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Abstract: In order that signals can be stored, transmitted or processed it is necessary that they first be converted into
digital form. This, in turn, raises the problem of how to digitize data so as to achieve the best trade-off between data load
and performance, i.e., “how to make the most out of a little”.Two issues are involved in this problem, namely temporal
quantization (i.e., sampling) and spatial quantization. These two problems have traditionally been addressed separately.
Indeed, there exists substantial literature dealing with the temporal quantization problem, covering both band-limited and
non-band-limited signals. The usual underlying paradigm is that of an analysis filter, followed by a sampler, followed by
a reconstruction filter. Various parts of this architecturecan be optimized once other parts have been specified. On the
other hand, spatial quantization has been studied extensively for a given sampling strategy, particularly in the framework
of sigma delta conversion. Finally, it is also possible to formulate the joint design problem for sampling and spatial
quantization. This typically leads to enhanced performance compared to that achievable by considering the two aspects
separately.
This paper will survey the general area of sampling and quantization and analyze methods for achieving efficient data
representations for signal processing and control applications. We will show how, on the one hand, contemporary control
theory can contribute to the design of sampling and quantization systems and, on the other hand, how these systems
impact on the performance of modern feedback control systems.
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1 INTRODUCTION

We live in a data rich world. Most technological systems
operate by first converting continuous time, continuous am-
plitude signals from the analog world into digital represen-
tations. This is a necessary precursor to allow signals to
be stored, transmitted and processed without degradation
other than that introduced by the analog-to-digital conver-
sion itself.
The above was indeed the motivation that led Alec Reeves
to inventpulse-code modulation(PCM) seven decades ago
[1]. In his 1938 patent [2], Reeves highlighted the main
benefits of PCM, namely:

1. Quality depends only on conversion steps.

2. Quality is independent of transmission media.

3. Low cost.

4. Compatibility with different media and traffic.

5. New features can easily be embedded.

These are remarkable statements for the time they were
formulated. Indeed, most of these benefits have only be-
come reality in recent times. Furthermore, the validity of

the first two claims began to be formally determined years
after they were formulated, and is still subject of ongoing
research. In the pursuit of better quality at lower bit-rates
(and lower costs), increasingly parsimonious methods are
continually developed so as to acquire, process and repre-
sent signals digitally.

This topic has also motivated important theoretical results,
from areas such as information theory, functional analy-
sis, optimization, communication theory, frames, wavelet
theory, etc.. As we will discuss in this paper, also con-
trol theory has much to contribute to this circle of ideas.
Conversely, much of the theory and techniques from digital
signal processing are highly relevant to several aspects of
control, e.g., networked control, where parsimonious sig-
nal representation is a key element, see, e.g., [3][4][5].

In the present work we present some of the main strate-
gies of sampling, quantization and reconstruction of ana-
log, continuous-time signals. We will describe reconstruc-
tion quality and relate it to design constraints such as fil-
ter complexity, data-rate and sampling frequency. We
also present some ideas concerning the joint problem of
sampling-quantization, on one side, and reconstruction on
the other. We limit our analysis to uniform sampling of
scalar signals, sampling and reconstruction by single filters



(as opposed to filter-banks), quantizers with scalar output
and we will not discuss any issues related to further sym-
bol encoding.
The layout of the remainder of the paper is as follows:
Section 2 presents the basics of PCM quantization and
discusses some of the shortcomings that justify the
introduction of a more general model for a sampling-
quantization-reconstruction system. Section 3 poses the
sampling and reconstruction processes in a frame theoretic
perspective. Section 4 is a review of some recent general-
ized results on the sampling and reconstruction problem.
In Section 5 we present some basic aspects of scalar
memory-less quantization and oversampling. Section 6
describes feedback quantizers. In particular, some of the
basic principles of predictive and noise shaping (Σ∆)
analog-to-digital converters are presented. In Section 7 we
present noise shaping quantizers that generalizeΣ∆ con-
verters based on model predictive control. Section 8 gives
elements to analyze the joint problem of the quantization
and sampling-reconstruction design, including some recent
results and insights. In Section 9 we show how concepts
related to sampling and quantization can be utilized in
control problems. Section 10 draws conclusions. Finally,
an Appendix is included with some of the basic concepts
of frame theory necessary to understand several of the
results presented in the main body of the paper.

2 AD – CONVERSION FUNDAMENTALS

In this section we will first describe PCM as a basic archi-
tecture used in AD–conversion applications. Various short-
comings of PCM will then motivate us to introduce later a
more general framework.

2.1 Basic PCM Scheme

We consider the (simple) and idealized PCM system repre-
sented by the block diagram in Fig. 1.
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Figure 1: PCM system with ideal low-pass reconstruction
filter.

The usual paradigm associated with this setup is that the
input signala(t), t ∈ R, is taken to be band-limited to
some frequency, say,fmax [Hz]. Then, in accordance with
the Shannon-Whittaker sampling theorem [6], the sampling
step is chosen asτ = 1/(2fmax). Since the input signal is
directly sampled, we havec[k] = a(τk), ∀k ∈ Z.
The nearest neighbour scalar quantizer in Fig. 1 corre-
sponds to the non-linear transfer functionQ∆(·), defined
by1

Q∆(α) , ⌈α/∆⌉ − ∆
2 , ∀α ∈ R (1)

1 In practice, all quantizers are subject to overload, i.e., there exists a
saturation limitM > 0, such that|Q∆(α)| = M, ∀α > M − ∆

2
.

where∆ > 0 is the quantization step(see Fig. 2) and
⌈α/∆⌉ denotes rounding to the closest integer value greater
thanα/∆.
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Figure 2: Nearest Neighbour Scalar Quantizer.

Thus, the output ofQ∆ in Fig. 2 is the sequence of quan-
tized values{u[k]}k∈Z, where

u[k] = Q∆(c[k]), ∀k ∈ Z. (2)

The synthesis filterR in Fig. 1 is, in the simplest case,
an ideal continuous time low-pass filter with cut-off fre-
quency fmax = 1/(2τ) [Hz] and impulse response
sinc(2fmaxt), t ∈ R, where sinc(x) , sin(πx)/(πx). The
output ofR is the analog, continuous time signalã, given
by themixed convolution2

ã(t) =
∑

k∈Z

u[k]sinc(2fmaxt− k), ∀t ∈ R (3)

If there were no quantization (i.e., if∆ = 0), thenu[k]
would equalc[k] for all k. In this situation,ã(t) in (3)
would equalexactlythe inputa(t) for all t ∈ R, since, by
virtue of the Shannon-Whittaker sampling theorem [6], if
a(t) is band-limited tofmax, it can be reconstructed from
samples by the interpolation formula

a(t) =
∑

k∈Z

a(kτ)sinc(2fmaxt− k), ∀t ∈ R. (4)

In the presence of quantization, it is generally no longer
true thatã = a. Nevertheless, it is reasonable to expect
that, if the quantization step is small, then the quantized
samples{u[k]}k∈Z will be close to the analog samples
{a(kτ)}k∈Z for all k, and the output of the simple PCM
system of Fig. 1 will be close (in some sense) to the analog
input a. Unfortunately, this and other assumptions in the
above model are often far from realistic, as discussed next.

2.2 Practical Aspects of PCM

Whilst the PCM method described above is certainly at-
tractive, it suffers from several shortcomings that hinderits
usefulness in many practical situations. In what follows,
we will describe some of the main deficiencies of this ar-
chitecture.

2 The reconstruction formula is often written as a continuous-time
convolution with input the sequence of impulses{u[k]δ(t− kτ)}k∈Z,
yielding the expression in (3).



Synthesis Filter The ideal low-pass filter used in Fig. 1
for synthesis cannot be implemented in practice. Firstly,
it is non-causal. A very close approximation of the ideal
low-pass filter would still be non-causal, which rules it out
from any delay sensitive application.
Secondly, an ideal low-pass filter has an infinite impulse
response length. For practical low pass filters, the closer
they mimic the ideal filter, the longer the impulse response
will be. One problem with a long, slow decaying impulse
response is that it affects thestability of the reconstruction,
in the sense that bounded errors in the samples are able to
produce unbounded point-wise error in the reconstructed
output. As an example, consider the ideal low-pass recon-
struction in (4). It is easy to show that any bounded period-
ical error in the samplesa(kτ) of the form

{

ρ(−1)k
}

k∈Z
,

with |ρ| > 0, will yield an unbounded reconstruction error
in theL

∞ norm. The second difficulty with a synthesis fil-
ter with long (but finite) impulse response is cost and com-
plexity: In applications where synthesis is accomplished
via discrete-time FIR filters, longer impulse responses re-
quire higher computational complexity.
Another problem with the ideal-low pass synthesis filter
model is that, in many practical applications, the synthe-
sis filter is not a design choice, but is prescribed by other
considerations. In such cases, the synthesis filter can have
almost any frequency response. An important example of
this situation is that of sampled-data control systems, where
the plant itself can be thought of as comprising part of the
synthesis filterR in Fig. 1. We will return to this situation
later in Section 9.

Not Necessarily Band-Limited Input Signals The as-
sumption of band-limitedness of the input signala is also
very restrictive. Most real applications have to deal with
signals over a finite time interval (strictly speaking, any
non-zero finite duration signal is not band-limited [7]).
Even when processing a virtually infinite duration, per-
fectly band-limited signal, only a finite number of samples
can be used for the reconstruction. This introduces trunca-
tion errors [8], i.e., part of the inter-sample behaviour ofthe
input signal is not captured by the samples. On the other
hand, it is often the case that the sampling rate cannot be
made high enough to completely avoid aliasing. Whilst this
is commonly dealt with by using a low-pass anti-aliasing
filter before sampling, this paradigm may have significant
shortcomings whenever the signal carries relevant informa-
tion in the high frequency part of its spectrum, or when the
reconstruction filter is not perfectly band-limiting (see,e.g.,
[9, 10]). In this case other types of analysis filters should
be considered.

Availability of the Input Signal Before being able to
sample the value of any physical variable, it is necessary to
convert it to an electrical signal by means of a transducer,
which in itself is a dynamical system. It is often the case
that sampling is performed in the transducer itself. In this
case, one does not have access to the underlying continu-

ous time signal, but only to the samples taken. Depending
on the situation, this can deprive further stages of knowl-
edge of important inter-sample behaviour of the physical
variable. It is then necessary to make a wise design of the
synthesis stage, so that the input signal can be well approx-
imated at the output (see, e.g., [11, 12, 13]).

