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Abstract

This paper addresses the problem of implementing a SLAM algorithm combined with a non-

reactive controller (such as trajectory following or path following). A general study showing

the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM

architectures is presented. In addition, this paper presents a priority based uncertainty map

construction method of the environment by a mobile robot when executing a SLAM algorithm.

The SLAM algorithm is implemented with a Extended Kalman Filter (EKF) and extracts corners

(convex and concave) and lines (associated with walls) from the surrounding environment. A

navigation approach directs the robot motion to the regions of the environment with the higher

uncertainty and the higher priority. The uncertainty of a region is specified by a probability

characterization computed at the corresponding representative points. These points are obtained

by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method,

avoiding the time-consuming map-gridding procedure. The priority is determined by the frame

in which the uncertainty region was detected (either local or global to the vehicle’s pose). The

mobile robot has a non-reactive trajectory following controller implemented on it to drive the

vehicle to the uncertainty points. SLAM real time experiments in real environment, navigation

examples, uncertainty maps constructions along with algorithm strategies and architectures are

also included in this work.

1 Introduction

This article concerns the problem of the SLAM algorithm which consists in building a map of an

unknown environment while the vehicle localizes itself within that map and moves around it. It

proposes a scheme enabling the integration of non-reactive control strategies for local or global

navigation of a mobile robot in a structured environment while a Simultaneous Localization

and Mapping (SLAM) algorithm is continuously executed. The SLAM algorithm consists on

a sequential EKF (Extended Kalman filter) feature-based SLAM. This algorithm fuses corners

(convex and concave) and lines of the environment in the SLAM system state. The navigation

strategy is based on the construction of uncertainty maps based on the Gaussianity of the SLAM

system state and the sum of Gaussians method. The uncertainty maps provide navigation goals

and priorities to the navigation strategy, indicating the regions of the environment of which there

is no information available. The algorithms and architectures of the proposal, along with real

time experimental results are also shown in this work.

The combination of the SLAM algorithm with a strategy for exploration or navigation within

the environment is known as Active SLAM and has been a key problem in the implementation
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of autonomous mobile robots. The integration of SLAM algorithms with control strategies to

govern the motion of a mobile robot and the ability of selecting feasible destinations on its own

will endow the vehicle with full autonomy.

In the early development stages of SLAM (Ayache & Faugeras (1989); Chatila & Laumond

(1985); Smith et al. (1987); Smith et al. (1990)), the attention of the scientific community focused

on solving the issues inherent to the specification of SLAM schemes: optimality, computational

cost and consistency. Several algorithms have been proposed as a result. The Extended Kalman

Filter (Dissanayake et al. (2001); Castellanos et al. (2004); Bailey et al. (2004); Guivant & Nebot

(2001)) (EKF) is one of the first and most used filters to implement a SLAM algorithm, and,

among its variants, one may single out the Unscented Kalman Filter (Thrun et al. (2005)), with

better performance for non-linear models, and the Information Filter (Thrun et al. (2005)),

with better computational performance at the correction stage. More recently, the Particle

Filter (Thrun et al. (2005)) and some Bayesian Approaches (Hahnel et al. (2003); Thrun et

al. (1998); Dellaert et al. (1999)) to SLAM have enabled significant improvements in the SLAM

implementation. Unfortunately, most of this research is confined to simulation or off-line results

(Mullane et al. (2008); Huang et al. (2008); Xi et al. (2008)). In what concerns real time

implementation, the reduction of the computational cost in the execution of SLAM has been

achieved through feature-based SLAM with feature selection (di Marco et al. (2000); Durrant-

Whyte & Bailey (2006a); Durrant-Whyte & Bailey (2006b); Auat Cheein et al. (2009b)), as

well as topological and hybrid maps (Garulli et al. (2005); Choset & Nagatami (2001); Zunino

& Chrinstensen (2001)). However, in order to reduce processing time, most of the feature-

based SLAM applications are restricted to single feature environments (Durrant-Whyte & Bailey

(2006b); Choset & Nagatami (2001)). Finally, the consistency of the SLAM algorithm has been

one of the most studied issues in the last years (Mullane et al. (2008); Zunino & Chrinstensen

(2001); Kouzoubov & Austin, (2004); Diosi & Kleeman (2005); Andrade-Cetto & Sanfeliu (2002)).

This research effort led to the characterization of the sensitivity of SLAM algorithms with respect

to its initial conditions and to the Jacobian matrix associated with the environment feature model

(Diosi & Kleeman (2005); Andrade-Cetto & Sanfeliu (2002)). Fusion of the information on the

pose of the mobile robot with data from an external sensor, such as GPS (Global Positioning

System), is the main approach to maintain the consistency of the SLAM algorithm (Diosi &

Kleeman (2004)).

The combination of control strategies with the SLAM algorithm has been addressed from

two significantly different points of view. While the first one considers how the control is used to

reduce errors during the estimation process (Chatila & Laumond (1985)), the second one concerns

exploration techniques providing the best map from the reconstruction perspective. Despite the

duality between regulation and estimation, whatever the control strategy is implemented, it will

not be guaranteed that, in general, the mobile robot will follow a specific trajectory inside the

environment (Bailey et al., 2006). In many applications, the control signal is not considered as an

input of the SLAM algorithm, and, instead, odometry measurements of the robot are used (Thrun

et al. (2005); Durrant-Whyte & Bailey (2006a); Durrant-Whyte & Bailey (2006b)). Thus, most

of the associated implementations focus on the low-level, basic control-reactive behavior (Zunino

& Chrinstensen (2001); Diosi & Kleeman (2004)), leaving the motion planning and control as a

secondary algorithm. Thus, albeit restricted to a local reference frame attached to the robot, active

exploration strategies for indoor environments are proposed in (Xi et al. (2008); Andrade-Cetto &

SanFeliu (2006); Liu et al. (2008)). As an example, a boundary exploration problem is proposed in

(Xi et al. (2008)). In this case, the robot has to reach the best point determined in the boundary of

its local point of view. From a global reference perspective, these implementations have a random

behavior inside the environment. To solve the lack of global planning, some implementations

have included algorithms for searching optimal path based on the information acquired of the

environment (Sim & Roy (2005); Liu et al. (2008)). These algorithms usually require the map

to be gridded and, accordingly, they compute a feasible path to a possible destination (closure



Autonomous SLAM driven by monte Carlo uncertainty maps-based navigation 3

of the loop or global boundary points) without specifying the control law implemented on the

mobile robot. Despite of the advances made so far, the integration of control strategies based on

the SLAM system state –map and vehicle– (Durrant-Whyte & Bailey (2006a); Durrant-Whyte

& Bailey (2006b)) to guide the robot within an unknown environment from a local and a global

reference frame following a pre-established plan is not quite studied or implemented in real time.

