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Abstract—In Networked Control Systems (NCS’s) achievable is located in theup-link, i.e., between sensors and controller
perfo_rmance is limited by_thc_s chara_lcteristics of the (_:ommunica- input [9], [17], and where it lies in thelown-link i.e.,
tion links used to transmit signals in the loop. In this paper we between controller output and actuators [12]. More general

focus on ideal bit-rate limited channels, i.e., channels in which hitect h th . is distributed. h
signals need to be quantized prior to transmission. We use noise AIChIlECIUres, Where the processing power Is CiStribLied, have

shaping quantization ideas to develop a novel NCS architecture @IS0 been examined; see, e.g., [15], [16], [18], [20].

that takes quantization into account. Using linear time invariant In this paper we assume that a given design (tben-
system theoretical tools, we show how to design a noise shapinginal design) has been carried out under the assumption of
quantizer that minimizes the impact of quantization noise on ideal communication links, but the control loop has to be
loop performance, as measured by the variance of the tracking . T o .

error component due to quantization. We provide explicit ana- implemented considering a bit-rate limited channel in the
lytical expressions for both the optimal noise shaping quantizer down-link. Thus, the controller output must be quantized
parameters and the optimum achievable performance. Itis also prior to transmission. To that end, we borrow ideas from the
shown that the proposed NCS architecture outperforms other y;A-converter literature (see, e.g., [21], [22]), and employ
schemes recently proposed in the literature. noise shaping quantizers to code the controller output. We

I. INTRODUCTION show how to design the noise shaping quantizer so as

Standard control theory assumes that the interconnectié Minimize the impact of quantization noise on the loop
of plant and controller igransparent i.e., transmitted sig- racking error, as measured by the variance of the tracking
nals are equal to received signals. This paradigm is ofté{ror component due to quantization noise. As in other
appropriate and underlies many successful control desiGRntemporary approaches to NCS design, see [11], [23], [24],
methods, as discussed, for example, in [1], [2]. Howevel'® Wlll_de_ploy design methodologies that utilise LTI system
in some situations the characteristics of the underlyingi€oretic ideas.
communication channels, renders the assumption of idealThe present paper extends work described in three early
communication links unacceptable. Control systems wheRapers by the same authors [25]-[27]. Indeed, the architec-
the communication link constitutes a bottleneck in achievabféires considered in those papers turn out to be special cases
performance are commonly referred to lstworked Con- ©Of the scheme considered in this paper. Consequently, the
trol SystemgNCS'’s); see, e.g., [3]-[6] and the referencedest achievable performance of NCS schemes studied in [25],
therein. The communication link can either be dedicatet?7] is never better than the best achievable performance of
or consist of a network which is shared between severfie noise shaping NCS'’s to be studied in the current paper.
users. Novel aspects introduced by the presence of non-The remainder of this paper is organized as follows:
transparent communication links in control include timeSection Il presents technical preliminaries and definitions.
delays, data-dropouts and quantization [7], [8]. Moreoveection Il defines the problem of interest. Section IV
from an analysis perspective, even basic system theorefitesents the main results, and Section V illustrates them with
notions, such as closed loop stability and asymptotic trackir@y Simple example. Finally, conclusions are drawn in Section
are far from trivial in the networked control context; see, e.gV!-

[9]-[14].
When designing NCS’s, the characteristics of the com- Il. PRELIMINARIES AND NOTATION

munication system should be explicitly taken into account . .
to ensure acceptable performance levels. This raises new" the remainder of this paper we use standard vector space

challenges [15], [16]. A key observation is that, in NCS'snOtation for signals. For example denotes{x (k) }ren,- We

there exist additional degrees of freedom in the desig"fﬁlso usez as both the argument of the z-transform and as

process as compared with traditional control loops. As a coe forward shift operator, where the meaning is clear from

sequence, to optimize performance, it is useful to investigalB® Context.