Quantization, Sampling Frequency and Data-Rate In
the simple PCM system of Fig. 1, quantization is done
element-wise by a nearest neighbour quantizer, see (2).
Thus, if one wishes to obtain a small reconstruction error,
one would naturally aim at reducing the quantization step.
In practice, however, the reduction of∆ is limited by cost
and structural constraints. Alternatively, if the statistics of
the input signal are known, then the mean square recon-
struction error can often be reduced by using a quantizer
in which the quantization step is not uniform along its dy-
namic range.
Moreover, even though the Shannon-Whittaker sampling
theorem shows that when the samples are un-quantized an
increase of the sampling frequency cannot improve recon-
struction (since it is already perfect), the situation with
quantized coefficients is different. More precisely, when
quantization is introduced, sampling above the Nyquist rate
(oversampling) can be utilized to reduce quantization error
(see Sec. 5.2) . Thus, one often has the chance to compen-
sate the effects of coarse magnitude quantization by means
of a finer time quantization, i.e., faster sampling rate. (The
reader may be well aware of this in1 bit DAC’s used in
some CD players.)
In practice, the product of the sampling rate and the number
of quantization levels is often constrained by data-rate lim-
itations. This is so because, although not explicitly shown
in Fig. 1, the sequence of quantized values{u[k]}k∈Z, in
binary form, has to be stored or transmitted before re-
construction takes place at another location in time and
space. This means that the total number of bits, or simi-
larly, the data-rate, is limited. In principle, if the quantizer
hasnU ∈ N levels, then the data-rate will be approximately
given by

Bit Rate,
log2 nU

τ
[bits/s]. (5)

It is possible, however, to reduce the data-rate by an effi-
cient encoding of the sequence of quantized values (com-
pression). When such encoding is applied, the data-rate
limitation translates into an information-rate limitation,
precisely given by the entropy of the sequence of symbols
at the output of the quantizer [14]. Systems with entropy
coding are also calledvariable-rateencoders. In this paper,
however, we will not consider such coding methods. Thus,
we will only considerfixed-rateencoding, and the data-rate
will be given by (5).

2.3 A More General Model for AD–Conversion

In view of the limitations of PCM conversion discussed
above, a more general model for the analysis of sampling,
quantization and reconstruction systems is presented in
Fig. 3.
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ã(t)
c[k]

QU

u[k]
R

τ

Filter

S

a(t)− ã(t)
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Figure 3: A more general sampling, quantization and reconstruction system.

For the remainder of this work, we will restrict our anal-
ysis to input signalsa which are modeled as finite energy
scalar functions of a single parametert (i.e., a ∈ L

2(R)).
For example, we could think oft as denoting time, for the
case of time varying scalar signals. Thus, the analysis filter
S in Fig. 3 accounts for all the continuous-time linear pro-
cessing of the input that occurs before the sampling takes
place. The sampling process is assumed uniform (i.e., reg-
ular sampling), with fixed sampling intervalτ .
The synthesis filterR in Fig. 3 represents the lin-
ear processing in continuous-time (possibly with some
discrete-time pre-filtering) applied to the quantized sam-
ples{u[k]}k∈Z. The output ofR is denoted as̃a. It ap-
proximatesa in some well defined sense.
The quantizerQU in Fig. 3 is labeledgeneralizedbecause
it is allowed to have access to previous and future input
samples during operation, andscalar, because it generates
a sequence of scalars, one at a time. We will only discuss
quantizers of this type in the remainder of this paper, which
justifies a more precise definition of the class ofgeneralized
scalar quantizers:

Definition 1 (Generalized Scalar Quantizers). Any quan-
tization strategy that can be devised within the following
conditions

• The quantizer has no access to the continuous time
signala, but only to the samples{c[k]}.

• The quantizer outputs a sequence of scalars{u[k]}
at a constant rate, one element everyτ units of time.
The total elements in the output sequence equals the
number of input analog samples.

• Each of the elements in the output sequence of the
quantizer can take values only from a finite, given and
fixed set of scalarsU, i.e, the output of the quantizer
satisfies

u[k] ∈ U, ∀k ∈ Z. (6)

• The quantizer has access to all past and future analog
samples.

is said to belong to the class of Generalized Scalar Quan-
tizers.

Note that this definition allows for the uniform, nearest
neighbour scalar quantizer in (2) as a special case. The
last condition in Definition 1 means that the generalized
scalar quantizer in Fig. 3 is allowed, in principle, to deter-
mine the outputu[ℓ], for anyℓ ∈ Z, based upon knowledge
of theentiresequence{c[k]}k∈Z, i.e., it is a dynamic sys-
tem. Therefore scalar quantizers with memory (such as the
predictive and noise shaping quantizers to be discussed in
Section 6) are special realizations of the generalized scalar
quantizer3 .
In Fig. 3 anerror frequency weightingfilter H has been
added. Inclusion of this filter reflects the fact that, depend-
ing on the application, the practical impact (orcost) of the
reconstruction error is frequency dependent. Accordingly,
H filters the instantaneous errora(t) − ã(t) to produce a
frequency weightederror signalǫH(t).
Based on the general setup illustrated in Fig. 3, throughout
the remainder of this work the performance of the system
will be assessed in terms of the squaredL

2 norm of the
generated signalǫH :

‖ǫH‖
2
L2 ,

∞
∫

−∞

(ǫH(t))
2
dt. (7)

3 SAMPLING AND RECONSTRUCTION
FROM A FRAME THEORETIC PERSPEC-
TIVE

As mentioned above, a paradigm which underlies many
signal processing schemes consists of apre-filtering (or
analysis) stage, a sampling stage, a digital, discrete-time
processing stage and apost-filtering (also referred to as
synthesisor reconstruction) stage. It has been shown that
these processes are equivalent to a sequence of mappings
between Hilbert spaces (see, for example, [18, 19, 20] and
[9]). This viewpoint allows one to use the powerful tools of

3 The possibility of quantization based onall the future samples also
admits a restricted class of vector quantizers. In this class, the reproduc-
tion codebook is restricted to be the setU|Z| ( R|Z|, where|Z| denotes
the cardinality of the integersZ. The asymptotic performance of infi-
nite length vector quantizers has been the subject of intensive research,
although traditionally with a different choice of reconstruction codebook,
see, e.g., [15, 16, 17]. However, vector quantization becomes impractical
for long vectors and large reproduction codebooks [17]. Quantizers suit-
able for on-line applications, based on a finite number of future samples,
will be discussed later, in Section 7.



Hilbert spaces, frames and algebra of operators to study and
design sampling and reconstruction systems. It allows for
elegant solutions to otherwise complex design optimization
problems, by using inner products and projection operators.

3.1 Historical notes

To the best of our knowledge, the first author to apply
Hilbert spaces theory to the sampling problem was F. Beut-
ler in 1961. In [21] he derived sampling theorems for
random stationary processes using complex exponential
Fourier expansions. Further insight and results for band-
limited signals were provided by K. Yao in 1967 for other
expansions, see [22]. Several publications with the Hilbert
space approach to the sampling problem followed in sub-
sequent years. Among others, a 1986 paper by Hidemitsu
Ogawa [23] presented a unified approach to generalized
sampling theorems. It introduced the idea of regarding the
approximation of signals in a more general, finite dimen-
sional reconstruction space, instead of restricting to per-
fect reconstruction by Fourier expansions. Interestingly,
in [23], a finite number of samples of a filtered signal
was used, as opposed to an infinite number of “raw” sam-
ples. By the early nineties, the recently arrived wavelet
theory [24, 25] began to stimulate a strong revival of sam-
pling theory (see, for example, [26, 27, 28]), by using the
mathematics of basis and frames in Hilbert spaces. This
framework allowed for the re-formulation of the sampling
and reconstruction problem in more general and practical
situations, including, inter alia, sampling and reconstruc-
tion from finite samples [23, 29], study of arbitrary in-
put and reconstruction spaces [11, 30, 31], sampling of
non-band-limited signals [27, 10], oversampling [32, 33],
non-uniform sampling [34, 18], filter-banks [35, 36], and
splines and interpolation [37, 38].
In the remainder of this section we will derive a represen-
tation of the sampling and reconstruction processes in a
Hilbert space frame theoretic context4 . For a more com-
plete formal analysis, see, for example, [18, 9, 34, 28, 20,
39].

3.2 Sampling and Reconstruction as Frame Opera-
tors

It will be shown next that the analysis and sampling stages,
which map continuous time signals into discrete time se-
quences, can be seen as theanalysis operatorof the sam-
pling frame. This frame is made of translates of the time
reversed impulse response of the analysis filterS. Simi-
larly, the reconstruction process, which maps discrete time
sequences into continuous time signals, can be seen as the
synthesis operatorof a reconstruction frame. It is made
of translates of the impulse response of the reconstruction
filter R.

Filtering and Sampling Consider the input signala in
the block diagram of Fig. 3. Assume thata is known to

4 For completeness, we have included an introduction to basesand
frames in Hilbert spaces in an appendix.

belong to some space of signals, sayA ⊆ L
2. Let y be the

output of the analysis filterS, which has impulse response
ϕ(t) ∈ L

2. Then,y(t) is given by the convolution:

y(t) , (a ∗ ϕ)(t) =

∞
∫

−∞

a(z)ϕ(t− z)dz, ∀t ∈ R.

If one now creates a sequencec[k] ∈ ℓ2 by taking the values
of y(t) at time instantst = kτ , k ∈ Z (sampling process in
fig. 3), one obtains

c[k] = y(kτ) = (a ∗ ϕ)(kτ)

=

∞
∫

−∞

a(z)ϕ(kτ − z)dz =

∞
∫

−∞

a(z)φ(z − kτ)dz

(8)

whereφ(t) , ϕ(−t), ∀t ∈ R. One can see that the last in-
tegral in (8) corresponds to the conventional inner product
in L

2, defined in (54), betweena(t) andφ(t − kτ). If we
now define theshift operatorTkτ by

Tkτφ(t) , φ(t− kτ) , t ∈ R, k ∈ Z, (9)

then it is possible to write (8) as

c[k] = (a ∗ ϕ)(kτ) = 〈a, Tkτφ〉L2 , ∀k ∈ Z. (10)

Therefore, the sampled filtered input signal can be seen as
the result of a sequence of inner products. From (10) and
Definition 6 (see Appendix), this is indeed the process de-
scribed by the analysis operatorΦ∗ associated to the frame
{Tkτφ}k∈Z. As a consequence:

Φ∗ : L
2 7→ ℓ2 , Φ∗a = {c[k]}k∈Z

Notice that, since{Tkτφ}k∈Z is a frame for the Hilbert
space

S , span{Tkτφ}k∈Z ⊂ L
2,

it follows thatc ∈ ℓ2 for all a ∈ L
2, as required5.

Synthesis (or Reconstruction) Consider now the con-
version from the discrete-time sequence{u[k]}k∈Z to the
continuous-time signal̃a(t), see Fig. 3. If we denote
the impulse response ofR asψ(t), then the band-limited
Shannon-Whittaker reconstruction scheme in (3) can be
generalized to:

ã(t) =
∑

k∈Z

u[k]ψ(t− kτ) =
∑

k∈Z

u[k]Tkτψ, ∀t ∈ R (11)

It is clear from Definition 5 (Appendix) that the reconstruc-
tion process (11) can be represented by the synthesis oper-
atorΨ associated with the frame{Tkτψ}k∈Z:

Ψ : ℓ2 7→ W , Ψu = ã

5 More precisely, ifB is the upper frame bound for{Tkτφ}k∈Z,

then‖c‖2 ≤ B ‖a‖2, see (56).



