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Abstract: This paper presents novel results on the joint problem of sampling, reconstruction and quantization of
analog signals. Existing literature on this topic deals exclusively with band-limited signals in sampled form. Our key
departure from earlier results is that we deal with continuous time reconstruction of not necessarily band-limited signals.
Our approach utilizes concepts and tools from optimal sampled-data and receding horizon control theory. The key
conclusion from the work presented here is that, in the case under study, the optimal quantizer design problem can be
partitioned into two sub-problems, namely (i) the design of an optimal analog pre-filter followed by sampling and (ii) an
optimal quantizer, which works directly on the pre-sampled signals. Simulation results are presented which illustrate the
performance of the optimal A-D converter designed via these principles.
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1 INTRODUCTION

In many applications, one needs to convert analog, contin-
uous time signals into quantized discrete time signals. This
leads to an important set of questions regarding the best
way to represent a signal by a sequence of sampled and
quantized values, such that the information loss inherent
in the sampling and quantization process is minimized in
some sense. In the present work, we are interested in how
to quantize a possible non band-limited signal to obtain the
lowest possible reconstruction distortion.
We will show that, for a given sampling rate and recon-
struction filters, minimization of reconstruction error, in an
L

2 sense, can be converted into a discrete time problem. It
turns out that if an appropriate pre-filter is used, then all
the information required to find the optimal quantized se-
quence can always be extracted from discrete time samples
of its output, even if the continuous time input signal is not
band-limited.
Solving the optimal quantization problem amounts to find-
ing the solution of a combinatorial optimization pro-
gramme, which is in general computationally intractable.
Our proposal is to convert the optimal quantization problem
into a sampled-data moving horizon optimization problem
with quantized decision variables. The proposed method
gives excellent results and incurs only limited computa-
tional effort. It generalizes our previous work reported
in [1][2][3][4] by concentrating on sampled-data signals
rather than merely on discrete-time sequences.
Background to the work described here arises from distinct
streams. The first of these is associated with the problem
of sampling in the absence of quantization [5][6].
The second related field of research is concerned with

quantization of signals where the sampling strategy has
been pre ordained [7][1][8][9]. The third stream of prior
work arises in the area of sampled data control theory.
Here, the emphasis has typically been on regulation (zero
reference) problems with unconstrained decision variables
[10] [11]. In the present work we extend these concepts to
account for non zero reference signals and quantized deci-
sion variables.
Our approach differs from the work described above by
virtue of the fact that we design the joint optimal sam-
pler and quantizer using sampled data quantized moving
horizon optimization. This leads to significant performance
gains, compared with alternative approaches which do not
take account of the interaction between sampling and quan-
tization.
The remainder of this work is organized as follows: In Sec-
tion II we present the continuous time AD-conversion prob-
lem and how it can be translated into discrete-time. Section
III introduces the continuous time receding horizon quan-
tizer. Simulation studies are included in Section IV. Section
V draws conclusions.

2 PROBLEM FORMULATION

The general form of the systems under study is illustrated
in Fig. 1.
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Figure 1: Block diagram of the general sampler-quantizer-
reconstruction system.



The sampler-quantizer QU〈·〉 converts the continuous time
signal a(·) into a sequence

u = {u[k]}k∈Z
, u[k] ∈ U, ∀k ∈ Z (1)

where U is the finite and given set of scalars

U = {s1, . . . , snU
} (2)

corresponding to the available quantization levels.
The sampling interval is constant and equal to τ seconds.
Thus, quantized samples are generated at a rate of 1/τ sam-
ples per second.
In Fig 1, the reconstruction filter Φ converts the discrete
time sequence u into a continuous time signal. For exam-
ple, in case of zero-order hold reconstruction, the impulse
response of Φ would be φ(t) = µ(t)+µ(t−τ). In the clas-
sical framework of perfectly band-limited reconstruction,
Φ would be an ideal low-pass filter with cutoff frequency
1/2τ [12]. On the other hand, in most practical applica-
tions, zero-order hold or some other form of short impulse
response filter (sometimes non-causal) is generally used for
reconstruction.
The filter H is the error frequency weighting filter (see,
e.g., [4]). It allows one to represent the different impact
of the error at different frequencies for a particular appli-
cation. For example, if the system is employed for audio
signals, then H could be designed to model the psycho-
acoustical response of human hearing [13].
We are interested in designing a quantizer which minimizes
the L

2 norm of the frequency weighed error ε (see Fig. 1),
i.e., minimizes the cost function

V (~u) = ‖ε(·)‖
L2 (3)

where ‖ε(·)‖2
L2 denotes the standard L

2 norm over the real
line, i.e.