architectural issues and signal coding methods; see also [17]-The set of all scalar real rational discrete time transfer
[19]. functions will be denoted byR. We also defineRH, as
Several NCS architectures have been studied in the litghe subset ofR composed of all strictly proper and stable

ature. One can distinguish configurations where the chanrfggnsfer functionsRH.. as the subset oR coTpgsed of
all proper and stable transfer functions, aRé{; = R —
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For everyH (z) € R we define the—norm as " c LT @ Y
1 [" 2 -
1H ()l =5 | [H(e)] dw, @
ﬂ— —T
provided the integral converges. In particular, it converges Fig. 1. Standard non-networked control loop.

for all H(z) € R having no poles on the unit circle.

2

Using a partial fraction expansion, evefj(z) € R can * T v oV w T

be written as t ' J
H(z) = Hi(z)+ Ha(2), (2) L

2
where H, (z) € RHy and Hy(z) € RH,. It can also be
shown that [29] Fig. 2. Noise shaping quantizer.

1H(2)|l5 = [1HL(2)][5 + [[H2(2)]]5 @)

Given H(z) € R, we define a generalized Blaschke
product for H(z) as any function{y(z) € R such that
¢u(z)H(z) is stable, minimum phase (MP), biproper an
has unit magnitude for alt = ¢/“. Such a function exists
if and only if H(z) does not have poles or zeros on the uni
circle. A particular expression fdafy (z) is given by

is the loop sensitivity [1]. The complementary sensitivity is
T,(2) 21— 5,(2).
q The new ingredient in NCS’s, when compared to the
Idealized architecture in Figure 1, is that the communication
l[inks are not (or cannot be regarded as) ideal. In this
setting, quantization, time delays and data drops may have a
significative impact on loop performance [7], [8].
ne 1 o Z—p; In this paper we are interested in the control of the SISO
€p(z) = 2reMdeti (=) (H ch> 11 T | plant G(z) over a bit-rate limited digital communication
’ P channel, without data drops or time delays. Thus, the data
(4)  sent through the channel must be quantized prior to trans-
mission.

i=1 j=1

where reldg {H(z)} is the relative degree ofH(z),
{citi=1,.n. (resp.{p;};=1,..n,) is the set of NMP zeros A  Quantization scheme and corresponding model

(resp. unstable poles) off(z), and () denotes complex Following standard quantization methods, we will consider

conjugation. : : . . o
All signals in this paper are assumed to be wide Sen%nmse shaping quantizer, as depicted in Figure 2 (see also

stationary (wss.) stochastic processes with zero mean a q1], [22]). In Figure 2,z denotes the signal to be quantized,
.' y (WSS. Ic p With 2 w IS a quantized signal thabdest in an appropriate fashion,
rational power spectral density (PSD). Given a process

N ; i andz is an approximation ta:. 71(z), La2(z) andT5(z) are
we define its variance as;; scalar proper transfer functions to be designe@) is a

1 g . —Dbi i i i i
o2 £ € {a(k)?) = 27/ |Qm(ew)’2dw _ ||Qm(2)||§7 b—Dbit uniform quantizer with rangg-V, V], i.e.,
T w(k) = QY (v(k)), Vk € N, (8)
where(,(z) € R is such thangE(ej‘“)|2 is the PSD ofz.  \\here
[1l. PROBLEM DEFINITION (|| +3)A if —(2T-1)A<z<
Standard control theory (see, e.g, [1], [2]) assumes th@v@) _ _ (2'-1)A
the communication link between sensors and controller, as’ Voifz> (21 -1)A
well as between controller and actuators, is transparent. This -V ifr< - (2b_1 - 1) A
situation is depicted in Figure 1, and will be referred to as 9)
thenominal loop In Figure 1,G(z) € R is the plant transfer and A — 2V