The main contribution of this paper is twofold: 1) a general algorithm and uncertainty based

navigation strategy for an autonomous SLAM implementation (with non-reactive controllers);

and 2) the construction of uncertainty maps based on the Gaussianity of the SLAM system state

to determine unvisited regions of the environment -from a probabilistic perspective- guiding the

robot to those regions and executing the SLAM algorithm at the same time . The navigation

strategy presented in this paper allows the determination of unsatisfactorily mapped or unvisited

regions of the environment, which will thus be targeted by the robot and thus permitting the

autonomous map improvement. The uncertainty maps construction is based on the sum of

Gaussians method and the Monte Carlo method. By using the Monte Carlo method instead

of gridding the map, we reduce the computational cost of the process and then, by applying the

sum of Gaussians method to the navigable points of the environment, we are able to construct

an uncertainty map of such environment.

This article is completed with an introduction of a general algorithm for a real-time SLAM-

Control implementation to avoid inconsistence of the map reconstruction (Andrade-Cetto &

Sanfeliu (2006)). This algorithm uses a prediction of the robot’s pose up to the time the control

law is invoked. Several experimental results are shown along the article. All experiments were

carried out in real time. Potential applications of the obtained results are surveillance, metric

maps reconstruction, and the construction of probabilistic maps based on the information of the

SLAM system state without gridding the environment. During the entire navigation or exploration

phase, the SLAM algorithm continues being executed.

This paper is organized as follows. In section 2, the sequential EKF feature-based SLAM is

presented; section 3 shows the general algorithm of the SLAM combined with a non-reactive

controller; section 4 shows the general method of constructing uncertainty maps, the sum of

Gaussians method and the navigation strategy based on priority levels of uncertainty regions of

the map. Each section shows real time experimental results of their proposal. Finally, section 5

shows the real time experimental result of the navigation strategy combined with the uncertainty

maps method.

2 Feature based EKF-SLAM

The SLAM algorithm implemented in this work is solved by an Extended Kalman filter (EKF).

The SLAM system state is composed by the vehicle estimated pose –position and orientation– and

the features extracted from the environment –which are known as the map of the environment–.

The features extracted from the environment correspond to corners –concave and convex– and

lines –associated with walls–. For visualization and map reconstruction purposes, a secondary

map is maintained. This secondary map stores the beginning and ending points of the segments

associated with the lines of the environment. Thus, the secondary map allows finite walls’

representation. The secondary map is updated and corrected according to the feature correction

in the EKF-SLAM system state, and if a new feature is added to that system state, it is also

added in the secondary map (Auat Cheein et al. (2009a)). Equations (1) and (2) show the system

state structure and its covariance matrix. All elements of the SLAM system state are referenced

to a global coordinate system.

ξ̂t =

[
ξ̂v,t
ξ̂m,t

]
(1)

Pt =

[
Pvv,t Pvm,t

PT
vm,t Pmm,t

]
(2)
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In Eq. (1), ξ̂t is the SLAM system state; ξ̂v,t = [ξ̂x,t ξ̂y,t ξ̂θ,t] is the estimated pose of the

vehicle, where ξ̂x,t and ξ̂y,t represent the global position of the agent within the environment and

ξ̂θ,t its orientation; ξ̂m,t represents the map of the environment and it is composed by parameters

that define both: lines and corners (corners are defined in the Cartesian space and lines in the

polar space as will be shown in section 2.2). The order in which lines and corners appear in ξ̂m,t

dependes on the moment they were detected. Pt is the covariance matrix associated with the

SLAM system state; Pvv,t is covariance of the vehicle’s pose and Pmm,t is the covariance of the

map. Pvm,t and PT
mv,t are cross-correlation matrices (between the vehicle and the map).

The covariance matrix initialization techniques and the EKF definition can be found in

(Durrant-White & Bailey (2006a)). The EKF is represented in Eq. (3). All variables involved

in the estimation process are considered as Gaussian random variables.

ξ̂−t = f(ξ̂t, ut)

P−
t =AtPt−1A

T
t +WtQt−1W

T
t

Kt = P−
t HT

t (HtP
−
t HT

t +Rt)
−1

ξ̂t = ξ̂−t +Kt(zt − h(ξ̂−t ))

Pt = (I −KtHt)P
−
t .

(3)

In Eq. (3), ξ̂−t is the predicted state of the system at time t; ut is the input control commands

and ξ̂t is the corrected state at time t; f describes the motion of the elements of ξ̂. P−
t and Pt

are the predicted and corrected covariance matrices respectively at time t; At is the Jacobian of

f with respect to the SLAM system state and Qt is the covariance matrix of the noise associated

to the process, whereas Wt is its Jacobian matrix; Kt is the Kalman gain at time t; Ht is the

Jacobian matrix of the measurement model (h) and Rt is the covariance matrix of the actual

measurement(zt). The term (zt − h(ξ̂−t )) is called the innovation vector (Thrun et al. (2005)) and

takes place when the data association procedure has reached an appropriate matching between the

observed feature and the predicted one (h(ξ̂−t )). Both, the process model (f) and the observation

model are non-linear expressions. Further information about the EKF-SLAM can be found in

(Auat Cheein et al. (2009a)).

In this work, the sequential EKF was implemented in order to reduce computational costs.

The sequential EKF-SLAM is based on the iterative calculation of the correction stage (SLAM

system state and covariance matrix) for each feature with correct association –see (Thrun et al.

(2005))–. The last statement implies that the Jacobian matrix of the measurement model and

Kalman gain are sparse matrices, decreasing in that way the processing time during a correction

iteration. Nevertheless, the prediction stage remains as stated in Eq. (3).

The general form of the correction stage of the classical sequential EKF-SLAM algorithm

(Thrun et al. (2005)) is summarized in the algorithm shown in Fig. 1. Sentences (3) to (9) describe

the for–loop of the correction stage of the algorithm. For every feature with correct association –

sentence (2)– the for–loop is executed. Sentence (4) shows the Kalman gain calculation; sentence

(5) is the correction of the SLAM system state whereas sentence (6) is the correction of the

covariance matrix of the SLAM algorithm; in sentence (7), the current feature is deleted from

the set of features with correct association (Mt). In the next iteration, the next predicted SLAM

system state and covariance matrix are the last corrected SLAM system state and covariance

matrix respectively, as noted in sentence (8).

Further information concerning the EKF-SLAM implemented in this work can be found in

(Auat Cheein et al. (2010)).

2.1 Mobile Robot

The vehicle used in this work is a non-holonomic unicycle type mobile robot Pioneer 3AT build

by ActivMedia. Figure 2 shows the kinematic model of the mobile robot. Equation (4) shows

the discrete kinematic equation of the robot.
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1: Let Nt be set of the observed features

2: Let Mt ⊆Nt be the set of features with correct association

3: for j = 1 to #Mt do

4: Kt,j = P−
t,jH

T
t,j(Ht,jP

−
t,jH

T
t,j +Rt,j)

−1

5: ξ̂t,j = ξ̂−t,j +Kt,j(zj − h(ξ̂−t,j))

6: Pt,j = (I −Kt,jHt,j))P
−
t,j

7: Mt,j =Mt,j − {zj}
8: P−

t,j := Pt,j ; ξ̂
−
t,j = ξ̂t,j

9: end for

Figure 1: Algorithm of the correction stage of the Sequential EKF-SLAM.

Figure 2: Graphic representation of the kinematic model of the unicycle mobile robot.

