes a penalty not only on bandwidth but also in transmission processing time

as we elaborate in the next section.

2.3. Protocol Processing Time

We measured the processing time using our prototype implementation. On the sending side,

processing time is divided into the following steps:

1) Time to capture the dynamic image; this is independent of the compression algorithm.

2) Time for comparing new and old tile images for temporal redundancy removal (also

independent of compression algorithm.

3) Time to compress all changed tiles.

4) Total transmission time.

The two images shown in Fig. 1 were used is this comparison study. We experimented with

the two compression techniques and different tile size. The main results are shown in TABLE 2.

In our tests compression was performed by the JAVA Advanced Imaging package [22] and was

the dominant processing time. Notice these measures represent an upper bound for the two

regions since we assumed a sequence of two identical images for comparison which forces the

algorithm to touch every pixel, and two distinct images for compression which forces the

protocol to compress every tile. In practical cases, we have a fraction of this comparison cost

and a fraction of this compression time. Thus depending on the updates from one sample to

another, the total processing time goes from 407 ms to 1.3 s for the real-world image.

8

TABLE 2. Sender's processing time using JPEG and 40x40 pixel tiles.

Step Real-world Image (Fig. 1a) Text Image (Fig. 1b)

Capture 100 ms (6%) 170 ms (6%)

Comparison 307 ms (19%) 556 ms (20%)

Compression 1132 ms (70%) 1889 ms (69%)

Transmission 78 ms (5%) 143 ms (5%)

Overall, JPEG encoding ended up being faster for computing the complete processing cycle

of this application mainly due to its library speedup over PNG. This result shows that small

updates can be sent at a rate of 2 Hz for this image size, and it takes up to around 2 seconds to

send an entire new image. These lower and upper bounds are directly proportional to the image

size.

At the receiving site, processing time is divided into

1) Time to decompress the tile images

2) Time to draw the image

3) Time to display

TABLE 3. Receiver's processing time using JPEG and 40x40-pixel tiles.

Real-world Image (Fig. 1ª) Text Image (Fig. 1b)Step

WinNT Solaris WinNT Solaris

Decompression 677 ms (86%) 483 ms (67%) 795 ms (79%) 826 ms (64%)

Updating Image 38 ms (5%) 46 ms (6%) 135 ms (13%) 85 ms (7%)

Displaying 75 ms (9%) 191 ms (27 %) 78 ms (8%) 364 ms (29%)

In contrast to the sender part of the sharing tool application that depends on native calls for

image capture, the receiver part is fully coded in Java and run on WinNT or UNIX machines

(Pentium II 266 MHz, 64 MB and Sun Untra 10 respectively). The results for both platforms

are shown in TABLE 3. Like de sender's processing times, these are upper bounds because we

expect a fraction of the tiles to remain unchanged and therefore an update will take a fraction of

these total times. The dominant cost is decompression and the total time shows that the

bottleneck is the sender side of the protocol.

9

3. Protocol Extension for Transmission of Multiple Related Windows

A scheme for sharing multiple window images of a single application can be extended from

the protocol described in Section 2. In addition to image dimension, now the position of each

image must be sent in each tile data unit. Also, when the shared application spawns multiple

windows, overlapped regions can be identified to reduce traffic and coding processing.

The problem of partitioning a rectilinear polygon into a minimum number of non-

overlapping rectangles appears in many applications besides our imaging application. These

include two-dimensional data organization [13], optimal automated VLSI mask fabrication [20],

and image compression [18]. The problem is illustrated in Fig. 2. In our application, a simple

and straightforward approach would capture and transmit each window. The result is that the

overlapped regions (in dark) would be processed and transmitted twice.

Fig. 2. Overlapping regions in Related Windows.

The minimum partitioning problem was optimally solved by Lispki in [13] and Ohtsuki in

[20]. Ohtsuki’s algorithm runs in)(2/5nO time in the worst case. Later, in [10] Imai and Asano

proposed an algorithm that requires)log(2/3 nnO time. Liou et al. proposed in [12] an optimal

)loglog(nnO -time algorithm for partitioning rectilinear polygon without holes. Despite the

optimality of the previous algorithms, their complexity has precluded their usage in applications

that require fast encoding operations [18].

We opted for a sub-optimal solution that could be easily integrated with the tiling technique

for image transmission. Our algorithm progressively receives the rectangles to be transmitted

and returns for each tile the already sent rectangle that fully contains it, as shown in Fig. 3.

 Initial Condition:
 φ=R ; // set of already sent rectangles.