261"
For the purpose of analysis and design, we will assume

atV is such that the probability of quantizer overflow, i.e.,
P(Jv|] > V), is negligible, thab is large enough, and that
is randomenough (see discussion in [23], [30], [31]). Under

function, C(z) € R is the controller transfer functiom, is
the reference signaly is the plant output (sensor output),th
u. IS the controller output and = . is the plant input
(actuator input). In this architecture, the tracking error

etr—y (5) these conditions, it can be assumed that
satisfies w=v+gq, (10)
e=S,(2)r, (6) Wwhereq is anindependent white noise sequenagformly
distributed in[— £, £]; ¢ denotesquantization noise
where
. . . . I
So(z) vy (1 + G(Z)C(Z))il @) [21]Usually, T3(z) is referred to as an interpolation or reconstruction filter



It is easily shown that the variance gfis given by In the sequel we will propose an optimal procedure to
A2 V2 chooseT’ (z), La(z) andT5(z). To that end, we will assume
ag =13 = W (11) that a satisfactory nominal design has been carried out. In
particular, we introduce:
On the other hand, it should be noted that, in order to guar- Assumption2: C(z) is given and stabilizes the nominal
antee negligible overflowy” should be selected according toloop.
the distribution ofv. Thereforeg turns out to be dependent Remark1l: We note that, if Assumptions 1 and 2 hold,
on the quantizer inp@t In particular, it can be shown that and ¢ is assumed to be fully exogenous, then the NCS in

o2 Figure 3 is stable (and well possed) if and onlfif(z) and
SNR £ —% (12)  S5(z) are stable, minimum phase (MP) and biproper. This
g . . .
a follows from standard ideas of avoiding unstable pole-zero

can befixed for a given distribution ofv by means of an cancellations (see, e.g., [1]A
appropriate choice fol/ [22]. As an illustration, assume
that v is a sequence of i.i.d. zero mean Gaussian random
variables with variance? and choosé = 40,. This implies This section analyzes the NCS architecture proposed in the
a probability of quantizer overflow of’([v] > 40,) = Previous section and describes a procedure to chdpss,
6.33- 10—, which is usually considered to be negligible forL2(z) and T3 (z).

practical purposes. This choice fbt leads to A. Analysis
3

SNR = — . (2° —1)2. (13) From Figure 3 it is straightforward to see that
16
e=r—y= 7SO(Z)G(Z)T3<Z)SQ(Z)Q + SO(Z)T, (16)

IV. OPTIMAL NOISE SHAPING

B. NCS architecture

The NCS architecture that we will consider in the remainTherefore, the variance of the component of the tracking
der of this paper is depicted in Figure 3. The key differencgrror due to quantization noisey, is given by
between the architecture in Figure 3 and the scheme in Figure 2 2 2

) . . = So(2)G S, . 17
1 is that a communication link has been placed between 9e, = 94 [15:(2)G()T(2) S22l (@7
the controller and plant. In particular, the channel input ig\ccording to the quantization model in Section III-Ag is
encoded with a noise shaping quantizer as described in thet independent. Indeed, using (12) it follows that

last section. The link between the output of the quantizer and o2
the input of T53(z) is formed by a bit-rate limited channel. afq = SNUR 11S0(2)G (2)T5(2)S2(2)|]3 - (18)

We will further assume that no transmission errors occur and
that there are no channel delays. Thus, we will assume that©On the other hand,
"R ﬁ} dard | v =T3(2) 7' C(2)S,(2)r—

Following standard communication nomenclature, we 1 1
reinterpret the left part of the noise shaping quantizer as an (T3(2) 7 C(2)8(2)G()Th(2) " + Ta(2)) ¢ (19)
encoderand the right part, i.eJ3(z), as adecoder whereT,(z) £ 1 — Sy(2). Therefore,

The architecture described above enriches the simple . 2
pre- and post-filtered PCM quantization-based NCS schemes®s = || T5(2) C(Z)SO(Z)QT(Z)Hz +
studied in [25], [27]. Those schemes can be recovered by 0-5 ||T3(z)*10(z)so(z)G(z)T1(z)*l +T2(Z)’|§’

it is easy to see that (recall (14))

setting L»(z) = 0. Later we will show that the architecture (20)
in Figure 3, in general, attains better performance than the _
architectures studied in [25], [27]. where we have used the fact thais independent and has