In this new setting,ψ(t) becomes the generating function
for the principal shift invariant reconstruction spaceW ,

span{Tkτψ}k∈Z, which is, in general, different from the
space of band-limited signals6 .
The sum in (11) can be seen as amixed convolution[9],
i.e.,

ã(t) = (u ∗ ψ)(t), ∀t ∈ R

which it takes a discrete time sequenceu and a continuous
time functionψ, yielding a continuous time functioña.
If the impulse responseψ(t) is chosen such that
{Tkτψ}k∈Z is a Bessel sequence (and therefore a frame
for span{Tkτψ}k∈Z, see (56) ), thenΨ is a bounded op-
erator, and the output̃a(t) = Ψu ∈ L

2 for all sequences
{u[k]}k∈Z ∈ ℓ

2.

The Combined Sampling and Reconstruction Process
It follows from the above that the sampling (analysis) and
reconstruction (synthesis) process can be stated as a se-
quence of operators between Hilbert spaces:

• Analysis:

Φ∗ : L
2 7→ ℓ2, c = Φ∗a.

In particular,c[k] = 〈a, Tkτφ〉, ∀k ∈ Z.

• Reconstruction:

Ψ : ℓ2 7→ W , ã = Ψu

Therefore, in the absence of quantization (i.e., ifu[k] =
c[k], ∀k ∈ Z), the complete process can be expressed as

ΨΦ∗ : L
2 7→ W , ã = ΨΦ∗a (12)

If the sequence{u[k]}k∈Z is obtained by quantization of
{c[k]}k∈Z, then (12) becomes

ΨQUΦ∗ : L
2 7→ W , ã = ΨQU(Φ∗a)

It is interesting to note that the above results allow one
to determine the ultimate limitations and capabilities of a
sampling and reconstruction system in terms of the Hilbert
spaces related to sampling rate and filters. More precisely,
the analysis and synthesis filters alone determine, respec-
tively, the largest class of signals that can be sensed (i.e.,
the sampling space) and the largest class of signals that can
be generated (i.e., the reconstruction space). A rather re-
markable implication is that in the intermediate (discrete-
time) stages one can only design the mapping between
these spaces,but not expand the sampling and reconstruc-
tion spaces themselves.
As a consequence, the design of an AD conversion scheme
can be thought of as involving two aspects, namely:

1. Choice of the sampling and reconstruction filters (i.e.,
choice of spaces).

6 Note that this space is of countable dimension.

2. Design of the mapping between signals in the sam-
pling space and signals in the reconstruction space
(i.e., design of discrete-time processing, including
quantization).

In what follows, we will describe aspects of the separate
design of the sampling/reconstruction strategy and of the
quantization method. Some aspects of the joint design
problem will be discussed later in Section 8.

4 SAMPLING AND RECONSTRUCTION
WITHOUT QUANTIZATION

In this section we discuss the effect that analysis and syn-
thesis filters have on the reconstruction quality. We will
assume that the input and output spaces are given and will
neglect quantization effects. The implicit trade-off hereis
between the quality of the reconstruction and the computa-
tional complexity (and delay) incurred in the sampling and
reconstruction processes.

4.1 Types of Reconstruction

As concluded in Section 3, the ultimate sampling and re-
construction capabilities of a system are limited by the
sampling and reconstruction spaces. These, in turn, are en-
tirely determined by the choice of analog filtersS andR, as
well as the sampling intervalτ . This suggests that, when-
ever possible, the design ofS andR should focus mostly
on the sampling and reconstruction spaces that one wishes
to obtain. Further refinement can be achieved by careful
design of discrete-time filters which can be located right
after the analysis filterS and before the synthesis filterR,
see Fig. 3. Interestingly enough, it has been shown that,
in general, the optimal mapping is obtained by making the
sampling and reconstruction frames duals of one another
[9, 40]. To achieve this for a given analysis frame , one can
insert a discrete-time correction filter before the synthesis
filter to make the synthesis frame the dual of the analysis
frame. Although, in general, the dual frame of some given
frame is not unique, there exists only one shift-invariant
dual frame (i.e., a unique correction filter) for each given
shift-invariant frame [40]. In what follows, we will con-
sider the following situation:

• H is a non-separable Hilbert space (e.g.,L
2(R)).

• A ⊆ H is the space that contains all possible input
signals.

• S = span{Tkτφ}k∈Z ⊂ H is the sampling space7 .

• W = span{Tkτψ}k∈Z ⊂ H is the reconstruction
space.

Depending on the relation between the input spaceA, sam-
pling spaceS and reconstruction spaceW , we will con-
sider three types of reconstruction notions, namely: con-
sistent, orthogonal and perfect reconstruction.

7 Notice that bothS andW , being of countable dimension, can never
be equal to an infinite, non-separable space such asH.



Consistent Reconstruction The first and most generally
attainable reconstruction goal is that ofconsistent recon-
struction, first introduced in 1994 by Unser and Aldroubi,
see [11]8 . A signal approximation is said to be consistent
if it yields the same samples (observations) as the original
signal when re-injected into the system, i.e.ã ∈ W is a
consistent approximation ofa ∈ A if and only if

Φ∗ã = Φ∗a.

The idea of consistent reconstruction is depicted in
Fig. 4.a); in this figure,̃a is projected ontoW alongS⊥,
the null space ofS, see (49).

(a) (b)

a

W

W
⊥

a

S ⊥

S

W

ã
ã

Figure 4: a) Consistent reconstruction (oblique projection);
b) MSE reconstruction (orthogonal projection).

The notion of consistent reconstruction was first introduced
for Riesz bases in [11], and then extended for frames in
[31, 19, 13, 41, 40] and [42].

Orthogonal Reconstruction The second type of recon-
struction isorthogonal reconstruction, also called mini-
mum mean squared error (MMSE) reconstruction. It re-
quires additional conditions (see next section). In this
type of reconstruction, the system generates, for any input
a ∈ A, the output̃a ∈ W that minimizes‖a− ã‖

L2 , i.e.:

ã = arg min
w∈W

‖a− w‖
L2 .

It is well known that this notion is equivalent to an orthogo-
nal projection of the signals ofA onto the output spaceW
(see Appendix A.1.1). The intuitive notion of orthogonal
projection is illustrated in Fig. 4.b). Note that theã shown
in this figure is, indeed, the closest point toa in the output
spaceW .

Perfect Reconstruction The third, and most demanding
notion is that ofperfect reconstruction, i.e.,

ã = a, ∀a ∈ A.

As will be shown below, depending on the spacesA, S and
W , perfect reconstruction can still be possible, even, for
example, for non band-limited signals [43, 10, 27].
In the remainder of this section we will describe conditions
on the sampling and reconstruction method which ensure
that each of these notions can be achieved.

8 It is worth mentioning, that Ogawa in his 1986 work [23] already
referred to this concept as there-observation property(of a finite sequence
of samples), deriving mathematical expressions for the required synthesis
method.

4.2 Conditions for Consistent, Optimal and Perfect
Reconstruction

Under the assumption that the sampling and reconstruction
spaces satisfy thedirect sum condition9

H =W ⊕S⊥, (13)

necessary and sufficient conditions have been found in
order to make the sampling and reconstruction system
achieve consistent reconstruction and, as particular cases,
optimal and perfect reconstruction as well [19, 40, 42].
For shift invariant frames and spaces, the direct sum con-
dition can be conveniently expressed in the frequency
(Fourier) domain10 based on the functions

Aψ : R 7→ R, Aψ(γ) ,
∑

k∈Z

∣

∣

∣
ψ̂

(

γ+k
τ

)∣

∣

∣

2

(14)

Aφ : R 7→ R, Aφ(γ) ,
∑

k∈Z

∣

∣

∣
φ̂

(

γ+k
τ

)
∣

∣

∣

2

(15)

and thenull setsof Aψ andAφ, denoted, respectively, as
N (Aψ) andN (Aφ), where

N (f) , {γ ∈ R : f(γ) = 0} , f : R 7→ R, (16)

by means of the following proposition:

Proposition 1 ([40, Proposition 4.8]). Let ψ, φ ∈ L
2(R),

and assume that{Tkτψ}k∈Z and{Tkτφ}k∈Z are frame se-
quences. Then the following are equivalent:

(i) L
2(R) =W ⊕S⊥,

(ii) N (Aψ) = N (Aφ) and there exists a constantA > 0
such that

A ≤

∣

∣

∣

∣

∣

∑

k∈Z

ψ̂(γ + k)φ̂∗(γ + k)

∣

∣

∣

∣

∣

, ∀ γ /∈ N (Aψ).

(17)

It is shown in [42] that, if the direct sum condition is satis-
fied, thenã ∈ W is a consistent reconstruction of an input
a ∈ H if and only if ã is theoblique projectionof a ontoW
alongS⊥, the null space ofS (see Appendix A.1.1). Such
a projector, denoted byEWS⊥ , is defined as

EWS⊥ :H 7→ W , EWS⊥h = w,

whereh = w + v, with w ∈ W , v ∈ S⊥

The following defines the concept ofoblique dual frame
and establishes its relation with the oblique projector:

Lemma 1 (from [40, Lemma 3.1]). Assume that{fk}k∈Z

and {gk}k∈Z are Bessel sequences inH and let S =
span{gk}k∈Z, W = span{fk}k∈Z. Assume thatH =

W ⊕S⊥. Then the following are equivalent:

9 S⊥ is the null space ofS, see (49) in Appendix. The expression
H = F ⊕ G means thatF ∩ G = {0} and that everyh ∈ H can be
decomposed asf + g, wheref ∈ F , g ∈ G, see, e.g., [44, Def. 3.4.11,
page 99].

10 Here, and in the sequel,̂ψ denotes the Fourier transform ofψ
defined by:ψ̂(γ) =

R ∞
−∞

ψ(t)e−2πitγdt .



a) w =
∑

k∈Z〈w, gk〉fk, ∀w ∈ W .

b) EWS⊥h =
∑

k∈Z〈h, gk〉fk, ∀h ∈ H.

c) ESW⊥h =
∑

k∈Z〈h, fk〉gk, ∀h ∈ H.

Furthermore, if the above three equivalence conditions are
satisfied, then{gk}k∈Z is an oblique dual frame of{fk}k∈Z

onS and{fk}k∈Z is an oblique dual frame of{gk}k∈Z on
W .