10

 Before transmission of tile x:
 for each rectangle r in R:
 if (x is fully contained in r)
 return r;
 return null;
 After transmission of image within rectangle r:
 R = R ∪ {r};

Fig. 3. Algorithm to suppress overlapped region retransmission.

The protocol for sending dynamic images slightly changes to integrate the algorithm for

overlapping suppression. If a tile is already at the receiving site, a copy message is transmitted

for the receiver to take the tile from the already received image. Obviously the algorithm is not

optimal except for 1x1-pixel tiles since a tile that only falls partially into an already sent

rectangle is transmitted anyway.

4. Odust

Odust (Old Dominion University Sharing Tool) is a sharing tool engine based on dynamic

image protocol for transmitting images of application windows. We mention only WinNT even

though we also mean Win95, and Win98. We have successfully tested receivers on WinNT and

Solaris 2.6; however, recipients could be on any machine that runs Java and the Java Advanced

Imaging package (JAI) [22]. Indeed, only Java is strictly required since JAI can run over pure

Java code with some loss in performance.

4.1. Description

Odust is a distributed cross-platform application that enables data sharing in synchronous

multimedia collaboration. An owner of the shared application operates the real instance of it on

the screen, while the other participants see and operate images, which are generated by Odust

and are in many ways indistinguishable from the real application. Sharing is done with process

granularity meaning that all the windows belonging to a process are shared atomically. A floor

control service, described in [8], allows any receiver to request the control of the shared

application by preempting it from the current holder. Although one receiver can have the floor at

a time, the shared tool owner running the real version of it can also operate it at any time. A

11

drawback of this technique is the interference of the floor holder input events, i.e. keyboard and

mouse, with the same input devices at the application owner’s machine. Due to the lightweight

nature of the protocol for sending images, any participant can leave the collaboration session at

any moment. Likewise, anybody can join the session at any time. These two situations have

virtually no effect on the other participants. Users joining the session late reach a synchronic

view within a bounded time, which is a parameter in Odust. Multiple participants can

simultaneously share their applications as long as only one tool is shared per site. Each shared

tool is displayed in a separate window at the receiving user’s desktop.

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

X W

W X W X

X W

Fig. 4. Tool sharing scenario with Odust.

Fig. 4 shows one of the multiple scenarios where Odust can be used. In this scenario, four

participants are sharing two computer applications. One application is an “xterm” (marked with

an “X” in Fig. 4) which is running on user machine Eduardo. The second application is MS-

WORD (marked with a “W” in the figure) which is running on user machine Rodrigo. Scalability

is gained mainly due to the use of IP multicasting, which is a network requirement for Odust to

work in more than 2 participant sessions. It also works over unicast network for 2-party

sessions. This feature is basically inherited from the unified unicast-multicast API described in

[8]. The following figure illustrates the view that user Rodrigo of the Fig. 4 sees on the screen.

The other views are similar, although each user can arrange the screen differently if desired (as

suggested in Fig. 4).

12

Fig. 5. The real MS-word application and Odust interface viewed by Rodrigo.

Rodrigo shares an MS-Word application, as shown in Fig. 5. MS-Word runs outside Odust

the same way it does any application on his machine. In addition, he receives the xterm being

shared by Eduardo (owner label) but controlled by Agustín (leader label). Even though the xterm

here is a UNIX application, it runs via an X Window-server on WinNT. Rodrigo selects what to

share from the upper menu of Odust. On this widget, he also learns who has the floor of the tool

he shares, Cecilia at this time.

If other WinNT participants started sharing more applications, each participant would receive

them in separate windows within Odust. This is the case of UNIX users in this scenario. They

receive Rodrigo’s MS-Word and Eduardo’s xterm in different windows.

Finally, floor control is done on per shared tool bases. This feature enables collaboration at a

level it cannot be reached even in face-to-face encounters when two people sit in front of the

same computer. We could have this type of view on a single computer screen; nevertheless, we

cannot use the computer’s keyboard and mouse to simultaneously operate both applications.

4.2. Overall Architecture

Odust’s architecture reflects the three main external features of it, application view

dissemination, floor control, and remote tool interaction. A distributed object architecture

implements the protocol for transmission of dynamic compound images. Another set of

13

distributed object implements a lightweight floor control framework for centralized resources,

which is described in [8]. Finally, two objects work in a client-service architecture to support the

interaction with the shared application from remote sites. Odust depends on a single multicast

group that is provided as command line argument. Now, in order to support multiple shared

applications at a time, Odust multiplexes the multicast group in up to 256 channels. A

distributed multiplexer-demultiplexer object dynamically manages channel allocation as new

applications are shared. Each of the basic components of Odust, compound image transmission,

floor control, and user’s input events is made of two related objects. One centralized object

resides on the machine sharing a tool and the others are replicated at every shared tool receiver.