‖ε(·)‖
L2 =

∞∫

−∞

ε(ξ)dξ (4)

For the analysis below, it is more convenient to rearrange
the system of Fig. 1 to the equivalent form shown in Fig. 2.
In this figure, the continuous time filter Ψ is characterized
by the transfer function

Ψ(s) , Φ(s)H(s) (5)

and its associated impulse response ψ(·).

Ψ(s)
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Figure 2: Equivalent block diagram

In order to represent the continuous time filtering per-
formed by Ψ, we define the continuous time version of u
as

uc(t) ,
∑

k∈Z

δ(t− kτ)u[k], ∀t ∈ R (6)

The output of Ψ, namely w(·), is given by

w(t) =

∞∫

−∞

ψ(t− ξ)uc(ξ)dξ, ∀t ∈ R (7)

Substituting (6) into (7) one obtains

w(t) =

∞∫

−∞

∑

k∈Z

ψ(t− ξ)δ(ξ − kτ)u[k]dξ

=
∑

k∈Z

ψ(t− kτ)u[k]

(8)

If we denote the impulse response of the frequency weight-
ing filter H by h(·) ∈ L

2, then its output satisfies

ã(t) , (h ∗ a)(t) (9)

As a consequence, the frequency weighted error ε can be
written as

ε(t) = ã(t) − w(t) = ã(t) −
∑

k∈Z

ψ(t− kτ)u[k], ∀t ∈ R

(10)
Thus, the quest for optimal sampling and quantization can
be stated as the optimization problem of finding the se-
quence u� as in (1) that minimizes the L

2 norm of the re-
construction error, i.e.:

u� , arg min
u[k]∈U,∀k∈Z

∥∥∥∥∥ã−
∑

k∈Z

ψ(t− kτ)u[k]

∥∥∥∥∥
L2

(11)

2.1 Reformulation in Discrete Time

It will now be shown that the L
2 (continuous time) opti-

mization problem in (11) is equivalent to an `2 (discrete
time) optimization problem, where the weighting values
depend on the signal inter-sample behaviour. This is estab-
lished in the following lemma, originally introduced with-
out a formal proof in [2].

Lemma 1 Let the sequence of functions {ψ(· − kτ)}k∈Z

be a frame for span {ψ(· − kτ)}k∈Z
= W ⊂ L

2, with
frame bounds 0 ≤ R ≤ P <∞, i.e.

R ‖w‖
2
L2 ≤

∑

k∈Z

|〈ψ(· − kτ), w〉|
2
≤ P ‖w‖

2
L2 (12)

for all w ∈ W . Let w(·) ∈ L
2 be defined as in (8) for the

sequence of scalars {u[k]}k∈Z
∈ `2. Let the signal ã ∈ L

2,
and define F [j, k] and Y [k], k, n ∈ Z via

Y [j] , 〈ã, ψ(· − jτ)〉L2 (13)

F [j, k] , 〈ψ(· − jτ), ψ(· − kτ)〉L2 (14)

j, k ∈ Z (15)

where 〈·, ·〉L2 denotes the standard inner product in L
2.