From Lemma 1 one can see thatΨΦ∗ becomes an oblique
projector if and only if{φk}k∈Z is anoblique dual frame
of {ψk}k∈Z in S.
Although, as with the conventional case considered in Def-
inition 7 (see Appendix A.4), the oblique dual frame within
a given space is not unique, the shift-invariant oblique dual
frame of a shift invariant frameis unique [40]. This means
that, once reconstruction and sampling spaces are defined,
there exists a unique analysis filter that makes the analysis
frame the oblique dual of the reconstruction frame. Con-
versely, there exists a unique reconstruction filter that turns
the reconstruction frame into the dual of the analysis frame.
An expression in the Fourier domain for the oblique dual
frame condition in terms of the frequency responses of the
analysis and reconstruction filters is given in [40, Theorem
4.3], which, by virtue of Proposition 1, can be rewritten as
follows:

Theorem 1. Let ψ, φ ∈ L
2(R) and assume that

{Tkτψ}k∈Z and {Tkτφ}k∈Z are frame sequences, span-
ning the closed spacesW andS, respectively. IfL2(R) =
W ⊕S⊥, then the following holds:

(i) There exists a unique functioñψ ∈ S such that

w =
∑

k∈Z

〈w, Tkτ ψ̃〉Tkτψ, ∀w ∈ W ;

(ii) This unique functionψ̃ ∈ S is given in the Fourier
domain by11

ˆ̃
ψ(γ) =















φ̂(γ)
∑

k∈Z

ψ̂(γ + k)φ̂∗(γ + k)
, if γ /∈ N (Aψ)

0 , if γ ∈ N (Aψ)
(18)

Remark 1. In relation to(18), we note that:

• The functionˆ̃ψ(γ) in (18) is 1-periodic.

• The result in(18)allows one to obtain a shift invariant
oblique dual frame for{Tkτψ}k∈Z onS for a givenφ
by inserting a continuous or discrete-time correction
filter Qφψ with transfer function

Qφψ(γ) ,

ˆ̃ψ(γ)

φ̂(γ)
, ∀γ ∈ R (19)

11In (18), φ̂∗ denotes the complex conjugate ofφ̂.

just before or just after the analysis filter. With such an
arrangement, and provided Conditions (i) and (ii) in
Theorem 1 are satisfied, the system will yieldperfect
reconstructionfor all inputs a ∈ W and consistent
reconstructionfor all inputsa ∈ L

2, as required.

• Conversely, from the reciprocity of oblique dual
frames,(18)also allows one to obtain the oblique dual
frame for{Tkτφ}k∈Z onW for a givenψ. This can be
achieved by inserting a continuous (or discrete) time
correction filter with transfer functionQφψ(γ) defined
in (19) betweenS andR. Notice that this correction
filter does not alter the space associated to the stage
in which it is inserted, i.e., if the impulse response
of Qφψ is qφψ(t), then span{Tkτ (φ ∗ qφψ)}k∈Z =
span{Tkτφ}k∈Z.

From the previous results it follows that, if the direct sum
(17) and duality (18) conditions are met, then necessary
and sufficient condition for each type of reconstruction can
be stated as follows:

Conditions for Perfect Reconstruction Perfect recon-
struction only for all inputsa ∈ W is possible, without
any further requirement

Conditions for (MSE) Reconstruction (Orthogonal Pro-
jection) If, additionally,S = W , thenEWS⊥ becomes
an orthogonal projector ontoW , i.e.,EWS⊥ = PW , see
Appendix A.1.1. This guarantees that the output signalã
will be the best approximation inW for the input signal
a ∈ H, i.e., it will minimize‖a− ã‖

L2 .

Conditions for Consistent Reconstruction (Oblique
Projection) Consistent reconstruction will be achieved
for all a ∈ L

2 without further requirements.

5 QUANTIZATION

Quantization is the process of translating analog values into
values which belong to a finite set. The representation of
analog samples with infinite accuracy would require an in-
finite number of bits. Quantization allows one to achieve
a controlled approximate representation ofinfinite analog
values, which in turn can be represented with a finite num-
ber of bits. Hence, the main purpose of analog to digital
conversion is to compress data, whilst aiming to obtain the
best possible approximation of the analog signal. This is to
be achieved within data-rate constraints and according to
some fidelity criterion, i.e., “making most out of a little”.
As already mentioned in Section 2.3, the quantizers to be
discussed in this paper belong to the family of generalized
scalar quantizers, see Definition 1. As such, quantizers
generate an output sequence{u[k]}k∈Z whose values are
constrained to belong to a set ofnU elements (see (6)) , the
quantization alphabetU, now formally defined as:

U , {µ1, µ2, . . . , µnU
}, µi ∈ R (20)



Traditionally, quantization has been analyzed only in terms
of discrete-time performance, usually looking at the MSE
between input samples and quantized samples. Denot-
ing the input and output sequences of the quantizer as
{c[k]}k∈Z and{u[k]}k∈Z, the MSE is given by‖c− u‖2ℓ2 :

‖c− u‖2ℓ2 ,
∑

k∈Z

( c[k]− u[k] )
2 (21)

We will next briefly discuss the simplest realization of the
generalized scalar quantizer in Fig. 3: the zero-memory
scalar quantizer. Its performance will be analyzed in terms
of the MSE as defined in (21). Other realizations of
the generalized scalar quantizer, such as quantization with
memory (by means of feedback) and quantization with
memory and “preview”, will be analyzed in Sections 6
and 7, respectively. For a more comprehensive analysis of
quantization see, e.g., [45, 16, 17].

5.1 Scalar Quantization

Scalar quantization is also referred to aszero-memory
quantization, since each analog sample is quantized ignor-
ing previous or future samples. Scalar quantizers partition
the real line into a set ofnU disjoint and consecutive inter-
vals I = {I1, . . . , InU

}, Ii ⊂ R. A unique scalar from
U is associated to each interval inI, usually satisfying
µi ∈ Ii, i = 1, . . . , nU. Depending on the choice of the
partition intervals, either a uniform or a non-uniform scalar
quantizer is obtained.

Uniform Quantizer The simplest scalar quantizer is the
nearest neighbour uniform quantizer introduced in Sec-
tion 2.1, where the partition of the input space (the real
line) is given by (1) and the elements ofU satisfy

µi+1 − µi = ∆, i = 1, . . . , nU − 1

Defining the positive constantsextreme output valueM and
extreme input valueC as

M , −µ1 = µnU
(22)

C , M + ∆/2, (23)

the quantizer is said to beoverloadedif the input|x| > C.
If the probability density function of the analog samples is
smooth and the quantization step is small enough, then the
quantization error can be approximately modeled as a ran-
dom variable with uniform distribution over[−∆/2,∆/2]
(see [46] for precise conditions), and the mean squared er-
ror between the inputx and the outputu = QU(x) of the
quantizer is given by the distortion measure:

D , E
[

(x−QU(x))2
]

= ∆2/12,

where E[X ] denotes the expected value of the random vari-
ableX .
In terms of the number of bits utilized to represent each
sample, we first note that

∆ = 2C 2−B

Thus, the distortion depends on thenumber of bits per sam-
pleB as

D =
C2

3
2−2B ≃

M2

3
2−2B, for largeB . (24)

Non-Uniform Quantizer For a given number of bits per
sample, the distortionD can be further reduced if the prob-
ability density function (PDF) of the analog samples is
known. This can be achieved by utilizing a non uniform
quantization step. Any form of non-uniform quantization
can be accomplished by placing complementary non linear
elements before and after a nearest neighbour quantizer.
The first block is acompressor, and its transfer function
C (x) is a monotonically increasing function satisfying

C (−C) = −C, C (C) = C, C (0) = 0

The complementary block placed after the quantizer is
calledexpander, and has a transfer functionC −1.
Adapting an expression first derived in [47], one has that,
for a non uniform quantizer with a large number of quanti-
zation levels, compressor characteristicC (x) and without
overload, the MSE due to quantization is given by

DC =
M2

3
2−2B

Xmax
∫

Xmin

fx(x)

[C ′(x)]2
dx (25)

wherefx(x) is the PDF of the analog samples andC ′(x) ,

dC /dx. The no overload assumption implies−C ≤ Xmin

andXmax ≤ C, and thatfx(x) = 0, ∀x /∈ [Xmin, Xmax].
Notice that forC ′(x) = 1 (i.e., with a uniform quantization
step), (25) becomes (24).
Clearly, minimization ofDC in (25) requires a compressor
curveC matched to the PDF of the input signal. The opti-
mal compressor characteristicC

∗ is given by the solution
to

dC ∗(x)

dx
= α [fx(x)]

1/3 (26)

whereα is a constant such thatC (C) = C. When the solu-
tion of (26) is inserted into (25), the MSE without overload
and for largeB is found to be

DC∗ =
σ2

12











Xmax/σ
∫

Xmin/σ

[fxN
(x)]1/3 dx











3

· 2−2B (27)

whereσ2 andfxN
(x) are the variance and the normalized

PDF of an individual input analog sample, respectively. In
relation to (27), it must also be pointed out thatC (see
(23) ) must be made several times larger thanσ for the no-
overload assumption and (27) to be valid. For more details
about the derivation and applications of this and other re-
sults related to scalar quantization, see, e.g., [48] and the
references therein.



5.2 Oversampling

It is possible to further reduce the reconstruction MSE,
while keeping the quantization step constant, by increasing
the sampling frequency above the Nyquist frequencyfN .
This technique is calledoversampling. For oversampling
ratio r , 1/(τfN) not too large, the mean square error is
reduced asr−1, i.e.,

Dr = D1r
−1 (28)

whereD1 is the MSE whenr = 1 [47]. Notice that this can
also be seen as a particular case of the resilience proper-
ties of redundant frame expansions discussed in Appendix
A.5 (see also, e.g., [32, 49]). However, as the sampling
frequency is increased, quantization noise becomes more
and more correlated and the decrease rate ofDr dimin-
ishes. Furthermore,Dr asymptotically approaches a lower,
strictly positive limit. The bigger∆ is, the higher this limit
becomes. A larger quantization step also causes the de-
crease rate ofDr to depart from (28) “sooner” asr is in-
creased [47].
The reconstruction error can be further reduced, for
a given oversampling ratio, by the use of feedback12.
Furthermore, feedback A/D converters yield a MSE that
decreases steadily asr is increased. Thus, one can obtain
an arbitrarily low MSE, for a given∆, by sampling fast
enough. These converters are briefly described in the next
section.

6 AD CONVERTERS WITH FEEDBACK

Quantization schemes that use feedback can be grouped
into two main families: predictive quantizersand noise
shaping quantizers. Examples of the first type are thedelta
modulatoranddifferential pulse code modulator(DPCM)
(see, e.g., [50]). The popularΣ∆ (sigma-delta) converter,
see, e.g., [51], belongs to the latter type.
The following is a basic description of the main character-
istics of both converter families, based mainly on the ap-
proach proposed in [52]. In the sequel, the quantization
process is modeled as additive noise, corresponding to the
quantization error of a scalar quantizer.