: 2. .
In order to not alter the nominal relations in (6), we will 260 mean, anfl), (/) " is the PSD of the process Using

make the following assumption regardifig(z), T5(z) and (12) and (20) in (18) it follows that
Lo(2): || T5(2) 71C(2) So(2)2 (z)H2 1150 (2)G (2)T5(2)S2(2)| ]
H . 2 — o T 2 o 2 '
Assumptionl: Ti(z), T3(z) and Ly(z) are such that o, SNR — |[1 - Sg(z)So(z)Hg
Ti(2) (14 La(2)) ™ Ta(2) = 1. (14) (21)

We note that the last assumption is equivalent to ensuring ;
. We n hat if = =1,then (21)r
that the transfer function between the controller output, € note that fly(z) = 0 < 95(2) = 1, then (21) reduces
and the plant inputy, is the identity, when no quantization ) )
is present. For subsequent reference, we also define 52 || T5(2)71C(2)S0(2)2(2)] ], 1150 (2) G (2) T (2]

(22)

which is the variance of the component of the tracking error
2This is, of course, no surprise since quantization is a purely deterministQue to quar!tlza_tlon noise Il’.l the cas_e of pr.e- and pOSt'f'lterEd
process and, as a consequengeepends in a very specific way an PCM quantization, as studied previously in [25], [27].

€

So(2) 2 (14 La(2) " as SNR — || T,(2)|[3

as the sensitivity of the inner loop.
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Fig. 3. Noise Shaping NCS Architecture.

B. An analytical solution

This section presents analytical expressions for the transfer
functionsT}(z), L2 (z) andT5(z) which minimize the impact
of the communication link on closed loop performance. We
do this by introducing a simplifying assumption.

1) Preliminaries: We first present some technical prelim-
inaries.

Define the set

SE2{H(z)€R:H(z2)=1—M(z2),M(z) € RHa},

(23)
and the functional
J £ 1S(2)A(2)]];- (24)
Also define
Topt 2 SuinJ (25)
Sopt(2) £ arg min_J. (26)

S(z)eS
2
We then have the following result: )

Lemmal: If A(z) € R does not have poles or zeros on
the unit circle, then:

1) The optimalS(z) in (26) is given by

B £a(2)A(2) -
Sopt(2) = ({gA(z)A(Z)}Iz_oo) -

wheref 4(z) is a generalized Blaschke product féfz).
2) The optimal functional value in (25) is given by

Jopt = ({EA(Z>A(Z)}|z=oo)2
= exp (2177 /; In ‘A(ejw)‘Q dw) . (28)

3) The optimal paramete¥,,.(z) is such that the spectrum
of S,pi(2)A(2) is white (i.e., has a constant magnitude
for all w).

Proof:

1) Using the properties of the—norm, the fact that
|€a(e7*)| = 1, and the definition of5, it follows that

2

; (29)
2

J=f H(l - i@(z)) F(2) 3)

whereQ(z) € RH~ and
F 2 ({a2) A=)} .200)?
§a(2)A(2)
F(z) & .
® % Ao
Note that, given the definition ot (z), F(z) is
biproper, stable, MP and such th&{cc) = 1. There-
fore,
J = [fllzF(z) — Q(2)F (=)l
= flIzF(0)[l5 + f 1|2 (F(2) = F(o0)) = Q(2)F(2)ll3
= [+ [l (F(z) = 1) = Q) F(2)][[; - 32
Therefore, the paramet&),,.(z) € RH.. that mini-
mizes.J is given by
Qopt(2) = 2F(2) "1 (F(2) — 1)
1
= Sopt(2) =1-— ;Qopt(z) =F(2)~ L
Recalling the definition of'(z), the result (27) follows.
The first part of the result follows directly from (32)
and the definitions off and Q,p:(z).