Then:

‖ε(·)‖2
L2 = ‖ã‖2

L2−2
∑

j∈Z

u[j]Y [j]+
∑

j∈Z

∑

k∈Z

u[j]u[k]F [j, k]

(16)



Proof 1 Substituting (10) in (3) we can write

V =

∞∫

−∞

(ã(t) − w(t))
2
dt = 〈ã− w, ã− w〉L2

= ‖ã‖
2
L2 − 2〈ã, w〉L2 + 〈w,w〉L2 (17)

We note that the first term in the last line of (17) is well de-
fined since ã ∈ L

2 as required by the Lemma. The second
term is finite by virtue of the Cauchy-Schwartz inequality
〈ã, w〉 ≤ ‖ã‖

L2 ‖w‖L2 and the fact that w ∈ W ⊂ L
2,

which in turn implies the third integral is also bounded.
Since inner products are by definition linear and ã and w
are real signals, one obtains by substituting (8) into (17)
that

V = ‖ã‖
2
L2 − 2

∑

k∈Z

u[k]〈ã, ψ(t− kτ)〉L2+

∑

j∈Z

∑

k∈Z

u[j]u[k]〈ψ(t− jτ), ψ(t− kτ)〉L2

(18)

which is equivalent to (16).

Remark 1 If we make the change of variables

e[j] , u[j] − u?[j], ∀j ∈ Z (19)

where u? is an un-quantized sequence that yields the global
minimum of V in (16), namely V ?, then

V = V ? +
∑

j∈Z

∑

k∈Z

e[j]e[k]F [j, k] (20)

Remark 2 From lemma 1 and remark 1, it is clear that
to minimize (3) the only information needed is an opti-
mal un-quantized sequence u? (or, alternatively, the se-
quence {Y [k]}k∈Z

) and the coefficients F [j, k]. The lat-
ter corresponds to samples of the autocorrelation function
of ψ(·), which can be determined off-line after choosing
reconstruction and error weighting filters and then incor-
porated to the quantization algorithm. On the other hand,
{Y [k]}k∈Z

can be obtained from u? by differentiating (16)
with respect to u and equating to zero, which leads to

Y [j] =
∑

j∈Z

u?[k]F [j, k], ∀j ∈ Z (21)

2.2 Pre-filter Requirements for Optimal Quantization

In practice, any quantization algorithm has to work with
discrete-time values. Remarks 1 and 2 arise the need to de-
termine whether a quantization algorithm can elaborate or
obtain u? or {Y [k]}k∈Z

from samples of the input signals.
Consider, first, the determination of the series of coeffi-
cients {Y [k]}k∈Z

. From definition (13), we have

Y [k] = 〈ã(·), ψ(t − kτ)〉(kτ) = (ã ∗ ψ∨)(kτ)

= (ã ∗ h ∗ [h ∗ φ]∨)(kτ)

= (ã ∗ h ∗ h∨ ∗ φ∨)(kτ), ∀k ∈ Z

(22)

There might exist more than one optimal sequence if the reconstruc-
tion stage is redundant.

From the last line of (22), it is clear that the series of coeffi-
cients {Y [k]}k∈Z

can be obtained by passing the input sig-
nal through a filter with frequency response GY (jω) given
by

GY (jω) , |H(jω)|
2
Φ∗(jω) = H(jω)Ψ∗(jω) (23)

and then taking the samples every τ seconds. i.e., if we
denote the impulse response of GY by gY (·), then Y [j] =
(a ∗ gY )(jτ), ∀j ∈ Z,

Let us next consider the determination of u?, the sequence
of samples which minimizes reconstruction error in the ab-
sence of quantization. It is known from sampling theory
[14][15] that, for any input signal, u? can be obtained by
sampling the output of a pre-filter GS(jω) matched to the
reconstruction filter. From these results, for the system de-
picted in Fig. 2, the ideal matched pre-filter for a given
reconstruction filter Ψ(jω) is given by

GS(jω) =

{
|H(jω)|2Φ∗(jω)

AΨ(ejωτ ) , if AΨ(ejωτ ) 6= 0

0 , if AΨ(ejωτ ) = 0
(24)

where

AΨ(ejωτ ) , 1
τ

∑

k∈Z

∣∣Ψ(j[w + 2π
τ
k])
∣∣2 (25)

is the discrete time Fourier transform of the sampled au-
tocorrelation function of ψ(·) [5]. Notice that H(jω) =
0 ∀ω ∈ {w : AΨ(ejωτ ) = 0}.