6.1 Predictive Quantizers

The general form of a predictive quantizer is shown in
Fig. 5.

U(z)

N(z)

Scalar Quantizer

C(z) D(z)
E(z)

H−1
p (z)

1 −H−1
p (z)

Figure 5: A predictive quantizer

12 Here we begin to see control theory impacting signal processing.

In this diagram,U(Z) andC(z) correspond, respectively,
to the Z-transforms of the analog samples sequence{c[k]}
and the quantized output sequence{u[k]} depicted in
Fig. 3. Thus, the quantizer contained in the dashed line
rectangle in Fig. 5 is a particular realization of the gen-
eralized scalar quantizer in Fig. 3. The filterH−1

p (z) in-
cluded at the end of the chain in Fig. 5 can be considered as
part of the reconstruction stage in Fig. 3. The termsE(Z)
andD(Z) in Fig. 5 correspond to the Z-transforms of the
discrete-time signals in each of the respective nodes.N(z)
is the Z-transform of the error introduced by the scalar
quantizer, i.e.,N(z) = U(z) − E(z). From Fig. 5, the
expression for the outputU(z) is found to be

U(z) = Hp(z) [C(z) +N(z)] . (29)

Thus, the filtered outputD(z) satisfies

D(z) = C(z) +N(z) (30)

The key to the noise reducing capabilities of the predictive
quantizer rests on the prediction filterHp(z). This filter is
designed to minimize the variance of the prediction error

E(z) = Hp(z)C(z) + [1−Hp(z)]N(z), (31)

see Fig. 5. It is common to assume that the quantiza-
tion noise is uncorrelated to any of the signals in the loop
[51]13 . Thus,Hp(z) is chosen so as to reduce the contri-
bution ofC(z) to E(z) in (31). By doing so, the variance
(energy per sample) of the analog sequence that enters the
quantizer is reduced. This in turn allows one to reduce the
quantization step∆ in the embedded scalar quantizer, with-
out increasing the number of quantization levels needed to
avoid overload. Thus, by reducing a measure of the term
Hp(z)C(z) in (31), one is also reducing the quantization
noise contribution, and the MSE is reduced accordingly.
Of course, how much distortion reduction is achieved will
ultimately depend on how predictable the sequence{c[k]}
is, i.e., on the autocorrelation of{c[k]}. It will also depend
on how well the prediction filterHp(z) is able to capture
this predictability
It has been shown [52] that the MSE of the scheme in
Fig. 5 decreases with the oversampling ratio not “faster”
thanr−(2np), wherenp is the order of the filterHp(z). If
an additional ideal low pass filter with cut-off frequency
fN/2 is placed afterH−1

p (z) (see Fig. 5), then the MSE is
reduced at most asr−(2np+1). A common choice ofHp(z)
is of the form(1 − z−1)np .
Note that the predictive quantizer in Fig. 5 can reduce dis-
tortion even if signals are sampled at Nyquist frequency, as
long as the input analog samples are correlated. If the input
samples are uncorrelated (white noise), then the predictive
quantizer is unable to yield any MSE reduction at all. It
is the increase in the autocorrelation of the input samples
produced by oversampling which allows for ther−2np be-
haviour in the MSE reduction rate.

13 Other analysis methods of quantization noise consider moreso-
phisticated spectral and probabilistic models (see, e.g.,[53, 54]), as well
as non-linear deterministic models (see, e.g., [55, 56, 57,58]).



6.2 Noise- Shaping (Σ∆ Quantizers)

The second main category of feedback quantizers corre-
sponds to the noise-shaping quantizers such asΣ∆ A/D
converters, first proposed by Inose and Yasuda in [59]. One
possible form to represent a noise shaping quantizer is de-
picted in Fig. 6. Again,C(z) andU(z) correspond, respec-
tively, to the Z-transforms of{c[k]} and{u[k]} in Fig. 3.
The noise shaping quantizer within the dashed line rectan-
gle in Fig. 6 is a particular realization of the generalized
scalar quantizer in Fig. 3.

C(z)

1 −Hn(z)

N(z)

Scalar Quantizer

U(z)H−1
n (z)

Figure 6: A noise-shaping quantizer.

From this figure, it is easy to see that the outputU(z) is
given by

U(z) = C(z) +Hn(z)N(z) (32)

where the noise shaping filterHn(z) constitutes a degree of
freedom in the design process. SinceC(z) is band-limited,
and because of oversampling, it is generally convenient to
chooseHn(z) to be a high-pass filter, see, e.g., [51]. With
this choice, the quantization noise is attenuated within the
signal band whilst increased outside of it (see Fig. 7). This
compensatory increase in the off-band quantization noise is
unavoidable, as determined by the Bode integral theorem
[60] 14 . Because of the frequency shaping of the quanti-
zation noise, most of its energy can be suppressed by low
pass filteringU(z), leaving only the in-band portion of the
quantization noise. By doing so, it is verified in [52] that
the MSE decays by increasing oversampling ratio at most
asr−(2nn+1), wherenn is the order of the noise shaping
filter Hn(z). Most common choices forHn(z) have the
form (1− z−1)nn/P (z), whereP (z) is an FIR filter.

ωmax−π π−ωmax

Signal Band

Spectral Density

Hn(ejω)N(ejω)
Quantization Noise

ω

Figure 7: Quantization Noise Shaping.

As in control systems, one of the beneficial aspects of us-
ing feedback in analog-to-digital converters is the increased

14 Note thatHn(z) in (32) corresponds to the closed loop sensitivity
of the system in Fig. 6 (see, e.g., [61, 62, 63]).

robustness of the resultant system. Indeed, if properly de-
signed, feedback converters allow one to achieve high ac-
curacy quantization despite the use of inaccurate building
blocks (such as the scalar quantizer itself, which can be
allowed to have a very coarse and uncertain quantization
step). This makes feedback quantizers the preferred choice
for many practical applications.
It should also be noted that the above mentioned decay
rate of the MSE with increasing oversampling ratio is
not fast enough to be rate-distortion efficient. Indeed,
oversampling AD converters require, in general, a higher
data-rate than a system with finer quantization and no
oversampling to achieve the same distortion. This can
be seen by noting that, for feedback converters, the MSE
decays only polynomially with increasing the oversam-
pling ratio, as15 O(r−(2n+1)), while the MSE decreases
with increasing the bits per sample (i.e., reducing∆) as
O(2−2B), i.e., exponentially. Nevertheless, recent results
show that theL∞ norm of the reconstruction error in
Σ∆ converters can be reduced asO(κ−r), κ > 0, by
selecting for each oversampling ratio an appropriate noise
shaping filter from an infinite set of filters [64]. Following
a different approach, quantization schemes based on
threshold crossings exhibit a reconstruction MSE that
decays exponentially with increasing oversampling ratio
[65, 66], and are thus rate-distortion efficient.

7 MOVING HORIZON QUANTIZATION

Interestingly, control theory can be used to design the gen-
eralized scalar quantizer in Fig. 3. More precisely, since the
output of the quantizer is constrained to belong to a finite
alphabet of values, the situation can be regarded as a con-
trol problem with input constraints. This point of view mo-
tivated us to applyMoving Horizon Optimization(MHO)
tools to achieve a more effective noise shaping quantizer.
This paradigm usesModel Predictive Control, which has
proved to be a powerful tool for dealing with constrained
systems [67, 61, 68, 69, 70, 63]. The quantization scheme
so obtained, namedMulti Step Optimal Converter(MSOC)
[71], typically outperformsΣ∆ quantizers, while embed-
ding the latter as a particular case. We will present next
some of the fundamental principles behind the MSOC. The
remainder of this section has been basically adapted from
[71].

7.1 Noise Shaping Quantization as an Optimization
Problem

A more general formulation to analyze the discrete-time
performance of noise shaping quantization can be derived
from the block diagram depicted in Fig. 8.
In Fig. 8,{c[k]} and{u[k]} represent, respectively, the in-
put analog samples and the quantized output sequence. The
motivation for quantization noise-shaping has been incor-

15 If x is a variable that tends to some limit andg(x) is a positive
function, the expressionf(x) = O(g(x)) means that there exists a finite
constantΛ such that|f(x)| < Λg(x) for all values ofx.



c[k] Hd(z) ǫHd
[k]

Frequency Weighting Filter
Discrete-Time Error

QU
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Scalar

Quantizer
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Figure 8: Scheme to generate the frequency weighted
quantization error sequenceǫHd

[·].

porated by introducing a frequency weighted reconstruc-
tion error sequence, denoted by

ǫHd
[k] , Hd(z) (c[k]− u[k]) , k ∈ Z, (33)

compare to (7).
In (33),Hd is a stable, causal, linear, time-invariant filter,
which can be characterized via16 :

Hd(z) , 1 + C(zI −A)−1B, (34)

whereA ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n andn ∈ N

is the state dimension, i.e. the order of the filterHd. This
filter can, e.g., represent the typical low-pass filter utilized
in oversampled conversion, see e.g. [72], in order to deci-
mate the converter output. In audio applications it makes
sense to chooseHd as a psycho-acoustic model of the hu-
man hearing, compare also with work in [73, 74].
The performance of the quantization process in Fig. 8 will
be evaluated by the measure

V ,
∑

k∈Z

[ǫHd
[k]]2. (35)

The costV penalizes the distortion introduced in the con-
version process in a frequency-selective manner.
If the generalized scalar quantizer in Fig. 8 is designed to
minimize the performance measureV , then its quantized
outputu will approximate the inputc, while the un-filtered
quantization error,a− u, will tend to have a spectrum sim-
ilar to that of the inverse of the filterHd. Thus, the method
will shape the quantization noise spectrum, just as theΣ∆
converter discussed in Section 6 does.
Unfortunately, minimization ofV by using expression (35)
is not possible in practical applications, due to the com-
plexity of solving the associated combinatorial optimiza-
tion problem. Furthermore, in the general case, an optimal
quantizer would need topre-viewthe entire signalc. This
is clearly unsuitable for on-line applications.

7.2 Multi Step Optimal Converter

In order to obtain a more practical method to minimize the
cost in (35), it is convenient develop a recursive conver-
sion method, which can be implemented on-line. For that
purpose, we will first introduce a cost measure over a fi-
nite horizon, to deploy later the concept ofmoving horizon
approximation, see [63].

16 Here, and in the remainder of this paper,z denotes the forward
shift operator,zv[k] = v[k + 1].

Finite Horizon Formulation A practical conversion
scheme, suitable for online applications, must operate se-
quentially, evaluating a restricted number of decision vari-
ables and considering a moderate number of future values
of c. For this purpose, it is convenient to characterizeǫHd

as the output in a state space representation ofHd

x[k + 1] = Ax[k] +B(c[k]− u[k])

ǫHd
[k] = Cx[k] + c[k]− u[k].