 ξx,t
ξy,t
ξθ,t


G

=

 ξx,t−1

ξy,t−1

ξθ,t−1

+∆t

 cos(ξθ,t−1) −a sin(ξθ,t−1)

sin(ξθ,t−1) a cos(ξθ,t−1)

0 1

 [
ut

ωt

]
+Φt (4)

In Eq. (4), ξx,t, ξy,t and ξθ,t are the coordinates of h –the point of control of the mobile robot–

in Fig. 2; Φt is the discrete time Gaussian process noise associated with the robot’s model; ut

is the linear velocity command applied to the vehicle and ωt is the angular velocity command;

∆t is the sampling time of the system. The suffix G in Eq. (4) refers that the coordinates of the

mobile robot are expressed in a global reference frame of the environment.

2.2 Features of the Environment

The models of the features of the environment –corners and lines– are shown in Eqs. 5 and 6.

Figure 3 shows the graphical interpretation of the variables in Eqs. 5 and 6. Although all features

are extracted from a local reference frame attached to the mobile robot, they are added to the

SLAM system state once their parameters are converted to the global reference frame of the

system (Durrant-Whyte & Bailey (2006a)).
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Figure 3: Graphic representation of line and corners extracted from the environment.

zcorner(k) = hi[ξ̂v,t, w(k)] =

[
zR
zβ

]
=

[ √
(ξ̂x,t(k)− xcorner)2 + (ξ̂x,t(k)− ycorner)2

arctan
ξ̂y,t(k)−ycorner

ξ̂x,t−xcorner
− ξ̂θ,t(k)

]
+

+

[
wR

wβ

]
(5)

zline(k) = hi[ξ̂v,t, w(k)] =[
Zρ

Zα

]
=

[
r − ξ̂x,t(k) cos(α)− ξ̂v,t(k) sin(α)

α− ξ̂θ,t(k)

]

+

[
wρ

wα

] (6)

In Eqs. (5) and (6), wρ, wα, wR, wβ are additive Gaussian noise associated with the measure-

ment. Further information concerning the line’s modeling can be found in (Garulli et al. (2005)).

The corners’ extraction method can be seen in (Guivant & Nebot (2001)).

3 SLAM-Control Algorithm: implementation issues

The combination of a control strategy –for navigation purposes– within the SLAM algorithm

provides the mobile robot with full autonomy (Thrun et al. (2005)). The control strategy can be

divided into two: reactive and non-reactive –or planned– control.

The reactive control strategy is usually implemented on a behavior-based case strategy –

or sensor based navigation–. The mobile robot does not need its pose information to plan its

movements beyond a local reference frame attached to the vehicle (Arkin (1998)) –which is usually
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Figure 4: Schematic of the SLAM algorithm combined with control. a) Shows the SLAM with

reactive control, the SLAM does not return any information to the controller; b) shows the SLAM

with non reactive control, the controller uses the robot’s pose estimated by the SLAM algorithm

in order to updated the control references.

accomplished with odometry measurements due to the fact that for small distances, the variance

of the odometry can be discarded (Thrun et al. (2005)) –. Thus, there is no communication

between the SLAM and the control strategy. This kind of SLAM-Control architectures are

developed for exploration tasks. Whether the SLAM becomes inconsistent or not, does not affect

the exploration. The SLAM-Reactive Control strategy is represented in Fig. 4a.

On the other hand, when the SLAM is combined with a planned-based control strategy –such

as trajectory or path following controller–, the control needs the robot’s current pose in order

to calculate the references and the control actions. Thus, for a stable control law if the SLAM

turns into inconsistency, the control will remain stable, although the objective of the navigation

will not be fulfilled because of erroneous references –if the SLAM turns into inconsistency, then

the estimation is no longer reliable–. Furthermore, due to the non-constant time of the SLAM’s

executions (Thrun et al. (2005)), the stability of the controller can also be compromised (the

controller must be stable for non-constant sampling time). Thus, not any controller can be

implemented within a SLAM algorithm. As it can be seen, the SLAM algorithm with non-reactive

controllers is more sensitive to the SLAM performance than with reactive controllers. Figure 4b

shows the general architecture of an autonomous SLAM with non-reactive control strategy.

Beyond the control stability issues, the fact of the SLAM algorithm being not constant time

also compromises the mobile robot integrity. Considering that all inner parameters of the robot

are set up every sampling time –i.e., if the control input changes at a time between time t and

t+ t1, it will be effective only in time t+ t1–, let us suppose the following scenario: the SLAM

algorithm is executed at time t and it ends at time t+∆, with ∆> 0. In an implementation of

the SLAM-Control algorithm, if during the interval [t, t+∆] there was a change in the motion

commands, they will not be effective until the next sampling time following t+∆ (let us call it

t+ tk, where tk ≥∆). The last sentence implies that during the ∆-time, the robot was in an open

loop situation. Furthermore, after the t+∆ time, the estimation of the pose will correspond to

the pose that the vehicle had at instant t and that information is then passed to the controller.

Thus, the controller at time instant t+ tk will have the references of instant t. The last statement

also implies a limitation in the velocity of the robot: if the robot is navigating in an open loop

situation, it could collide. In order to avoid this open loop situation, a predictor is used in this

work. The following section shows the implementation of a control architecture encompassing a

predictor, SLAM, and a reactive controller. By using a predictor during the open loop situation,
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there will be available information concerning the current pose of the vehicle in the corresponding

SLAM calculations.

A last remark is necessary. If the SLAM-Control algorithm is implemented as a sequential

algorithm, the control commands can be changed only at the next sampling time after the last

SLAM execution.

3.1 Sequential Algorithm Structure

The time charts shown in Fig. 5 shows the sequential implementation of the SLAM algorithm. As

recommended by (Durrant-Whyte & Bailey (2006b)), before the mobile robot’s initial motion, it

extracts the first features from the environment. In this way, once the navigation cycle is closed,

the final covariance matrix of the SLAM system state will tend to its initial values.

Figure 5a shows an SLAM-Control implementation without a predictor whereas Fig. 5b shows

the sequential implementation of the SLAM-Control with a predictor. As it can be seen in Fig. 5, a

cycle of the SLAM-Control algorithm is composed by three stages: Features Extraction–SLAM–

Pause –in that order–. Thus, after the robot’s initialization, it extracts the features from the

environment. After the features extraction, the SLAM is performed. Both, the corrected SLAM

system state and covariance matrix are used to calculate the control commands of the mobile

robot. Then, in order to update the mobile robot parameters, a pause is needed between the

SLAM ending and the following sampling time of the robotic system. During this pause, the

robot continues its motion according to its previous command controls.

Regarding the SLAM-Control implementation, let us consider Fig. 5a and let ∆ be the sampling

time of the system –∆ not necessary constant–. Thus,

(i) After the initialization of the system, the control commands of the mobile robot are set up

to zero: [u ω]T = [0 0]T and they are effective after the first pause, that is, at instant time t1.

(ii) From instant time t1 up to t2, the control command remains unchanged.

(iii) At time t1 + tα, with α≤∆, a new features extraction and SLAM process are completed.