The above results suggest that all the necessary informa-
tion about the input signal for optimal quantization to be
feasible can be obtained from samples of the filtered input
signal, and that the required pre-filter is not unique. We
will provide next necessary and sufficient conditions for a
pre-filter to yield samples that allow for optimal quantiza-
tion.

Consider the discrete Fourier transform of u?, and let
f̂(ejωτ ) and ĝ(jω) denote the discrete and continuous
Fourier transforms of any f ∈ `2 and g ∈ L

2, respectively.
Since u? is a sequence of samples of a filtered by GS(jω),
we have

û?(ejωτ ) = 1
τ

∑

k∈Z

GS(j[ω−2π
τ
k])â(j[ω−2π

τ
k]) (26)

Suppose the quantizer gets samples v of the input signal
pre-filtered by another filter GX(jω). The discrete Fourier
transform of such sequence of samples would be

v̂(ejωτ ) , 1
τ

∑

k∈Z

GX (j[ω−2π
τ
k])â(j[ω−2π

τ
k]) (27)

Recovery of û?(ejωτ ) can be achieved in the discrete-time
domain by applying a discrete-time filter Γ(ejωτ ) to the



sequence v, such that

û?(ejωτ ) = Γ(ejωτ )v̂(ejωτ )

= 1
τ
Γ(ejωτ )

∑

k∈Z

GX (j[ω−2π
τ
k])â(j[ω−2π

τ
k])

= 1
τ

∑

k∈Z

Γ(ejωτ )GX (j[ω−2π
τ
k])â(j[ω−2π

τ
k])

(28)

From (26) and (28) it can be seen that a sufficient and nec-
essary condition is the existence of a periodic transfer func-
tion Γ(ejωτ ), such that

GX(jω) =
GS(jω)

Γ(ejωτ )
, ∀w ∈ {w : â(jω) 6= 0}(29)

K1 ≤
∣∣Γ(ejωτ )

∣∣ ≤ K2 , ∀w ∈ {w : â(jω) 6= 0}(30)

for the quantizer stage to be able to determine u? from
the samples v (and allow for optimal quantization). As
a particular case, if AΨ ≡ 1, then, from (23) and (24),
GS(jω) = GY (jω), ∀w ∈ R and Y [j] = u?[j], ∀j ∈ Z.
The latter equality can also be obtained from (21) by noting
that AΨ ≡ 1 if and only if F [j, k] = δj,k, ∀j, k ∈ Z.
Of course the quantizer stage would need to implement the
correction filter Γ(ejωτ ) based upon knowledge ofGS(jω)
and GX(jω), according to (29). Two important special
cases are to be highlighted:

• If a has no frequency components beyondπ/τ [rad/s],
then any pre-filter GX satisfying

C1 ≤ |GX (jω)| ≤ C2,

∀w ∈ {w : â(jω) 6= 0 , GS(jω) 6= 0} (31)

for some constants 0 < C1 ≤ C2 < ∞ would
make optimal quantization possible from the samples
v. This result is not surprising, since by Shannon’s
sampling theorem, the samples of a band-limited sig-
nal contain all the information about the complete sig-
nal [12].

• If Ψ is band-limited to a frequency α = π/τ but a
has energy at frequencies greater than α, then any pre-
filter GX band-limited exactly to α satisfying

K1 ≤ |GX(jω)| ≤ K2, ∀w ∈ {w : GS(jω) 6= 0}

GX(jω) = 0, ∀w ∈ {w : GS(jω) = 0}

(32)

for some constants 0 < K1 ≤ K2 < ∞ would have a
feasible correction filter that makes optimal quantiza-
tion possible from the samples v.

The conclusion from the above cases is that quantization
for optimal reconstruction of an input signal not band-
limited to π/τ is possible, but demands either the use of
an appropriate pre-filter satisfying (29) to get the samples
from, or, alternatively, the quantizer needs to “know” the
signal between sampling instants.