(36)

This relation follows directly from (34). In (36),x ∈ Rn is
the state vector. Note that, due to the Markovian structure
of (36), at timek = ℓ the impact of the past trajectories of
c andu on future values ofǫHd

is exactly summarized by
means of thepresentstate,x[k].
Given the above, we next replace the infinite horizon cost
function (35) by thefinitehorizon cost:

VN (ℓ) , xTPx+

ℓ+N−1
∑

k=ℓ

(ǫHd
[k])

2
. (37)

In (37),N ∈ N determines the prediction horizon andP is
a given positive semidefinite matrix.
With a given and known current state valuex[ℓ] (see (36)),
VN is a measure of the filtered distortionǫHd

over the pre-
diction horizon plus a measure of thefinal state,x[ℓ +
N ]. These predicted quantities are formed based upon the
model (36).
The finite horizon costVN (ℓ) proposed in (37) takes into
account only a finite numberN of constrained values. The
value ofN determines the computational complexity re-
quired for the minimization ofVN (ℓ). This should be com-
pared with the infinite number of decision variables in the
original costV . Using a finite horizonN also reduces the
required pre-viewing ofc toN − 1 samples. SinceN is a
design parameter, it can be chosen so that the minimization
can be carried out on-line.

Moving Horizon Approach As noted above, the opti-
mizer toVN (ℓ), say~u⋆ℓ , contains a feasible output sequence
for time instantsℓ ≤ k ≤ ℓ + N − 1. Thus, in princi-
ple, one could think of an implementationin blocks, where
the minimization is carried out everyN sampling instants.
Unfortunately, the last few elements of~u⋆ℓ depend only on
a small window of the filtered distortion,ǫHd

. To improve
performance, the multi-step optimal converter utilizes only
thefirst element of~u⋆ℓ , sayu⋆[ℓ] ∈ U. It becomes theℓ-th
element of the converter output sequence, by setting:

u[ℓ]←− u⋆[ℓ] (38)

It is also utilized to update the state according to (36), i.e.:

x[ℓ+ 1] = Ax[ℓ] +B (c[ℓ]− u⋆[ℓ]) . (39)

At the next sampling instant, this new state value is used
to minimize the costVN (ℓ + 1), yielding u[ℓ + 1]. This
procedure is repeatedad-infinitum. As illustrated in Fig. 9



for the caseN = 3, the prediction horizon of the criterion
VN (k) moves (slides) forward ask increases. The past is
propagated forward in time via the state sequencex, thus,
yielding a recursive scheme.
The resultant architecture defines the MSOC. It constitutes
an analog-to-digital converter architecture which optimizes
the frequency weighted conversion distortion, based upon
Model Predictive Control principles.

ℓ− 1

u[ℓ− 1]

ℓ+ 1 ℓ+ 2ℓ

ℓ− 1

u[ℓ− 1]

ℓ

ℓ+ 3

ℓ+ 1 ℓ+ 2

Horizon atℓ

~u⋆ℓ+1

~u⋆ℓ

Horizon atℓ+ 1

u[ℓ]

k

k

Figure 9: Moving horizon principle,N = 3.

Interestingly, it has been shown that the MSOC withN = 1
andP = 0 reduces to theΣ∆ converter, see [71]. However,
it is easy to see that, in general, larger values forN provide
better performance, since more data is taken into account
in the decision process of allocating scalars fromU to the
elements in the sequenceu. In fact, one can expect that,
if N is chosen large enough relative to the time scale of
Hd, then the effect ofu[ℓ] on ǫHd

[j] for j ≥ ℓ+N will be
negligible and the performance of the MSOC will approach
that obtained if the infinite horizon measure of (35) were
to be minimized directly (which, for the reasons explained
above, is impractical). This asymptotic behaviour has been
experimentally confirmed, see [71].
In summary, the prediction horizonN allows the designer
to trade-off performance versus on-line computational ef-
fort. Interestingly enough, excellent performance can often
be achieved with relatively small horizons (see, e.g., [71]),
thus rendering the scheme quite easy to implement in prac-
tical cases.
Another advantage of the MSOC when compared to the
Σ∆ converter resides in that the matrixP in (37) can be
designed to ensurestability like properties of the MSOC,
see [71].

8 SAMPLED-DATA QUANTIZATION

Given that digital signal processing systems have to inter-
act with the real, physical world, the design of a quan-
tization scheme should take into account the sampling
(continuous to discrete-time) and reconstruction (discrete
to continuous-time) stages between which it is to be in-
serted. Unfortunaly, there exists only partial understanding

of how sampling-reconstruction strategies interact with a
given quantization method in terms of the resulting, over-
all reconstruction error. Furthermore, most literature ana-
lyzes the performance of quantizers in terms of how close
the input analogsamplesare approximated by the out-
put, quantizedsamples, and not by comparing the ana-
log, continuous-time underlying signal entering the sys-
tem against the analog, continuous-time reconstructed sig-
nal that comes out of the reconstruction stage of the sys-
tem. Accordingly, performance is most often measured by
the ℓ2 norm of the sample approximation error, see (21).
Similarly, traditional works on sampling and reconstruc-
tion theory build their analysis based first upon ideal, non-
quantized samples, incorporating later the effect of quanti-
zation viewed as the corruption of ideal samples by white
additive noise. Although it has been shown that this white-
noise model of quantization is indeed accurate for small
quantization steps and input samples whose PDF satisfies
certain rather weak requirements, it is certainly not accu-
rate, for example, when quantization steps are large, or
when feedback structures are deployed. As presented in
Sections 6 and 7, it is often the case that quantization noise
is deliberately made non-white by the quantizer so as to
minimize a frequency weighted measure of the reconstruc-
tion error.
Within the setup depicted in Fig. 3, we aim to present in
this section some results and additional insight related to
the joint problem of designing systems that make use of
the pre-filtering, sampling, quantization and reconstruction
paradigm17.

8.1 Decomposition of the Reconstruction Error

The Hilbert spaces model of the sampling and reconstruc-
tion process described in Section 3 leads to a somewhat
trivial but nevertheless important result: it allows for a
decomposition of the final reconstruction MSE between
the analog inputa and the analog output̃a (see Fig. 3)
of a sampling-quantization-reconstruction system into two
terms. The first term corresponds to the error due to the
“spaces mismatch”, i.e., the non coincidence of input and
output signal spaces. The second error term comes from the
deviation of the discrete-time processing (both linear and
non-linear) from the optimal mapping between input and
output vectors in the sampling and reconstruction spaces,
respectively. The following proposition formalizes this
idea:

Proposition 2. Letψ(·) ∈ L
2 be the impulse response of

the reconstruction filterR, such that{Tkτψ}k∈Z is frame
forW , span{Tkτψ}k∈Z, and letτ be the sampling inter-
val. Then, the mean square reconstruction error between
any input signala ∈ L

2 and an approximatioña ∈ W
generated by the reconstruction stage can always be de-

17 Other approaches to the joint problem which fall outside this
framework, such as sparse representations [75, 76], non-linear reconstruc-
tion [57, 32], sub-band coding [77, 20, 78, 36] and thresholdcrossing
quantization [65, 66], are not discussed here.



composed as follows

‖a− ã‖2
L2 = ‖a− PW a‖2

L2 + ‖PW a− ã‖2
L2 , (40)

wherePW a is the orthogonal projection ofa ontoW .

Proof. Definew , ã− PW a. Then we can write

‖a− ã‖2
L2 = 〈a− w − PW a , a− w − PW a〉

= ‖a− PW a‖2
L2 − 2〈a− PW a,w〉 + ‖w‖2

L2

Since(a − PW a) ∈ W⊥, and becausew ∈ W , we have
that〈a− PW a,w〉 = 0 (see (50)), and (40) follows.

Corollary 1. From Proposition 2, it follows that for any
a ∈ L

2, choice of quantization scheme and/or discrete
time processing, the continuous time reconstruction error
is lower bounded by

‖a− ã‖2
L2 ≥ ‖a− PW a‖2

L2 (41)

We emphasize that the lower bound in (41) corresponds
to the minimum continuous-time error attainable byany
discrete-time scheme, once the output space is given, even
if and no quantization is applied to the samples.
From Proposition 2, it is clear that the performance of
discrete-time processing (e.g., discrete-time filtering and
quantization) should be evaluated in terms of the second
term of the right hand side of (40), that is, theL

2 norm
of PW a − ã. In relation to the design of quantizers, this
gives rise to the question of what information is needed by
a generalized scalar quantizer to minimize‖PW a− ã‖2

L2 .
We have addressed this question in [79]. A summary of the
analysis and results therein is presented below.

8.2 Optimality

As noted above, the reduction of the continuous time MSE
by discrete-time processing takes place by minimizing the
second term on the right hand side of (40). For the general
system under study (see Fig. 3), the signal to be approx-
imated is actuallya convolved withh ∈ L

2, the impulse
response ofH :

α(t) , (a ∗ h)(t), ∀t ∈ R, (42)

as shown in Fig. 10.
Definingλ as the impulse response ofR, the approximation
of α generated by the system becomes

α̃(t) , (u ∗ ψ)(t), ∀t ∈ R

whereψ is now redefined as the impulse response of the
filter W , HR, i.e.:

ψ(t) , (λ ∗ h)(t), ∀t ∈ R,

see, Fig. 10. The impulse response ofW determines the re-
construction frame{ψk}k∈Z, which spans the reconstruc-
tion Hilbert space

W , span{ψk}k∈Z

As described in Section 4.2, the generation of the optimal
outputPW α can be accomplished by applying the pre-
frame operatorΨ associated with{Tkτψ}k∈Z to the se-

quence of scalars
{

〈Tkτ ψ̊, a〉
}

k∈Z
, i.e.