Based on the information provided by the SLAM system state and its covariance matrix, the

next mobile robot control commands are generated ([u ω]T = [v1 ω1]
T ), where they will be

effective only at time t2 (because of the necessary pause of the system) and maintained up

to time t3. Let us recall that the SLAM system state and covariance matrix estimation at

time t1 + tα corresponds to the robot’s pose at time t1.

(iv) At time t2, the mobile robot motion is set up to [u ω]T = [u1 ω1]
T . A features extraction and

a SLAM execution are processed.

(v) At time t2 + tβ , with tβ ≤∆, a new estimation of the system state is available from the SLAM

algorithm and new control commands are generated based on that information ([v ω]T =

[u2 ω2]
T ). The new control commands will only be effective at t3, meanwhile, the current

control commands correspond to [u ω]T = [u1 ω1]
T .

(vi) The process repeats successively.

Thus, in the chart shown in Fig. 5a, none predictor is used. Due to the fact that the control

commands are generated based on a past value of the mobile robot’s pose, this situation could

lead to inconsistence of the map, as will be shown in section 3.2. This is so because the covariance

matrix associated with the control errors –Qt in Eq. (3)– cannot absorb the errors of the robot’s

pose as the SLAM algorithm execution time increase.

In the chart shown in Fig. 5b, the sequential SLAM-Control implementation is presented. In

this chart, a prediction stage is used in order to compensate the lack of robot’s pose information

present in the chart of Fig. 5a. The SLAM-Control functionality is similar to the one presented

before, with the following differences:

(i) At time t2 + tβ , the control commands –[u2 ω2]– are generated based on the information

provided by the SLAM system state and its covariance matrix and the predicted pose of the
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mobile robot with the current control commands ([u ω]T = [u1 ω1]
T ). Thus, the predicted

pose concerns the elapsed time between t2 and t2 + tβ . The control commands [u2 ω2] will

be effective at time instant t3.

(ii) The control commands at time t3 + tγ are generated based on the information provided by

the SLAM system state and its covariance matrix and the prediction of the mobile robot’s

pose at time t3 + tγ . The prediction is formed by the elapsed time of the pause of the previous

SLAM-Control execution (it is the time between t2 + tβ and t3) and time consumed by the

features extraction and the SLAM processes (from t3 to t3 + tγ). As it can be seen, from

t2 + tβ to t3, the mobile robot motion was governed by [u ω]T = [u1 ω1]
T ; whereas from time

t3 to t3 + tγ , the motion commands were [u ω]T = [u2 ω2]
T . Thus, a prediction for both cases

is needed.

(iii) The process repeats successively.

As it can be seen, the control commands in the sequential SLAM-Control implementation are

only refreshed after the features extraction and the SLAM process’ endings. The predictor used

in this work is presented in Eq. (7) which is the same that the one used by the EKF-SLAM

algorithm (Auat Cheein et al. (2009a)). ξ̂x,t
ξ̂y,t
ξ̂θ,t


G

=

 ξ̂x,t−1

ξ̂y,t−1

ξ̂θ,t−1

+∆t

 cos(ξ̂θ,t−1) −a sin(ξ̂θ,t−1)

sin(ξ̂θ,t−1) a cos(ξ̂θ,t−1)

0 1

 [
ut

ωt

]
(7)

In Eq. (7), ∆t is the elapsed time used for the prediction. Thus, for the case shown in the

chart of Fig. 5b, that time could be either tβ , t3 − (t2 + tβ) or tγ . For example, for ∆t= tβ , the

prediction equation would be of the form shown in Eq. (8). ξ̂x,t2+tβ

ξ̂y,t2+tβ

ξ̂θ,t2+tβ


G

=

 ξ̂x,t2
ξ̂y,t2
ξ̂θ,t2

+ tβ

 cos(ξ̂θ,t2) −a sin(ξ̂θ,t2)

sin(ξ̂θ,t2) a cos(ξ̂θ,t2)

0 1

 [
u1

ω1

]
(8)

3.2 Experimental Comparisons

For purposes of showing the differences of using a predictor in a SLAM-Control implementation,

some real time experimentations were carried out at the facilities of the Instuto de Automatica,

National University of San Juan, Argentina. The mobile robot used was a Pioneer 3AT –

introduced in section 2.1–; the features extracted from the environment were lines –associated

with walls– and corners –see section 2.2–; the range sensor used was a laser built by SICK,

which acquires 181 measurements in a range of 32 meters from 0 to 181 degrees; the EKF-SLAM

implemented was presented in section 2. No odometry information of the robot was included in

the estimation process.

Considering that the objective is to show the advantages of using a predictor within the SLAM-

Control algorithm, the navigation strategy was a simple trajectory following based on frontier

points determination (Auat Cheein et al. (2009a)). Briefly, the frontier points strategy finds non-

occupied points of the navigable space at the limit of the sensor range and directs the robot’s

movements to that point by generating a kinematically plausible path from the robots position

to the frontier point. Also, it is possible to find several frontier points by varying the range of the

sensor. Figure 6 shows how successive frontier points are determined. Once the plausible path is

found, a kinematic controller drives the robot motion through that path until the robot reaches

the frontier point. Once the robot reaches a neighborhood of the frontier point, a new frontier

point is determined. This situation repeats until the navigation is interrupted. The kinematic

controller implemented in these experiments is the Kanayama’s trajectory follower (Kanayama

et al. (1990)).
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Figure 5: Chart time of the SLAM-Control implementation. a) Shows the SLAM-Control

implementation without a predictor; b) shows the chart time of a SLAM-Control implementation

with a predictor.

Figure 7 shows the SLAM-Control implementation using the predictor to improve the open

loop situation of the navigation during the control planning process. On the other hand, Fig. 8

shows two different snapshots at times ta and tb of a same experiment of SLAM-Control algorithm

without the predictor. As it can be seen, the map reconstruction starts to become inconsistent

at position [x y]T = [12 25]T . A third snapshot after tb is not presented because the estimation

is lost due to the inconsistence and no map can be recovered.

4 Autonomous SLAM: an Uncertainty Maps Navigation example

In this section we show an autonomous driven SLAM example. The mobile robot, while

performing the SLAM algorithm, will use information contained within the SLAM system state

and its covariance matrix to generate uncertainty maps of the environment. These maps are then

used to determine uncertainty zones and the robot is driven to these zones by means of a non-

reactive controller. Thus, the vehicle navigates the environment based on the SLAM information

which is recursively updated during navigation.
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Laser MeasurmentsFrontier
Points

Figure 6: Frontier points determination. The frontier points are determined by localizing middle

free space points from the measurement data.

Figure 7: Map reconstruction of the facilities of the Instituto de Automatica. The magenta points

are raw laser data; the solid black segments represent walls from the environment; green circles

are corners and the blue dotted line is the path traveled by the mobile robot.