Fig. 6 illustrates a situation where multiple applications are shared. Although a machine that

shares a tool can also receive others coming from other sites, we have logically divided Odust in

a sender and a receiver component for description purpose.

App. A

App. K

Sharing Tool
Sender

Sharing Tool
Sender

Sharing Tool
Receiver

Sharing Tool
Receiver

Network

Fig. 6. Odust distributed logic modules.

While Fig. 6 shows the interactions between multiple senders and receivers, Fig. 7 focuses on

the internal architecture of one sender and one receiver. All the objects of the sender are

instantiated at execution time; however, only the demultiplexer remains up all the time at

receiving sites. The demultiplexer listens for messages coming on any channel. Multiplexer

(Mx in Fig. 7) and demultiplexer (Dx in Fig. 7) are actually two Java interfaces implemenmted

by the same class. Thus, each multiplexer can keep track of the channel in use and can randomly

allocate a new unused channel when the local sender requests one to start transmitting a new

14

shared tool to the session. As soon as its counterparts receive an Application data Unit (ADU)

from an unallocated channel, each receiver creates new application receiver object to process

subsequent ADUs.

Capture and
Dynamic Compound

Image Protocol
Sender

Dynamic Compound
Image Protocol

Receiver and Display

Event
Injector Event

Capture

Token
Manager

Token
Client

Application A

WinNT

Native
Library

Application A Receiver

Sharing Tool Receiver

Application A Sender

Sharing Tool Sender

Application
B’s View

Application
A’s View

JDesktop

Java VM

Mx Dx

Temporary TCPMulticast Method Invocation

c

a

d

e

g

b

f

h

i

j

k
l

mn

Fig. 7. Odust sender/receiver overall architecture.

Senders blindly transmit ADUs with no feedback from recipients. Both the image

transmission and Token Manager objects share the same multicast channel. While the former

transmits image protocol related messages, the latter periodically sends a heartbeat with the floor

status (mainly floor holder), local host names, and Token Manager service port, so that clients

can dynamically connect to the Token Manager (link b in Fig. 7). The native library implements

three functions required by the Java capture object.

15

All the images of the shared application are sampled and transmitted using the protocol for

compound image transmission described in an earlier section. At the receiving site, the

demultiplexer dispatches the ADUs to the corresponding application receiver according to the

setting it saves when the application receiver is created upon receiving the first ADU (method

call h in Fig. 7). Then, the application receiver dispatches the message to either the compound

image receiver (method call i) or the Token Client (method call j).

The Token Manager and Token Client have graphics interfaces. Upon user’s floor request,

the Token Client connects to the manager and obtains the service access point of the Event

Injector in the Grant message (b connection in Fig. 7). The Token Client forwards this

information to the Event Capture object (method call l) and updates its interface. Finally,

connection c is established and the mouse and keyboard events of the new floor holder are sent

to the application sender.

Connection b and c are only kept while the corresponding receiver holds the floor. The

Event Capture object listens for input events within the application widget at receiving sites

(method call m). When an input event is fired by the Java virtual machine, Event Capture

forwards the event to its peer Event Injector as long as the event took place within one of the

shared application images in the widget. This confirmation is done by a call to the compound

image receiver object (method call n). This check suppresses events that do not fall into any

image even though they are detected within the display widget. The compound image receiver

detects when all the windows of the application are destroyed or no tile refresh has taken place

after a timeout. It releases all the allocated resources by unbinding the application receiver from

the channel demultiplexer and locally removing any graphics object of that application.

The Native Library is the only non-Java code. It implements 5 native methods that need to

be ported to other platforms in order to share applications running on them; however, receiver’s

code has the same portability as Java code.

Even though the traffic due to the floor holder only affects two machines per floor in the

session, we use mouse event filtering to reduce the number of events fired by mouse moves.

Mouse movements are only sent to the application if they are far part in position or time. Two

parameters govern the granularity of the filter.

16

5. Related Work

Important sharing tool applications like XTV [1], JCE [2] and VNC [21] use TCP as

transport protocol. In contrast, our protocol works on top of unreliable multicast transport layer.