PW α = ΨΨ̊∗α, ∀α ∈ L
2,

where Ψ̊∗ is the analysis operator associated to
{

Tkτ ψ̊
}

k∈Z
, the canonical dual frame of{Tkτψ}k∈Z

(see Definition 7 in the Appendix). We will denote this
optimal, un-quantized sequence of samples by

u◦ = {u◦[k]}k∈Z ,

{

〈Tkτ ψ̊, α〉
}

k∈Z
. (43)

It is clear from the above that any quantization algo-
rithm that attempts to minimize the continuous time error
‖PW α− α̃‖2

L2 needs to be able, in the first place, to obtain
the targetsequenceu◦ in (43). From the results presented
in Section 4.2, this implies that the first necessary condi-
tion for the feasibility of optimal quantization is that sam-
pling and reconstruction stages be matched for orthogonal
(MSE) reconstruction.
If we now suppose that the quantizer has access tou◦, then
the problem of optimal quantization is that of choosing the
optimal quantized sequenceu⋆, defined as

u⋆ = arg min
u[k]∈U, ∀k∈Z

‖PW α−Ψu‖2
L2 (44)

The solution to (44) requires one to solve a continuous-time
optimization problem with discrete-time, quantized deci-
sion variables. It is shown in [79] that this can be con-
verted into an equivalent discrete time optimization prob-
lem. More precisely,

‖PW α−Ψu‖2
L2 = ‖Ψ(u◦ − u)‖2

L2

= 〈Ψ(u− u◦) , Ψ(u− u◦)〉L2

= 〈u − u◦ , Ψ∗Ψ(u− u◦)〉ℓ2

(45)

The operatorΨ∗Ψ : ℓ2 7→ ℓ2 is characterized by theGram
matrix (see [80, sec. 3.5]) of the reconstruction frame,
which is defined element-wise as

Gψj,k = 〈Tjτψ, Tkτψ〉L2 , j, k ∈ Z

This matrix allows one to re write (45) in matrix notation
as

‖PW α−Ψu‖2
L2 = (~u − ~u◦)TGψ(~u− ~u◦) (46)

where~u and~u◦ are the vector representations of the se-
quencesu andu◦, respectively.
The direct consequence of (46) is that a quantizer can deter-
mine the optimal output sequence without full knowledge
of the inter-sample behaviour of the impulse responses of
the reconstruction filter. Indeed, quantization performance
can be measured by theweightedℓ2 norm implicitly de-
fined in (46). Note that the design of an optimal quantizer
is not possible without knowledge of the matrixGψ.
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ã(t)

φ(−t)
S R H

λ(t) h(t)

H
h(t)

W ;ψ(t)

α(t)

α̃(t)
Generalized

Quantizer
Scalar

Φ∗

L
2 ℓ2

Ψ
ℓ2 W

Figure 10: The sampling, quantization and reconstruction system from Fig. 3 revisited. Impulse responses and frame
operators are shown for each filter.

8.3 Moving Horizon Conversion

In general, minimization of (46) would require one to eval-
uate it for every sequence{u[k]}k∈Z , u[k] ∈ U ∀k ∈ Z,
that can be generated by the quantizer. This optimization
programme, however, becomes intractable for sufficiently
long sequences. Given the similarity of (46) and (35), one
can use the ideas introduced in Section 7 and optimize over
a short moving horizon of samples. Details can be found in
[81, 79], where a sampled-data multi step optimal converter
is proposed. Preliminary results show that, interestingly,
significant distortion reduction is obtained even when con-
verting non band-limited signals. Indeed, since the focus
is on the reduction of the total continuous-time reconstruc-
tion error, if the sampling rate is lower than the Nyquist
rate, the resultant converter will attempt to reduce not only
quantization noise, but also aliasing noise. Furthermore,as
the horizon is made larger, the output of the converter ap-
proaches the optimal feasible output sequence, defined in
(44).

9 APPLICATIONS TO CONTROL

In previous sections of this work we have illustrated that
the power of feedback can be used in the design of AD-
conversion schemes. In particular, we have shown in Sec-
tions 7 and 8 that careful deployment of elements of Model
Predictive Control may lead to high-performance conver-
sion techniques. The purpose of the present section is to
highlight the role played by sampling and especially quan-
tization in feedback control applications.
Efficiency in data representations plays a central role in any
control system where parsimony aspects need to be taken
into account. Thus, quantization and sampling are worth
investigating, for example, in the following situations:

• when signals need to be transmitted over a digital net-
work, i.e., in Networked Control Systems (NCS’s) [3,
82, 4];

• when plant inputs need to be quantized (e.g., relay
feedback, on-off control, digital control, or also due
to the presence of a human operator)[70];

• in large scale systems, such as those related to mining
operations and supply chain management.

In the following, we will briefly describe how concepts sur-
rounding sampling and quantization translate into the de-
sign of these types of control systems.

Sampling and Reconstruction In the design of a sam-
pling/reconstruction scheme for a control system, tradi-
tional reconstruction criteria should be complemented with
more appropriate performance notions. Indeed, reconstruc-
tion quality is only of secondary importance. The main
objective is measured at the plant output. In particular, as
shown in [83, 5] for NCS’s, open loop performance mea-
sures should be replaced by closed loop ones. This can
be achieved through consideration of frequency weighted
measures such as (7).

Quantization Interestingly, the noise shaping ideas de-
scribed in Sections 6-8 can also be applied to control sys-
tems where signals are quantized; see, e.g., [70]. For exam-
ple, when focusing on the design of controllers for plants
with quantized inputs, a key point resides in realizing that
the AD-conversion scheme of Fig. 3 is related to a quan-
tized control system with plantH : The plant inputu[k] is
to be chosen such that the plant outputHã(t) tracks the ref-
erence signalHa(t). Thus, performance can be measured
via the frequency weighted error signalǫH(t), see (7) and
also (35).
Details on how to apply principles of Moving Horizon
to NCS’s can be found, for example, in [84]. It is inter-
esting to note that the framework can also be enriched to
incorporate dynamic scheduling into NCS’s. The resultant
methodology can be regarded as incorporating sampling
and quantizationon demandand is, thus, highly efficient
from a data representation perspective, see [84].

10 CONCLUSIONS

This paper has reviewed basic results and methods related
to the process of sampling, quantization and reconstruction
of scalar signals. With the introduction of a frame theoretic
viewpoint, three notions of sampling and reconstruction
have been discussed. We have described several gen-
eralized scalar quantization schemes, and have showed
how control theory has contributed to signal processing
theory. Furthermore, we have given insights into the joint



problem of sampling, quantization and reconstruction, and
have outlined how these stages interact. Finally, we have
examined the role played by sampling and quantization in
control systems.

A APPENDIX

A.1 Background on Hilbert Spaces, Riesz Bases and
Isomorphisms

Definition 2 (Hilbert Space). Let W be a vector space
with an inner product〈·, ·〉W and the induced norm
‖·‖W ,

√

〈·, ·〉W . If such a space is complete under its
norm then it is aHilbert Space.

Definition 3 (Riesz Basis). A sequence of vectors (func-
tions){ψk}k∈K, K ⊆ Z, in a Hilbert spaceW is a aRiesz
basisforW if and only ifW = span{ψk}k∈K

18 and there
exist two constants0 < m ≤M <∞ such that19

∀ c ∈ ℓ2, m ‖c‖2ℓ2 ≤

∥

∥

∥

∥

∥

∑

k∈K

c[k]ψk

∥

∥

∥

∥

∥

2

W

≤M ‖c‖2ℓ2 (47)

This and other equivalent definitions can be found in [80,
Theorem 3.6.6] .

Remark 2. From Definition 3 one can observe that:

• The elementsψk in (47) are orthogonalif and only if
m = M andorthonormalif and only ifm = M = 1.

• The lower bound in(47) is equivalent to saying that
{ψk}k∈Z is a set of linearly independent vectors.

• The higher bound in (47) guarantees that
∑

k∈K c[k]ψk will be bounded for any choice of
c ∈ ℓ2.

A.1.1 Orthogonal Projection

If W ⊆ H is a Hilbert space, then thebest approximation
inW (in the sense of the norm‖·‖H =

√

〈·, ·〉H ) of any
h ∈ H is given by theorthogonal projectionof h ontoW ,
denoted byPW h, and defined as the operator

PW : H 7→ W ; PW h , arg min
w∈W

‖h− w‖H (48)

The orthogonal projection from a Hilbert spaceH onto
W ⊆ H implicitly defines thenull spaceofW :

W⊥ , {h ∈ H : PW h = 0} . (49)

18 The span of a set of vectors is the vector space consisting of all
possible linear combinations of the set. The closed span, written asspan,
of a set of vectors, is theclosureof the span of these vectors. Open and
closed spans of a finite set of vectors are equal. However, theopen and
closed spans of an infinite set of vectors are in general different. The
closure of the span becomes mandatory in such cases, since Hilbert spaces
are closed spaces.

19Throughout this section,K ⊆ Z.

It is easy to verify that

〈β,w〉H = 0, ∀β ∈ W⊥, ∀w ∈ W . (50)

If {υk}k∈K, is an orthonormal basis ofW , then the orthog-
onal projection operator can be explicitly written as

PW h =
∑

k∈K

〈h, υk〉Hυk, ∀h ∈ H (51)

Orthogonal projection permits elegant solutions to some
otherwise complex optimization problems in functional
analysis. This makes Hilbert spaces and operators a natural
framework for studying the problem of efficient sampling
and quantization.

A.1.2 Isomorphism

A fundamental property of Hilbert spaces and operators is
that they are able to define a precise form of equivalence
between two different Hilbert spaces. It is calledisomor-
phism: two different Hilbert spaces areisomorphicif they
have the same dimension20 . An isomorphism is indeed any
linear invertible21 operator from one space onto the other.
Of particular interest for our analysis are the isomorphisms
between any separable Hilbert spaceW ⊂ L

2 (function
space) of dimension|K|, whereK ⊆ Z, andR|K| (Euclid-
ian space). Such an isomorphism can be stated by consid-
ering any orthonormal basis ofW , namely{υk}k∈K, and
constructing the associated analysis operator

Υ∗ :W 7→ R|K|; Υ∗w , {〈w, υk〉W}k∈K (52)

The analysis operatorΥ∗ defined in (52) is anunitary iso-
morphism. This means thatthe respective images inR|K|

throughΥ∗of any group of vectors inW preserve their re-
spective norms and relative orientations, i.e.

〈Υ∗w1,Υ
∗w2〉ℓ2 = 〈w1, w2〉W (53)

This remarkable property of isomorphic spaces allows one
to study the relation between elements of a Hilbert space by
looking at their images throughΥ∗ in another, more conve-
nient Hilbert space. Actually, one can argue that all digital
signal processing (including digital control) is made possi-
ble because of the existence of isomorphism between signal
spaces and subspaces ofℓ2.

A.2 Illustrative Example

Some of the basic concepts of Hilbert spaces of signals and
bases presented so far will be illustrated by the following
simple example.
LetW be the space of all real valued functionsw(t) satis-
fying the following conditions:

• w(t) is continuous.

• w(t) = 0, ∀t /∈ I , [0, 3τ ].

20 For the case of infinite dimensional spaces, all separable spaces
(i.e., spaces with infinite but countable dimension) are isomorphic.

21 Hence the need for both spaces to have equal dimension.



•
∫ 3τ

0
w2(t)dt < ∞, ∀s ∈ S (i.e.,w(·) is square inte-

grable overI).

• The derivatives ofw(t) are constant over any of the
open intervalsik = (kτ, kτ + τ), k = 0, 1, 2.

Fig. 11 a) shows three functions,w1(t), w2(t), w3(t) that
belong to this space.

τ 3τ

t

0τ 2τ 3τ

t

0 d1

d2

(b) (c)

d1 = 〈s, υ1〉

(a)
d2 = 〈s, υ2〉

R2WW

w3

w2

w1 υ1 υ2
Υ∗w2

Υ∗w1

Υ∗w3 Υ∗υ1

Υ∗υ2

Figure 11: Example of a functional space, an orthonormal
base and a unitary analysis operator. a) Functionsw1, w2

andw3 belong to the Hilbert spaceW ; b) The functions
υ1, υ2 ∈ S constitute an orthonormal basis forW ; c) Image
of the functionsw1, w2 andw3 in R2 through the analysis
operatorΥ∗.