To prove that/,,; can be written as in (28), it suffices
to note that, given the properties & (z),

1 (" o2, L [T NP
%/_Wlnvl(ej )| dw—%/_ﬂlnﬂF(eJ )‘ dw

In fdw+

(30)

(1)

(33)

2T

1 " .
o /_7r In !F(e]“’)|2 dw.
(34)

Now, recall thatF'(z) is biproper, stable, MP and such
that F'(co) = 1. Therefore, it can be regarded as the
sensitivity of a loop in which the open loop transfer
function is stable and strictly properUsing the Bode
integral (see, e.g., [1], [32]) it follows that the last
integral in (34) equals zero. Therefore,

1

2

The result follows.
Immediate form part (1) and the properties&f(z).

! In |A(ej“’)‘2dw =Inf.

—T

(35)



Remark?2: If A(z) does have poles and/or zeros on thé\ccordingly, we define
unit circle, then it can be proved, using a procedure similar N .
to that in [33] (Lemmal0, p. 171), that.J,,; (defined by an P (o) Lo (o) T (2))€O
infimum and not a minimum as above) is still as in Lemma
1. Then, one can construct a sequence of stalplg’s that and
achieve a cos¥ as close to/,,; as desired. Note, however, (T1 Om(z),ﬁ2 opt(z)7T3 opt(2)) 2 ar min
that there is no stabl8(z) that achieves/,,;. A (Ta(2),L2(2),Ts(2)) €O
Remark 3: Assume a linear system with transfer function (40)
S(z) € S whose input is an arbitrary wide sense stationary 3) Key Result:We are now in a position to state the key

(39)

stochastic process with PSD result of this paper:
w Theorem1: Provided C(z)S(2)Q-(z) and S,(z)G(z)
[ ‘ | Hao(e7) | T have no it ci :
poles or zeros on the unit circle, then:
where H(z) is such thatH,(cc) = 1 and having no poles 1) The optimal noise shaping parameters defined in (40)
or zeros on the unit circlefﬁz is the variance of the white are given by
noise sequence,, that excitesH,(z) to generater. A £2(2)80(2)G(2)
Under the conditions of the last paragraph, Lemma 1 T opt(2) = 2 ° (41)
implies that the transfer functio§(z) € S that achieves {£2(2)56(2)G(2)}. o0
minimum varianceat its output when its input is, is such Tyonn(2) = £1(2)C(2)S0(2)2(2) (42)
that its output is white noise, with the same variance as the r {&1(2)C(2)So(2)0(2) }H ,— o
variance of the white noise_ considered yvhen g_energtl_ng Lo opt(2) = Ty opt(Z)Tl opt(2) — 1, (43)
We note that these conclusions are consistent with minimum
variance control for MP plants [34h where & (z),&2(z) are generalized Blaschke products

Based on the previous observations we see that Lemma 1 for C'(2)50(2)€2,(2) and S,(2)G(2), respectively.
shows that the optimal paramet§fz) € S is such that it ~2) The corresponding optimal loss function is given by
whitensthe spectrum ofd(z). Accordingly, we will use the .

2
term optimal whitening filter forA(z) to refer t0.S,;(z). Jopt = g (161(2)€2(2) To(2) o (2) 2 (2)} . —0)” -
2) Simplifying assumptionWe will next apply the results (44)
in Lemma 1 to derive optimal values @ (z), Ly(z) and Proof:
T5(z) in Figure 3. To achieve a closed form solution, we 1) We write
make the following simplifying assumption: R 1
J=——J1Js, 45
SNR — [|1 — S5(2)S,(2)||> ~ SNR, (36) SNR™'? (43)
which implies (see (21)) where .
o2 2 Ji = |!Ts<z>*10<z>50<z>9r<z>\|2,
’ 5 Jo = [|9,(2)G(2)T5(2)S2(2)||2. (46)
[73(2)7 05,2 ()] 156G T Sa(2) = 2)%2()
SNR ' Since there are two degrees of freedom available, we
37) can minimize J in a two step procedure. We first

minimize J; by choosingl;(z) and we then minimize
Jo by choosingSa(z).