For the purpose of obtaining uncertainty maps of the environment, a Monte Carlo points

generation combined with the sum of Gaussians method for the uncertainty maps construction

is proposed in this work. The fact of using the Monte Carlo points generation combined with the

sum of Gaussians method substantially decreases the computational costs when compared with

a map gridding procedure (Thrun et al. (2005); Sanchez Miralles & Sanz Bobi (2004)).
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(a) snapshot for time ta (b) snapshot for time tb

Figure 8: Two snapshots of a SLAM-Control implementation without a predictor for the planning

purpose. Fig. 8a shows the map reconstruction for instant time ta < tb. On the other hand, Fig. 8b

shows that, at position [x y]T = [25 12]T , the map starts to differ from the one shown in Fig. 7.

The magenta points are raw laser data; dotted blue line is the path traveled by the mobile robot;

segments associated with walls from the environment are represented by solid black lines and

green circles are corners –convex and concave–.

4.1 Monte Carlo Uncertainty Maps Building Procedure

The construction procedure of the uncertainty maps can be summarized as follows.

(i) The geometrical representation of the map built by the SLAM and the robot’s pose are

circumscribed by a rectangle. The rectangle is composed by four edges which are considered

as virtual features of the environment.

(ii) The four virtual features are parameterized as it is shown in Eq. (6) and they will be

considered as Gaussian distribution functions with probability value of 0.5 at their mean

values. By the linear nature of the EKF, the real features of the environment are also

Gaussian distributions with mean values given by the SLAM system state and covariance

matrix extracted from the SLAM system state covariance matrix. The probability function

distribution of the segments of the environment will be explained in detail in section 4.1.4.

(iii)Within the space circumscribed by the rectangle, M points are uniformly generated by the

Monte Carlo method, covering the mapped space –see Fig. 9–.

(iv) From the set of M Monte Carlo points, only the navigable points (represented by the set N ,

where N ⊆M) will be used in the uncertainty points determination.

(v) Each element of N –the set of navigable points– has a probability value associated with

it. That probability is the result of several probability distribution functions associated with

each feature of the environment contained within the SLAM system state. Those points whose

probability values are near zero, will be considered as free space points; those points with

probability near one, will be considered as occupied points of the environment (e.g., points

near walls) and those points which probability is in a neighborhood of 0.5 will be considered

as uncertainty points, because no conclusions can be made about the point being occupied

or unoccupied. In order to fusion the probability value of a point w.r.t. the features of the

environment, the sum of Gaussians method is performed.
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Figure 9: Monte Carlo points generation procedure. a) The mapped area and the robot’s pose are

circumscribed by the rectangle –red solid line–; b) over the circumscribed area, M Monte Carlo

points are generated –blue dots–.

(vi) The final map is a representation of the probability values associated with the navigable

points of the mapped environment.

The following subsections will show the Monte Carlo uncertainty maps construction in detail.

4.1.1 Monte Carlo Points Generation
In order to present the Monte Carlo points generation, let us suppose the map shown in

Fig. 9a with the circumscribing rectangle in solid red. The mobile robot is positioned within

the environment. Furthermore, let Xmax and Ymax be the maximum values circumscribed by

the rectangle and Xmin and Ymin the corresponding minimum values referenced to the global

reference system used by the SLAM algorithm. Then, the Monte Carlo generation points can be

expressed as stated in Eqs. (9) and (10).{
µi ∼ U(λ0, λ1), i= 1, ..., M

mi =Xmin + (Xmax −Xmin)× µi
(9)

{
µj ∼ U(λ0, λ1), j = 1, ..., M

mj = Ymin + (Ymax − Ymin)× µj
(10)

In Eq. (9), µi is the i
th–outcome of the Monte Carlo experiment (U(λ0, λ1) means an uniform

distribution with parameters λ0 = 0 and λ1 = 1) from a set of M possible points; mi is the x–

coordinate (bounded by Xmax and Xmin). Equivalent definitions apply for Eq. (10), except that

mj is the y–coordinate (bounded by Ymax and Ymin). Thus, the Monte Carlo point generated

over the circumscribed space shown in Fig. 9a is expressed as: [x y]T<G> = [mi mj ]
T
<G>. Figure 9b

shows the Monte Carlo generated points for the map shown in Fig. 9a.

4.1.2 Navigable Points Determination
A possible way to check if a point of a map is navigable or not, is to verify that there is an

obstacle-free path between the robot and that point. Although several works can be found in the

scientific literature to check if a point is navigable (Arkin (1998)), in this work a metric map-

based path generation was implemented. This algorithm consists on generating an obstacle-free

path having into account the metric information available in the stored map of the environment.
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Figure 10: Navigable points determination. If a free-obstacle path can be determined from the

mobile robot’s pose to the Monte Carlo point P , then P is a navigable point.

Figure 10 shows an example of the path found by the algorithm that proves the point P within

the environment can be reached. The navigable points test is performed over the set M defined

above. The set N, N ⊆M of navigable points will be the set of points for which a free-obstacle

path –starting at the robot’s pose and ending at the point’s location– can be found.

4.1.3 Probability of a Navigable Point with respect to a Corner

As stated before, the distribution function of any feature extracted from the environment is a

Gaussian distribution of the form shown in Eq. (11), due to the Gaussianity nature of the EKF.

In Eq. (11) the mean values ([ξ̂i ξ̂j ]
T ) are extracted directly from the EKF-SLAM system state,

where ξ̂i corresponds to the random variable at the ith– position. The covariance matrix –Ψi–

associated with [ξ̂i ξ̂j ]
T is extracted from the EKF-SLAM system state covariance matrix. Thus,

if ξ̂i and ξ̂j are two consecutive variables, their covariance matrix correspond to a 2× 2 principal

sub-matrix located at the ith–row, ith–column and extended to the jth–row, jth–column.

Let px,y = [px py]
T be a navigable point of the space and [ξ̂corner,x ξ̂corner,y]

T the estimated

parameters of a corner from the SLAM system state, then the probability of px,y with respect to

the corner can be expressed as Eq. (11).

P (px,y) =
1√

(2π)2|Ψi|
e

− 1
2

 px
py

−

 ξ̂corner,x
ξ̂corner,y

T

Ψ−1
i

 px
py

−

 ξ̂corner,x
ξ̂corner,y


(11)

Considering that in this work, a corner is modeled in Cartesian coordinates and a line is

modeled in the polar coordinate –see section 2.2–, in order to express the probability of a given

point w.r.t. to a feature over the same space some transformations are needed, this situation is

necessary to apply the sum of Gaussians method. Thus, by applying the Fundamental Probability

Theorem (Theodoris & Koutroumbas (2003)) to Eq. (11), we can obtain the probability of a

navigable point px,y with respect to a corner in the polar space instead of the Cartesian space.