This makes a crucial difference that lets our protocol be considerably more scalable than the

other proposals. Habanero [9] is a Java-based framework for synchronous and asynchronous

collaboration. This framework facilitates the construction of software for synchronous and

asynchronous communication over the Inernet. It also provides methods that developers can use

to convert existing Java applications into collaborative applications. The system employs a

centralized architecture and utilizes TCP connections between each client and the central server.

Platform independence is gained by using Java. Odust shares with Habanero its object-oriented

approach and programming language; nevertheless, Odust supports a much general model for

application sharing and higher scalability level.

The idea of sharing data by sharing images has been explored in the VNC project [21] at

Cambridge University. While Virtual Network Computing proposes image distribution over

reliable transport protocol, specifically TCP, our protocol also works over unreliable channels.

We believe our protocol can handles larger groups and provides better responsiveness than VNC.

VNC’s unit of transmission is, like our protocol, the distribution of rectangle of pixels at a given

position. It uses raw-encoding or copy-rectangle encoding. In the first one, the pixel data for a

rectangle is simply sent in left-to-right scan-line order. In contrast, we use still image

compression for tiles. VNC avoids compression time but demands more transmission bandwidth

than our protocol. Copy-rectangle encoding allows receivers to copy rectangles of data that are

already locally accessible and can be used for motion prediction on synthetic images (e.g.

scrolling). We decided against this type of primitive because of the high processing cost in

determining tile motion. While VNC shares an entire common desktop, we propose an

application granularity for sharing which allows a participant to show a selected application and

keep the rest private. Odust also avoid configuring and need of more licenses when one have to

install applications on a centralized server like in VNC. Instead, Odust allows any user to share

her local platform dependent application.

Video Conferencing tool has also been used for data sharing by transmitting dynamic images

as video frames. Its main advantage is the access to highly refined and tuned libraries for video

streaming that reach higher frame rate than image processing. In fact, there is experience in its

17

use in the MBone [15]. Lawrence Rowe, at University of California at Berkeley, has been using

video technology to deliver data information in the Berkeley Multimedia, Interfaces, and

Graphics Seminar (MIG). There, they either use a scan converter to translate the computer

screen signal into standard video format or employ a stand camera to capture hard-copy slides.

While a first video stream is reserved to the presenter’s video, the second one sends the computer

screen from the converter and using H.261 format [11]. Another experience in sending data

contents through video streams is found in vic version 2.8 [23] from University College London

(UCL). One of the featured added at UCL allows the sender to select a region of the screen for

frame capture as opposed to video frames. The video approach fulfills reasonably well the need

for data distribution in many cases, especially under the lack of general-purpose alternative;

nonetheless, this technique suffers from a number of shortcomings. First of all, video

compression limits the video dimensions to a few sizes. This restricts its application when the

information to be shared does not fit a predefined video size on the screen. On the other hand,

the use of converters for sending the entire display view forces the sender to make the complete

screen public. In addition, it inevitably reduces the resolution to, for example, 352x288 pixels for

CIF (Common Intermediate Form) size video. The inevitable electronic thermal noise

introduces fictitious changes in the captured digital image and, therefore, leads to more data

traffic. In addition, such conversion leads to loss of legibility which is a critical shortcoming for

many types of synthetic images. Our protocol for transmitting dynamic images overcomes these

shortcomings.

6. Conclusions and Future Work

Along with audio and video, data sharing is a crucial component in multimedia collaboration.

In order to achieve data sharing, we developed a protocol for image transmission and used it to

implement Odust, a sharing tool application. This resilient and scalable protocol compresses a

sequence of image samples by removing temporal and spatial redundancy. Tiling and changes

detection achieve the former, and a standard image compression technique accomplishes spatial

redundancy removal. Protocol data unit losses are overcome by randomly re-transmitting tiles.

This technique also provides support for latecomers. We conducted an extensive study on the

sensitivity of the dominant parameters of the protocol. These included tile compression format,

tile size, sampling rate, and tile change detection technique.

18

This sharing tool application disseminates images of the shared application and accepts

remote user input events as if they were coming from the local tool owner. It was tested on

Win85, Win98, WinNT, and Solaris operating systems.

This work can be extended in two independent paths. One aims to reduce both processing

time and bandwidth consumption of the protocol. The other approach is to adapt current video

compression techniques to fulfill the requirements of data sharing. We are investigating the use

of timeout in the protocol sample processing to reduce computation time and bandwidth. We are

also considering H.263+ [6] video compression standard, which supports custom picture size.

This feature removes one of the major drawbacks we have pointed out of video encoding and

enables it for sharing images. Finally, we plan to port the sampling library to other platforms to

not only receive but also transmit application's views from other platform.