With the addition of the standardL2 inner product, defined
as22

〈w1, w2〉L2 ,

∞
∫

−∞

w1(t)w2(t)dt, ∀w ∈ W (54)

W becomes a Hilbert space. The inner product (54) also
defines a norm inW , given by

‖w‖
L2 ,

√

〈w,w〉L2

It is easy to show thatW is a two-dimensional space.
This can be intuitively verified by noting that any func-
tion w ∈ W is completely determined by exactly two pa-
rameters, such as, for example, the values of the functions
evaluated atτ and2τ . A basis for a Hilbert space of di-
mension two contains two elements. Figure 11.b) shows a
pair of orthonormal functionsυ1, υ2 in W which form an
orthonormal basis forW .
Figure 11.c) shows the images ofw1, w2, w3, υ1 andυ2

through the analysis operatorΥ∗ (see (52) ) inR2. As ex-
pected, the images of the orthonormal functionsυ1 andυ2

are orthonormal vectors inR2. How “close” isw1 to w2

in their space’s norm?. Since the analysis operatorΥ∗ is
a unitary isomorphism betweenW andR2, we have, from
(53)

‖w1 − w2‖
2
L2 = ‖Υ∗w1 −Υ∗w2‖

2
ℓ2 =

(〈w1, υ1〉 − 〈w2, υ1〉)
2 + (〈w1, υ2〉 − 〈w2, υ2〉)

2

i.e., ‖w1 − w2‖L2 is given by the Euclidian distance be-
tweenΥ∗w1 andΥ∗w2.

22 Since all the signals considered here are real, and for ease of no-
tation, we will write the inner products inL2 and inℓ2 without complex
conjugation of one of the arguments.

Consider now the case of a functionh(t), t ∈ R, that be-
longs to a spaceH ⊂ L

2, such thatW ( H andh /∈ W .
An example of such a function is shown in Fig. 12.a).

τ 2τ 3τ

t

0 τ 3τ

t

0 2τ

(a)

W

H H W

(b) (c)

PW h

υ1

υ2h(t) (PW h)(t)
h

Figure 12: a) Orthogonal projection ontoW ⊂ H. a) Func-
tion h(t) belongs toH. b) Relative positions betweenh,
υ1, υ2 andPW h represented in an isomorphic Euclidian
space. c) Orthogonal projection ofh(t) ontoW in function
representation.

The magnitudes and relative directions ofh with respect to
an orthogonal basis forW such as{υk}

2
k=1 are shown in

the 3 dimensional representation of Fig. 12.b). Here it can
be seen thath is outsideW but has a non zero orthogonal
projection ontoW . This orthogonal projection is the clos-
est vector toh inW , in accordance with (48), and is given
by (51). Consequently, the best approximation (in anL

2

sense) ofh inW is, expressed as a function of time

(PW h)(t) = 〈h, υ1〉L2 υ1(t) + 〈h, υ2〉L2 υ2(t)

Figure 12.c) shows a plot of(PW h)(t).

A.3 Frames

Despite the computational convenience of bases, one
often needs to study spaces generated by a set of linearly
dependentvectors (over-complete basis). The concept of
frames, introduced by Duffin and Schaffer [85], allows one
to analyze such cases. Situations with over-complete bases
arise in practice not only by chance. It has been shown that
the redundancy of frames is beneficial, for it can reduce
the effect of errors in the expansion coefficients, see [39]
and Appendix A.5. The definition and some properties of
frames are given next.

Definition 4 (Frame). A sequence{ψk}k∈K of elements in
a Hilbert spaceW is aframeforW if there exist constants
A,B > 0 such that

A ‖w‖2 ≤
∑

k∈K

|〈w,ψk〉|
2 ≤ B ‖w‖2 , ∀w ∈ W (55)

The largest numberA and smallest numberB that satisfy
(55) are calledframe bounds. Some important remarks
about frames are:

• If {ψk}k∈K is a frame for a Hilbert spaceW , then
span{ψk}k∈K =W .



• A frame is said to betight if one can chooseA = B as
frame bounds. If A=B=1, it is called aParseval frame.

• If a frame ceases to be a frame when an arbitrary ele-
ment is removed, it is called anexact frame. An exact
frame is equivalent to a Riesz basis.

• A frame{ψk}k∈K in which‖ψk‖ = 1 for all k ∈ K is
called anormalized frame.

• If the elements of a normalized frame are linearly in-
dependent thenA ≤ 1 ≤ B (see [39]).

• A frame with linearly dependent elements is said to be
redundant.

• The upper frame boundB of a frame{ψk}k∈K is

greater thanmaxk∈K ‖ψk‖
2.

Theredundancyof a frame with|K| vectors for a spaceW
is defined as the ratio

r ,
|K|

dimW

It is easy to show that, for a normalized tight frame,r = A,
whereA is the lower frame bound in (55).
Another important property of the elements of a frame
{ψk}k∈K is that they are also aBessel sequence, i.e., they
satisfy

∥

∥

∥

∥

∥

∑

k∈K

c[k]ψk

∥

∥

∥

∥

∥

2

W

< B ‖c‖2ℓ2 , ∀c ∈ ℓ2 (56)

whereB is the upper frame bound in (55).
From remark 2 and the above properties, orthogonal bases
are a special type of Riesz basis, whilst Riesz bases are ex-
act frames. Thus, by basing our analysis on frames, one is
also including orthogonal and Riesz bases as special cases.

A.4 Frames and their Operators

LetH be a Hilbert space, andW = span{ψk}k∈K ⊆ H.

Definition 5 (Synthesis Operator). Thesynthesis(or pre-
frame) operator for a frame{ψk}k∈K is defined as

Ψ : ℓ2 7→ H , Ψ {c[k]}k∈Z =
∑

k∈K

c[k]ψk.

Since every frame sequence is a Bessel sequence (see (56)),
the synthesis operator for a frame with frame boundsA,B
is bounded, with operator norm‖Ψ‖ = B, i.e.,B is the
minimum constant such that‖Ψc‖2W ≤ B ‖c‖

2
ℓ2 , ∀c ∈ ℓ

2.

Definition 6 (Analysis Operator). The analysisoperator
for a frame{ψk}k∈K is defined as

Ψ∗ : H 7→ ℓ2 , Ψ∗h = {〈h, ψk〉}k∈K

Remark 3. The analysis operatorΨ∗ is theadjoint of Ψ,
i.e., it satisfies〈w,Ψc〉 = 〈Ψ∗w, c〉, ∀c ∈ R(Ψ∗), ∀w ∈
W .

Definition 7 (Dual Frame). Let {ψk}k∈K be a frame for a
Hilbert spaceW . Another frame forW , namely,{gk}k∈K

that satisfies

w =
∑

k∈K

〈w, gk〉ψk, ∀w ∈ W (57)

is said to be adual frameof {ψk}k∈K inW .

As can be seen in (57), a dual frame provides an explicit
method for representing any signalw ∈ W in terms
of coefficients (samples), from whichw can be exactly
recovered through the synthesis frame{ψk}k∈K.

Definition 8 (Frame Operator). The frame operatorof a
frame{ψk}k∈K is defined as

S : H 7→ H , Sh = ΨΨ∗h =
∑

k∈K

〈h, ψk〉ψk (58)

Lemma 2 (from [80, Lemma 5.1.5]). Let {ψk}k∈K be a
frame with frame operatorS and frame boundsA,B. Then
the following holds:

(i) S is bounded, invertible, self-adjoint, and positive.

(ii)
{

S−1ψk
}

k∈Z
is a frame with boundsB−1, A−1. The

frame operator for
{

S−1ψk
}

k∈Z
is S−1

Since‖Ψw‖2 = 〈Sw,w〉, one can derive from Lemma 2 ,
(55) and (56) that:

A ‖w‖ ≤ ‖Sw‖ ≤ B ‖w‖ (59)

B−1 ‖w‖ ≤
∥

∥S−1w
∥

∥ ≤ A−1 ‖w‖ (60)

The frame operator defined in (58) is of particular impor-
tance for the problem of sampling and reconstruction, since
it provides an explicit way to obtain a dual frame (see (57)).
More precisely, withS as defined in (58), if{ψk}k∈K is a
frame forW , then the frame

{

S−1ψk
}

k∈Z
is a dual frame

for {ψk}k∈K inW , i.e.

w =
∑

k∈K

〈w, S−1ψk〉ψk, ∀w ∈ W (61)

and
w =

∑

k∈K

〈w,ψk〉S
−1ψk, ∀w ∈ W (62)

The frame
{

S−1ψk
}

k∈Z
is called thecanonical dual frame

of {ψk}k∈K in W . This is a reciprocal relation, i.e.,
{ψk}k∈K is the canonical dual of

{

S−1ψk
}

k∈Z
in W as

well.



A.5 Noise Reduction by Redundancy of the Frame

If the frame coefficients{〈w,ψk〉}k∈K in (62) were con-
taminated by additive noisee[k], k ∈ K, then the recon-
struction formula (62) would yield a reconstruction error

we ,
∑

k∈K

(〈w,ψk〉+ e[k])S−1ψk − w =
∑

k∈K

e[k]S−1ψk

(63)
Early references to the fact that the redundancy of the frame
reduces the reconstruction error were provided in [24],
whilst proofs can be found in [32] and [39]. Due to the im-
portance of this property of redundant frames, we present
next an adaptation of the result in [32], which is also illus-
trative of the importance of the frame bounds.

Proposition 3. Let {ψk}k∈K be a frame of unit-norm vec-
tors with frame bounds0 < A ≤ B, and lete[k], k ∈ K

be a sequence of independent random variables with mean
zero and varianceσ2. Then the mean square value ofwe in
(63) satisfies

|K|σ2

B2
≤ E

[

‖we‖
2
L2

]

≤
|K|σ2

A2

Proof. If e[k], k ∈ K is a sequence of independent random
variables with zero mean and varianceσ2, we have

E
[

‖we‖
2
L2

]

= E





∥

∥

∥

∥

∥

∑

k∈K

e[k]S−1ψk

∥

∥

∥

∥

∥

2


 = σ2
∑

k∈K

∥

∥S−1ψk
∥

∥

2

(64)

From (60) one can derive that

B−2 ‖ψk‖
2 ≤

∥

∥S−1ψk
∥

∥

2
≤ A−2 ‖ψk‖

2

which simplifies to

B−2 ≤
∥

∥S−1ψk
∥

∥

2
≤ A−2 (65)

because{ψk}k∈K is a normalized frame. Combining (64)
with (65) gives the result.

Corollary 2. If the frame in Proposition 3 is also tight,
then

E
[

‖we‖
2
L2

]

=
(dimW)σ2

r
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