Thus, let f(σ, τ) be a density probability function defined in the polar coordinate system. Also,

let gσ(x, y) = σ and hτ (x, y) = τ be two functions that relate Cartesian coordinates x and y with

σ and τ from the polar coordinate system, where σ is related to the distance to the origin of the

system and τ is its angle. Then,
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f(σ, τ) = f(x,y)
|J(x,y)|

|J(x, y)|=

∣∣∣∣∣ ∂σ
∂px

∂σ
∂py

∂τ
∂px

∂τ
∂py

∣∣∣∣∣=
∣∣∣∣∣ ∂px

∂σ
∂py

∂σ
∂px

∂τ
∂py

∂τ

∣∣∣∣∣
−1

where J is the Jacobbian matrix associated with the transformation. Applying the equations

above to transform Eq. (11) into the polar space we have that:

σ =
√

p2x + p2y

τ = atan(py, px)

J =

∣∣∣∣ cos(τ) −σ sin(τ)

sin(τ) σ cos(τ)

∣∣∣∣−1

= [σ cos2(τ) + σ sin2(τ)]−1 = 1
σ

f(σ, τ) = σf(px, py) = σf(σ cos(τ), σ sin(τ)). (12)

Finally, using Eq. (12), the probability of a point w.r.t. a corner of the environment in polar

coordinates can be expressed as it is shown in Eq. (13).

P (px,y)corner,i =
σ√

(2π)2|Ψi|
e
− 1

2

 px
py

−

 σ cos(τ)

σ sin(τ)

T

Ψ−1
i

 px
py

−

 σ cos(τ)

σ sin(τ)


(13)

Although Eq. (13) not longer represents a Gaussian distribution due to the nonlinear

transformations, quasi-Gaussianity is preserved: the hyper volume of the distribution is bounded

by an elliptical frontier.

4.1.4 Probability of a Navigable Point with respect to a Line
In order to calculate the probability of navigable point w.r.t. a line of the environment some

restriction must be taken into account.

The probability of a navigable point could be influenced by either a virtual or a real line.

Virtual lines are those that circumscribe the map in section 4.1.1. Though the parameters of a

line and its associated covariance determine the Gaussian distribution of the feature, it has no

meaning outside the limits of the segment representing that line. Thus, the influence of a line

is restricted to those points that belong to the segment’s region. Let us recall that the segment

associated with a line is available from the secondary map of the SLAM algorithm implemented

in this work –see section 2–.

A segment’s region is defined as follows. Let S be a segment associated with line L and Po

and Pf be its endpoints in the considered region. let Lo and Lf be two lines normal to L that

pass through Po and Pf respectively. A point P belongs to a region of S if it belongs to the

area delimited by Lo and Lf that contains S. Figure 11 shows a representation of the region of

a segment.

Thus, those points that belong to the region of a segment are probabilistically influenced by

the line that contains that segment in the SLAM system state.

By considering that a line is represented in polar coordinates by a point in the polar plane, any

other point represented in the polar space will imply line at the Cartesian space. According to this,

to calculate the probability of a point with respect to a line is necessary to determine to which line

the point belongs. Having into account that a line-feature has a Gaussian distribution function,

its maximum probability value occurs on their mean values. Thus, those values that make null

the kernel of the Gaussian distribution represent the points where the probability reaches its
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Figure 11: Region of a segment. A navigable point is influenced by the probability distribution

associated with a line if that point belongs to the region of the segment of the line.

maximum. In this work it was adopted that the line to which the point of the environment

belongs is a parallel of the line-feature of the map. Thus, the angle between them will be null in

the kernel of the Gaussian distribution and only the distance will be computed. Equation (14)

shows the probability of a point with respect to a line when the point belongs to a parallel of the

line-feature.

P (px,y)line,k =
1√

(2π)2|Ψk|
e−

1
2 (Υ−Γ)TΨ−1

k (Υ−Γ) (14)

In Eq. (14), Ψk is the covariance of the line extracted from the covariance matrix of the SLAM

system state, ΥT = [σ τ ]T are the parameters of the line extracted from the SLAM system state.

If the line were virtual –e.g., the lines that contain the edges of the circumscribing rectangle in

section 4.1–, then Υvirtual contains the parameters that define the line and its covariance could be

of the form Ψvirtual =

[
0.32 0.0

0.0 0.32

]
. Note that Ψvirtual is not unique. Γ

T = [σp τp]
T represents

the parameters of the parallel line that contains the navigable point px,y. As stated before, σp = σ

in Eq. (14) because the lines are parallel.

4.1.5 Weighted sum of Gaussians method

To calculate the probability of a navigational point within the environment, it is necessary to

calculate how all the mapped features are influencing it. Thus, considering that all features

mapped from the environment have a Gaussian distribution function, in this work the weighted

sum of Gaussians method was used in order to infer the probability associated with a navigable

point. The weighted sum of Gaussians method is faster when compared with other fusion methods

(Miralles & Sanz Bobi (2004)) and could be applied for both: real and virtual features. The

resulting probability is always smaller than one. Let L be the number of features contained in

ξ̂m,t, the part of the SLAM system state composed by the extracted features from the environment

–see Eq. (1)–. Also, let Lc and Ll the number of mapped corners and lines respectively such that

L= Lc + Ll. Furthermore, let Ll,v be the number of virtual lines. The virtual lines correspond

to the segments that circumscribe the environment. Equation (15) shows the sum of Gaussians

implementation having into account both: real and virtual features.
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P (px,y) =

∑Lc

k=1
εc,kσc,k√
(2π)2|Ψc,k|

e
− 1

2

 px
py

−

 σc,k cos(τc,k)

σc,k sin(τc,k)

T

Ψ−1
c,k

 px
py

−

 σc,k cos(τc,k)

σc,k sin(τc,k)


+

+
∑Ll

k=1
εl,k√

(2π)2|Ψl,k|
e−

1
2 (Υl,k−Γl,k)

TΨ−1
l,k(Υl,k−Γl,k)+

+
∑Ll,v

k=1
εl,v,k√

(2π)2|Ψl,v,k|
e−

1
2 (Υl,v,k−Γl,v,k)

TΨ−1
l,v,k(Υl,v,k−Γl,v,k)

(15)

In Eq. (15), Ψc,k, Ψl,k and Ψl,v,k are the covariance matrices associated with the kth–corner,

line and virtual line respectively; εc,k, εl,k and εl,v,k are the weights associated with each term of

the sum of Gaussians method such that the result, P (px,y), is always smaller than one. The weight

factors in Eq. (15) were obtained according to (Miralles & Sanz Bobi (2004)). The mechanism

shown in sections 4.1.3 to 4.1.5 allows the estimation of an occupational probability value of each

navigable point of the map obtained in section 4.1.2.

4.1.6 Monte Carlo Uncertainty Maps examples
Figure 12 shows three examples of the construction of uncertainty maps based on the procedure

presented above. Figures 12a and 12d are partial reconstructions of the facilities of the

Instituto de Automatica of the National University of San Juan; and Fig. 12g is an office

environment of the Engineering Department of the Federal University of Espirito Santo, Brazil.

Figures 12a, 12d and 12g show the reconstruction of the map based on the SLAM system state

and covariance matrix. The solid black segments correspond to walls associated with lines; green

circles are corners and the dotted blue line is path traveled by the mobile robot. The magenta

points are raw data acquired by the range sensor laser incorporated on the robot.

Figures 12b, 12e and 12h shows the mapped environment –solid black lines– circumscribed by

the virtual rectangle –solid red lines–. The small blue squares represent the Monte Carlo points

generated within the circumscribed area. The green circles are corners of the environment. The

number of generated Monte Carlo points for the three figures was of M = 1000.