SinceTs(z) € S and is MP, it follows thafls(2) ! € S.

In addition, C(2)S,(2)Q,.(z) is assumed to have no
poles or zeros on the unit circle. Therefore we can
immediately utilize Lemma 1 giving

We note that this restriction is actually quite mild. Indeed,
we will see in Section V that the consequences of this
assumption lead to valid performance predictions even for
very low bit-rates. Clearly,/ is the (approximate) variance

of the component of the tracking error due to quantization

noise.

As is common practice in actual implementations of noise N £1(2)C0(2)So(2)Q2(2)
shaping quantizers (see, e.g., [22]), we will also assume the Tzopi(2) = {6(2)C(2)S.(2)0% (). (47
following: N . . =

Assumption3: Ty(z) € S (see definition in (23)). SubstitutingT ¢ (2) into J, yields

Assumptions 1, 2 and 3 (recall Remark 1) imply that . 2
we are interested in the set of triple; (z), L2 (), Ts(2)) Ja = 2)G(2)Ts0pt(2)52(2)] | (48)
defined by We note that, in order for the inner loop in Figure 3 to
O 2 {(Ty(2), La(2),T3(2)) € R : T3(2) € S and is MP, be well defined/»(z) must be strictly proper, i.e., there

(14 Lo(2))"" is stable, must exist a propeC(z) suc_h 'FhatL2(z) = _z*lC(z)_.
) 1 Therefore,S2(z) is an admissible sensitivity function
MP and biproper, and(z) (1 + L(z))  Ts(z) = 1.} (i.e., a sensitivity function originating in a stabilizing

(38) and proper controllelC(z)) for the plantz=!. The



Youla parameterization (see, e.g., [1]) ensures that all V. EXAMPLE
admissibleS;(z) can be written as This section presents a simple example to illustrate the

1 results in this paper.
S2(2) =1 - -Q(z), , .
z A. Nominal design

where Q(z) € RH~. As a consequencess(z) € S. We consider a continuous time plant given &y(s) =
Since, in addition,S,(2)G(z) is assumed to have no 2(5s + 1)~!, sampled everyI' = 1[s] using a zero order
poles or zeros on the unit circle, afif,,:(z) is stable, hold at its input. The corresponding discrete time transfer
MP and biproper, we can use Lemma 1 again to obtaifunction is

0.36254

Saopt(2) = ( £2(2)50(2)C(2) Tgopt(z)>_l. ¢ = 08187
{62(2)50(2) ()} o (50) We will consider two different reference signals, and
r9, With PSD’s given by
Therefore 9
’ or (2 0.02
L 8RS ROl e
L) = e s, ey o ot L 003 :
(51) |2, ()] = 5 00y 07

Finally, using the fact thafli(2)S2(2)T5(2) = 1, it For the control ofG(z) we choose the PI controller

follows that O — 24488(z — 0.4871)
Tro(z) = 22 IEE) () JT e
{£2(2)50(2)G(2) }H = o This controller is assumed to give satisfactory performance

Given the properties of generalized Blaschke product) the absence of channel quantization.
the optimal triplet defined in the previous paragraphg The case of,
belongs toO, as required.

i Jw Jw Jw) i i
2) Immediate form the part and Lemma 1. In this case,T, (), (e””)S2y, () is approximately