3 THE SAMPLED-DATA RECEDING HORI-
ZON QUANTIZER

For the general case, minimization of (16) would re-
quire the evaluation of (16) for every possible sequence
{u[k]}k∈Z

, u[k] ∈ U. For sufficiently long sequences,
the optimization programme becomes computationally in-
tractable. To overcome this problem, we propose to use
concepts from the receding horizon control framework [16]
and optimize over a short receding horizon of samples. A
quantizer based on this idea has been recently proposed by
the current authors in [3][4] for an all discrete-time system,
achieving near optimal performance with rather short hori-
zon lengths [17]. In what follows we will extend this idea
to the sampled data case, and show, via simulations, that
significant distortion reduction is obtained when convert-
ing non band-limited signals.

3.1 Optimal Quantization Over a Finite Horizon

Consider the system at t` , `τ, ` ∈ Z. Instead of attempt-
ing to optimize the cost over t ∈ R, we will aim to mini-
mize the cost within a finite time interval [(` −M)τ, (` +
N)τ), where M,N ∈ Z

+ are design parameters. We will
only concentrate on the optimal sequence of quantized co-
efficients to be generated for the interval [`τ, (` + N)τ),
defined as

~u` , (u[`] u[`+ 1] . . . u[`+N − 1])T (33)

The number M , therefore, accounts for the non-causality
of Ψ.
For the purpose of including in the horizon the effect of
past errors, it is convenient to describe the continuous time
filter Ψ by its state space representation

ẋ(t) = Ax(t) + Buc(t) (34)

w(t) = Cx(t+ λ) (35)

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n and uc(·) is

as defined in (6). In (35), λ ≥ 0 accounts for a possible
non-causal Ψ. If Ψ is causal, then λ = 0.
The cost function to minimize is

VN (~u`) =

(`+N)τ∫

(`−M)τ

(ã(t) − w(t))
2
dt (36)

If x(t`) is known, then, from (34) and (35), w(t) can be
determined by

w(t) ,

N−1∑

k=0

ψ(t−[k+`]τ)u`[k] + CeA(t+λ−`τ)
x(t`) (37)

for t ∈ [t` −Mτ, t` +Nτ).
Notice that the first term on the right hand side of (37) cap-
tures the effect of the choice of ~u` within the horizon. This
term corresponds to the forced response of Ψ to the input
~u`, which can be conveniently represented as

w`(r) ,

N−1∑

k=0

ψ(r − kτ)u`[k], r ∈ [0, Nτ) (38)



On the other hand, the second term on the right hand side
of (37) represents the natural response of Ψ when the initial
state is x(t`). We define the difference between this initial
state response and the filtered input signal ã(t) within the
horizon as the target function y`(·), for the horizon at t =
`τ :

y`(r) , ã(r + t`) −CeA(r+λ)
x(t`), r ∈ [0, Nτ) (39)

By using (38) and (39) , the cost (36) can be expressed as
the L

2 norm of the difference between the zero-initial-state
response w`(·) and the target function y`(·):

VN (~u`) =

Nτ∫

−Mτ

(y`(x) − w`(x))
2 dx (40)

Substituting (38) into (40) one obtains

VN (~u`) =

Nτ∫

−Mτ

(
y`(x) −

N−1∑

k=0

ψ(x− kτ)u`[k]

)2

dx

(41)
Since ψ(·) ∈ L

2, one can exchange the order of sum and
integration in (41) and rewrite it in matrix form as

VN (~u`) = ~uT
` FN~u` − 2YT

` ~u` +

Nτ∫

−Mτ

y2
` (x)dx (42)

where the vector Y` ∈ R
N and the symmetric, positive

definite matrix FN ∈ R
N×N are defined element-wise as

FN [j, k] ,

Nτ∫

−Mτ

ψ(x− jτ)ψ(x − kτ)dx (43)

Y`[j] ,

Nτ∫

−Mτ

y(x)ψ(x − jτ)dx (44)

j, k = 0, 1, . . .N − 1 (45)

3.2 The Sampled-Data Receding Horizon Quantizer

The expressions derived above for the cost function over
a finite horizon allow us to introduce the sampled-data re-
ceding horizon quantizer. The algorithm finds, at a given
instant `τ , the vector of quantized coefficients ~u` that min-
imizes the total filtered reconstruction error from (`−M)τ
to (` +N)τ defined in (36). Then, the first element of ~u`

is sent to the output of the quantizer. The horizon is then
shifted forward by τ , and iteration `+ 1 begins.
The proposed algorithm, beginning at instant `τ , can be
formalized as follows:

Step 1.- Calculate the matrix FN in (43)
Step 2.- Calculate Y`

Step 3.- Find the optimizer u�` by minimizing (42)
Step 4.- Output u�` [0], the first element of u�` (see (33))
Step 5.- Increment ` by 1 and go to Step 2.