In addition, Figs. 12c, 12f and 12i show the uncertainty maps after applying the sum of

Gaussians method to each Monte Carlo point. Although in section 4.1.5 it was stated that the

probability value is calculated over the set of navigational points of the environment, in order

to see the entire probability map, the probability value in Figs. 12b, 12e and 12h was calculated

for all the Monte Carlo points. As it can be seen, the green areas in such figures represent the

uncertainty areas that will be used as navigation goals (if the uncertainty point associated with

them is a navigational point). In this work, an uncertainty point was considered as such if its

probability value was P (px,y) = 0.5± 0.2. Thus the navigational points whose probability value

laid in the range of 0.5± 0.2 were considered as uncertainty points, because no conclusions can

be made about their occupational status.

4.2 Autonomous SLAM Navigation

As stated in section 4.1, a navigable point will be considered as an uncertainty point if the

probability value associated with it remains in a neighborhood of 0.5.

Once an uncertainty point is found, a trajectory is planned from the robot’s pose to that

point, using the information of the environment provided by the SLAM system state. Then, a

trajectory follower controller drives the robot to a neighborhood of the uncertainty point goal.

Considering that we are using range sensors to map the environment, the fact of reaching the

actual position of the uncertainty point is not needed, because the robot is able to map the
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Figure 12: Examples of the construction of uncertainty maps. Figs. 12a, 12d and 12g shows three

different environment reconstruction using the EKF-SLAM algorithm presented in this work;

Figs. 12b, 12e and 12h show the Monte Carlo points generation after circumscribing the map

obtained by the EKF-SLAM by the virtual rectangle –solid red segments–. Figs. 12b, 12e and

12h correspond to Figs. 12a, 12d and 12g respectively. Figs. 12c, 12f and 12i show the uncertainty

maps after applying the sum of Gaussians method to each Monte Carlo point of Figs. 12b, 12e

and 12h.

environment surrounding that point by means of the range sensor. During the navigation, the

SLAM algorithm is continuously executed. The trajectory controller implemented in this work is

the Kanayama’s controller (Kanayama et al. (1990)).

If more than one uncertainty point is found, then a selection criterion is used to determine

which point will be the goal of the navigation. Equation (16) shows the goal selection criterion;

where dist(.) represents the distance between two points and P (px,y) is the probability associated

to point px,y according to Eq. (15). Thus, for n uncertainty points, only the one which has the

maximum ratio between its probability value and its distance from the robot will be chosen as a

navigation goal. Further information can be found in a previous work of the authors (Auat Cheein
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Figure 13: Parallel implementation of the multi-level uncertainty point searching. a) Shows the

parallel structure of the implementation; b) shows the multi-level division: each level has a priority

associated with it.

et al. (2010)); κj is a priority value associated with the uncertainty point, as will be explained

below.

Goal Navigation Uncertainty Point=
1

κj
max

{
P (px,y|i)

dist(robotpose, px,y|i)

}
; i= 1...n. (16)

Considering that the size of the map increases during the navigation, the uncertainty point

determination is made in several levels with different priorities associated with each level.

Figure 13 shows the multilevel uncertainty points searching. Each level is implemented in a

different thread, therefore, all levels work in parallel. For example, for the map shown in Fig. 13b,

the main map is divided into k levels. Each level has a virtual rectangle circumscribing it. All

the virtual rectangles have the same orientation with respect to the main map. The priority

assignment is as follows: the main map has the higher priority –priority κ= 1– and the k-level

has priority κ= k, where k is an integer. Thus, when the navigation system is looking for a goal,

the uncertainty points within all the different levels are searched. An uncertainty point with

priority 1, for example, is chosen when compared with an uncertainty point of priority 3. The

uncertainty points searching of level k − 1 does not include the virtual features of level k, it only

works with the real features of the environment and its own virtual circumscribing rectangle. The

navigation strategy based on the multi-level uncertainty point searching is shown in the following

section.

4.2.1 Mobile Robot Navigation Strategy
The navigation strategy can be summarized as follows.

(i) Let us suppose that the robot initial pose is [ξ̂x ξ̂y ξ̂θ]
T = [ξ̂x,0 ξ̂y,0 ξ̂θ,0]

T referenced to a

global reference frame previously established during the initial conditions declaration of the

SLAM algorithm. The mobile robot performs, without moving, the first features extraction

procedure of the navigation.

(ii) A first circumscribing rectangle is determined. This rectangle must circumscribe all extracted

features from the environment and the robot’s pose. If no features were detected, then a

generic size circumscribing rectangle including the robot’s pose can be used instead.
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(iii)M Monte Carlo points are uniformly generated within the circumscribing rectangle. Then,

from the M Monte Carlo points, only the N ⊆M navigable points are used.

(iv) A probability value is associated with each navigable point. In order to do this, the sum of

Gaussians method is used. The sum of Gaussians method has into account the probability of

the point with respect to any feature –real or virtual– of the environment. A real feature is a

feature that is modeled by the SLAM system state and its covariance matrix. As stated before,

the edges of the circumscribing rectangle will be considered as Gaussian virtual features with

probability value of 0.5 associated to its parameters.

(v) A navigable point will be considered as an uncertainty point if its probability value is in a

neighborhood of 0.5. From the set of L⊆N ⊆M uncertainty points, only one will be chosen

as navigation goal according to Eq. (16).

(vi) Once an uncertainty point is found, a trajectory is planned from the robot’s current pose

to the uncertainty point. Then, the Kanayama’s trajectory controller drives the robot to a

neighborhood of that point.

(vii) When the robot reaches a neighborhood of the uncertainty point, a new uncertainty point

should be determined from the information within the SLAM system state and its covariance

matrix by means of the procedure mentioned above.

(viii)If any edge of the virtual rectangle that circumscribes the mapped area is bigger than the

range of the sensor used, then the map is organized in several nested levels as it is shown in

Fig. 13b. Up to 8 different levels are allowed in our work. All the levels are equally placed

from the robot’s pose to the main map.

(ix) The system searches for uncertainty points within all the levels as it is shown in Fig. 13.

Considering that not all levels will found an uncertainty point goal at the same time, the

navigation strategy chooses a low priority level uncertainty point according to Eq. (16), until

a high priority level uncertainty point is found.

(x) Once a high priority level uncertainty point is found, a trajectory is planned from the robot’s

current pose to the uncertainty point and the trajectory controller drives the robot motion

to it.

(xi) Once the robot reaches an uncertainty point, the searching strategy is repeated only in those

levels that are not currently working.

(x) If after a finite number of attempts and despite of the path planned, the robot is not able to

reach the navigation goal, then that goal is replaced by a new uncertainty point destination.

The navigation strategy presented above can also be interpreted as follows: the mobile robot

remains navigating based on local uncertainty points until global uncertainty points are found, then

the robot is driven to them. Figure 14 shows the final SLAM-Control architecture implemented

in this work. As Fig. 14a shows, the SLAM algorithm provides the robot’s pose references to

the controller and the map information to the trajectory planner. Figure 14b shows how the

priorities of each level of uncertainty maps are managed by the navigation system; the multiplexer,

according to the priority level, chooses between the different uncertainty maps.