References

[1] H. Abdel-Wahab and M. Feit, “XTV: A Framework for Sharing X Window Clients in
Remote Synchronous Collaboration,” in IEEE Tricomm '91: Communication for
Distributed Applications & Systems, Chapel Hill, NC, USA, 1991. IEEE Computer
Society Press, Los Alamitos, CA, USA, pp. 157-167, 1991.

[2] H. Abdel-Wahab, O. Kim, P. Kabore, and J.P. Favreau, “Java-based Multimedia
Collaboration and Application Sharing Environment,” in Proceedings of the Colloque
Francophone sur I’Ingenierie des Protocoles (CFIP ’99), Nancy, France, April 26-29,
1999.

[3] C.Bisdikian, S. Brady, Y.N. Doganata, D.A. Foulger, F. Marconcini, M. Mourad, H.L.
Operowsky, G. Pacifici, and A.N. Tantawi, “Multimedia Digital Conferencing: A Web-
enabled multimedia Teleconferencing system,” IBM Journal of Research and
Development, vol. 42, no.2, pp. 281-298, March 1998.

[4] T. Boutell, “PNG (Portable Network Graphics) Specification: Version 1.0,” Request for
Comments RFC 2083, January 1997.

[5] D.D., Clark and D. Tennenhouse, “Architectural considerations for a new generation of
protocols,” in SIGCOMM Symposium on Communications Architectures and Protocols,
Philadelphia, Pennsylvania, IEEE, pp. 200-208, Sept. 1990.

[6] G. Côté, B. Erol, M. Gallant, and F. Kossentini, “H.263+: Video Coding al Low Bit
Rate,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 7,
pp. 849-866, November 1998.

[7] J.Z. Davis, K. Maly, and M. Zubair, "A Coordinated Browsing System”, Technical
Report TR-97-29, Old Domimion University, Norfolk, VA, May 1997.

19

[8] A. González, “A Semantic-based Middleware for Multimedia Collaborative
Applications,” Old Dominion University, Norfolk, Virginia, Ph.D. dissertation, May
2000.

[9] HABANERO, On-line from: http://www.ncsa.uiuc.edu/SDG/Software/Habanero.

[10] H. Imai and T. Asano, “Efficient algorithm for geometric graph search problems,” SIAM
Journal on Computing, vol. 15, pp. 478-494, 1986.

[11] ITU Telecommunication Standardization sector of ITU, “Video codec for audiovisual
services at p x 64 kbit/s,” ITU-R Recommendation H.261, March 1993.

[12] W.T. Liou, J.J. Tan, and R.C.T. Lee, “Minimum Rectangular Partition Problem for
Simple Rectilinear Polygons,” IEEE Transaction on Computer-Aided Design, vol. 9 no.
7, pp. 720-733, 1990.

[13] W. Lipski, E. Lodi, F. Luccio, C. Mugnai, and L. Pagni, “On two-dimensional data
organization II,” Fundamenta Informaticae, vol.2, no. 3, pp. 245-260, 1979.

[14] K. Maly, H. Abdel-Wahab, C.M. Overstreet, C. Wild, A. Gupta, A. Youssef, E. Stoica,
and E. Al-Shaer, “Distant Learning and Training over Intranets,” IEEE Internet
Computing, vol. 1, no.1, pp. 60-71, 1997.

[15] MBone http://www.mbone.com/.

[16] Microsoft's NetMeeting,http://www.microsoft.com/netmeeting.

[17] Microsoft's PowerPoint,http://www.microsoft.com/powerpoint.

[18] S.A. Mohamed and M.M. Fahmy, “Binary Image Compression Using Efficient
Partitioning into Rectangular Regions,” IEEE Transactions on Communications, vol. 43,
no. 5, pp. 1888-1893, May 1995.

[19] J. Nonnenmacher and E.W. Biersack, “Scalable Feedback for Large Groups,” IEEE/ACM
Transactions on Networking, vol. 7 no. 3, June 1999.

[20] T. Ohtsuki, “Minimum dissection of rectilinear regions,” In Proceedings IEEE
International Symposium on Circuits and Systems, New York, USA, vol. 3, pp. 1210-
1213, 1982.

[21] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual Network
Computing,” IEEE Internet Computing, vol. 2, no.1, pp. 33-38, Jan/Feb 1998.

[22] Sun Microsystems, Java language, http://java.sun.com/products.

[23] Videoconferencing Tool, The Networked Multimedia Research Group at University
College London,

http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/.

[24] G.K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the
ACM, vol. 34, no.4, pp. 30-44, April 1991.