The sequence . . . , u�`−1[0], u�` [0], u�`+1[0], . . . of step 4
forms the output of the sampled-data receding horizon sam-
pler quantizer. If the input signal is not band-limited to
π/τ , the algorithm reduces filtered aliasing and frequency
weighted quantization noise. For that purpose, it does si-
multaneous adaptive filtering on the input signal and adap-
tive noise shaping of the quantization noise, thus respecting
the interaction between both phenomena.
It is interesting to note that, as the horizon is made larger,
the output of the sampler-quantizer defined above ap-
proaches the optimal feasible output sequence possible de-
fined in (11).

4 SIMULATION STUDY

We will first show an example comparing the performance
of the proposed sampled-data receding horizon quantizer
(SDRHQ) against the so called all-discrete-time (DTRHQ)
receding horizon quantizer introduced in [3] in the follow-
ing situation:

• The input signal, a, is an audio signal that has fre-
quency components up to 22 [kHz]. Its frequency en-
ergy content is shown in Fig. 3.
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Figure 3: Spectral composition of the input signal a(·).

• The sampling frequency is half the required to avoid
aliasing i.e., 1/τ = 11 [kHz].

• The filter H performs zero-order hold reconstruction,
i.e., it has impulse response φ(t) = µ(t) + µ(t− τ).

• The frequency error weighting filter corresponds to
the third order model for the psycho-acoustical re-
sponse of the human ear [13]. Its frequency response
is shown in Fig.4

• No pre-filtering is used, i.e., GX (jω) = 1.

In the simulation, the DTRHQ has full knowledge of the
filters H and Φ, and utilizes the matrix FN defined in (43).
However, it operates based on direct samples of the input
signal. Thus, since the implicit pre-filter is a unity gain,
(29) predicts that the all-discrete-time quantizer will be un-
able to determine the target function to be approximated by
the reconstruction stage. On the other hand, the SDRHQ
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Figure 4: Frequency response of filter H .

utilizes the same matrix FN but has access to the inter-
sample behaviour of the input signal.
Fig. 5 shows the normalized reconstruction error from the
outputs of both quantizers, for several horizon lengths. It
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Figure 5: Reconstruction error (normalized to DTRHQ
distortion for N = 1 ) from the outputs of all-discrete-
time quantizer (DTRHQ) and sampled-data quantizer
(SDRHQ), for N = 1 to 3, for a non band-limited input.

can clearly be appreciated how, in this case, the sampled-
data converter proposed in the present work outperforms
the all-discrete-time converter of [3]. It can also be seen
that the distortion exhibits a small decrease with the in-
crease of the horizon length N . This suggests that, in this
example, the main contributor to the distortion is aliasing
noise, for both converters. Notice that the SDRHQ op-
erated without an anti-aliasing filter. This, together with
its much lower distortion in comparison with that of the
DTRHQ, suggests that the sampled-data receding horizon
optimization algorithm accomplishes a form of pre-filtering
of the input signal that effectively reduces aliasing.

5 CONCLUSIONS

This paper has shown how receding horizon sampled-data
control methods can be utilized to design optimal AD Con-
verters. A key departure from earlier results in this area is
that we optimize a filtered version of the continuous time

reconstruction error for not necessarily band limited input
signals. Inter alia, we show that the optimal design prob-
lem can be decomposed into two subproblems, namely the
design of an optimal analogue pre-filter together with an
optimal quantizer . We showed that the latter is feasible
if only samples of the signals are available. The efficacy
of the proposed method has been illustrated by an example
using an audio signal sampled below its Nyquist rate.
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