4.2.2 Non-reactive Controllers: Trajectory follower controller
The non-reactive controller implemented in this work is the Kanayama’s trajectory controller for

non-holonomic vehicles (Kanayama et al. (1990)). This is an asymptotically stable control law

whose stability was proved through Lyapunov theory. The inputs to the vehicle controller are the

reference posture [xr yr θr]
T and the reference velocities [Vr Wr]

T .

The posture error is defined as follows:[
xe

ye
θe

]
=

[
cos(ξ̂θ,t) sin(ξ̂θ,t) 0

− sin(ξ̂θ,t) cos(ξ̂θ,t) 0
0 0 1

] [
xr − ξ̂x,t
yr − ξ̂y,t
θr − ξ̂θ,t

]
(17)

where [ξ̂x,t ξ̂y,t ξ̂θ,t]
T is the current estimated pose of the vehicle.
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Figure 14: SLAM-Control architecture. a) The SLAM algorithm closes the loop providing the

robot’s pose information to the controller and the environment information to the trajectory

planner; b) the different levels of the uncertainty maps are combined by a multiplexer governed

by the priority values of each navigation goals.

The control law is: [
V
W

]
=

[
Vr cos θe +Kxxe

Wr + Vr(Kyye +Kθ sin θe)

]
(18)

where Kx, Ky and Kθ are positive constants.

Kanayama also proposes a parameter selection to obtain a critical damping in the control. The

damping of the tracking control can be calculated through

ζ =
Kθ

2
√
Ky

.

A critical damping in the control is obtained when ζ = 1.

The path associated with the trajectory was previously obtained by implementing the non-

optimum path planning method presented by (Nieto et al. (2010)). Then, with the references

positions of the path and the estimated pose of the vehicle by the SLAM system state, the

trajectory follower was implemented according to Eq. (18).

5 Experimental Results

Several real time experiments of the SLAM-Control proposal presented in section 4.2 are shown

in this section. The maximum SLAM sampling time was of 0.2 seconds. The last implies that

the pause, the features extraction and the SLAM execution in Fig. 5b were performed within a

maximum time of 0.2 seconds during the navigation of the mobile robot. In addition, the features

association criterion used in this work corresponds to the Mahalanobis distance (Guivant & Nebot

(2001);Thrun et al. (2005)). Figure 15 shows results of the SLAM-based map reconstruction for a

simulated office environment whereas Fig. 16 shows different snapshots of the experiments carried

out at the facilities of the Instituto de Automatica of the National University of San Juan.

The mobile robot used was the non-holonomic unicycle type Pioneer 3AT (built by ActivMe-

dia) with a range sensor laser (built by SICK) incorporated on it. The laser acquires 181 range

measurements between 0 to 180 degrees. The measurement range was set to 7 meters although

the laser can be set up to 32 meters. No odometry information was used in the SLAM algorithm.

For the uncertainty maps construction, the maximum number of Monte Carlo points for the

level with the smallest priority (which is the closest level to the local reference frame of the

mobile robot) was of M = 1000 –although M is adjustable–. The maximum number of levels of
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(a) (b) (c)

Figure 15: Real time simulation of the navigation strategy. This figure shows the map recon-

struction and the navigation of the mobile robot within a simulated office environment. The solid

red lines are the rectangles that circumscribe the environment; the magenta points are raw laser

data; the solid black lines are segments associated with lines and green circles represent corners;

the solid red circles represent the center of mass of a cloud of uncertainty points over that region.

a) Shows the first execution of the SLAM algorithm while the robot remains still; b) Shows the

second execution of the SLAM; c) after several executions and given the size of the mapped area,

the uncertainty points procedure requires two levels of searching.

uncertainty points searching paralleled implemented in this work was of eight levels. The number

of Monte Carlo points for each level was a linear function of the priority associated with the

corresponding level of the uncertainty map. Thus, for an uncertainty map with priority κ= 8,

M = 1000 –as stated before– and for an uncertainty map with priority κ= 1,M = 8 ∗ 1000 = 8000

points. In Figs. 15 and 16, the uncertainty points –that could be used as possible destination goals–

are represented by a solid red circles. These solid red circles represent the center of mass of a

cloud of uncertainty points located in the corresponding region.

In addition, Fig. 17 shows the behavior of the standard deviation associated with the position of

the mobile robot and with the parameters of several features during the SLAM-Control executions

shown in the real time experiment of Fig. 16. As it can be seen, the standard deviation remains

bounded during the estimation of the SLAM system state.

6 Conclusions

This paper has presented the advantages and methods of introducing a predictor to compensate

the no-constant time executions of a sequential EKF-SLAM when implemented with a non-

reactive controller, such as a path or a trajectory follower. The EKF-SLAM algorithm used in

this work was a feature-based SLAM that extracts corners and lines from the environment. In

order to show real time implementations of the combination of the SLAM algorithm with non-

reactive controllers, an uncertainty maps construction based on the Monte Carlo method was

shown. The construction of uncertainty maps has allowed the determination of unvisited regions

–called uncertainty points– of the environment. A trajectory controller has driven the vehicle

from its current pose to the uncertainty points.

The Monte Carlo method to build uncertainty maps has introduced a new method to generate

a probabilistic map of the environment considering all features as Gaussian distributions without

the need of gridding the map. The method uses the Gaussianity condition of the features of the

environment acquired during the SLAM algorithm execution.

The navigation strategy presented in this work, has searched for uncertainty points within

different levels of the mapped environment. Each level had an uncertainty map with a priority

associated with it. Levels closer to the local reference frame of the mobile robot had a priority

smaller than the levels closer to the global reference frame of the vehicle. Once an uncertainty
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(a) (b) (c)

(d) (e) (f)

Figure 16: Real time experimentation of the navigation strategy within a real environment. The

solid red lines represent the edges of the circumscribing rectangle; solid black lines are walls

associated with lines of the environment; dotted blue line is the path traveled by the mobile robot;

green circles are corners and solid red circles are the center of mass of a cloud of uncertainty points

over that region; magenta points are raw laser data. Figures 16a to 16f show different snapshots

of the evolution of the mobile robot navigation within the facilities of the Instituto de Automatica

of the National University of San Juan. a) The first features from the environment are acquired

and added to the SLAM system state while the mobile robot remains still; b) shows another

searching of uncertainty points using a single level map; c) given the dimensions of the current

map, the uncertainty points are searched within two levels; d) and e) the system requires three

priority levels of uncertainty points searching; f) shows the complete map of the environment.

point was found, the trajectory controller had driven the robot to a neighborhood of that point.

During the navigation and the construction process, the SLAM algorithm was continuously

executed.

Experimental results about the probabilistic map construction were also shown. The entire

system was implemented in real time showing its autonomy and performance when mapping

and navigating unknown environments. The SLAM algorithm and the navigation strategy were

implemented to build a geometric map of the environment, although they were restricted to

structured ones. For future works, the SLAM algorithm and the navigation strategy will be

implemented to operate in open and semi-structured environments.
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