constant for allw. Then, Corollary 1 suggests that the
®  PCM based scheme described in [25], [27] (called the PCM
Remark4: Theorem 1 can be extended to cases in WhicGcheme in the sequel) should have a performance which is
C(2)S(2)$2(2) andlor S,(2)G(z) have poles or zeros on cjose to that of the noise shaping based scheme studied in
the unit circle as discussed in Remarka2 this paper. This is confirmed by the results in Figure 4. In
We also have the following corollary to Theorem 1:  that figure, we show thempirical i.e., simulated (using an
_ Corollary 1: Under the conditions of Theorem 1, actual uniform quantizer), loop error sample variance as a
Lo opt(2) = 0 if and only if T, (2)5,(2)$2(2) is a constant. function of the bit-rateh/T" of the communication channel,
Proof: The result follows from Theorem 1, the de-considering several coding schemes. It is clear that the closed
finition of loop sensitivities and the fact that, given the|oop performance can be significantly improved through
properties of Blaschke products, havigg(z)A(z) constant (PCM or noise shaping based) coding. It is worth noting
is equivalent to havingi(z) constant. ® that for high bit-rates, the performance of the networked
The above corollary implies that (save for the very speciaontrol loop (with and without coding) is almost identical
case in whichr;, (2)S,(2)2.(z) is constant) the best achiev- to the nominal performance. This is a consequence of the
able performance of the novel noise shaping NCS studied #ssociated high signal-to-noise ratio (see (21)).
this paper is guaranteed to be better than the performance

of the pre- and post-filtered PCM quantization-based NCS 10° . . . . . .
schemes studied previously in [25], [27]. As stated before, — Nominal Performance
this is as expected given the fact that the PCM-based scheme 8 s gggmg: e Shaping
is a special case of the noise shaping scheme. § O No coding
Further insight into the nature of the optimal noise shaping S . G
NCS can be gained by noting that, under the assumption that g 10 SEEREY
the SNR is large, then is smalland hence (19) reduces to 2
£ .43 ) o .
v T3(2) 7 1O(2)S,(2)r. (53) § 10 (R g Bg g T
Under these conditions, the optimal choice Ta(z) is such 107

1 2 3 4 5 6 7 8

that it whitens the input to the quantizes. Furthermore, bit rate [bis]

once v has been whitened, the optimal choice s(z)
(equivalentlySz(2)) is such that itwhitens the effect of the rig. 4. sample loop error variance as a function of the channel bit-rate
guantization noise on the tracking errgsee (16)). (r=r1).



C. The case of,

various design parameters can be chosen so as to minimize

Figure 5 shows the empirical loop error sample varianci’® impact of channel imperfections on loop performance.
when consideringr, as reference together with various T Ne results have been confirmed by non idealized simulations

coding schemes. In this casg,(e/)S,(e?“)Q,, (e/¥) is
far from being constant. Therefore, the fact that the noise
shaping coder system outperforms PCM is no surprise[l]
Again, the benefits of coding are apparent.

(2]

D. Testing impact of simplifying assumption

In Figure 6 we show a comparison between the theoreticafgl
variance of the loop error as given by Theorem 1 and the
empirical loop error sample variance, when= ry, and n
optimal noise shaping coding is employed. In Figure 6,
o2 refers to the theoretical variance of the effect of the
reference on the tracking error, i.qISO(z)QT(z)Hg (see Dl
(16)). Theempirical results refer to the observed variance [g]
under simulated conditions. Except for the extreme case
b =1, a very close match is obtained, and eveniet 1, 7]
the qualitative performance is as predicted.

8
VI. CONCLUSIONS .

This paper has studied a novel noise shaping quantize[?]
based coder/decoder system for NCS’s in which the com-
munication between controller and plant is performed OV%E_O]
a bit-rate limited digital channel. It has been shown how the

10 [11]
— Nominal Performance [12]
© X Optimal Noise Shaping
2 O Optimal PCM
S X
-§ g 0. No coding [13]
S 107
5} :
P ‘ [14]
= |
& ©
® g g g g ‘ [15]
10°

1 2 3 4 5 6 7 8
bit rate [bit/s] [16]
Fig. 5. Sample loop error variance as a function of the channel bit-rate

(r = r2). (17

x10° (18]
8 T - .
2 2
7 " o "%, [19]
6 5" Empirical
g
L5t [20]
©
>
5 4
PN [21]
2 ¥ =X X =X =
i [22]
1
1 2 3 4 5 6 7 8

bit rate [bit/s] [23]

Fig. 6. Comparison between analytical performance index values and
empirical values with- = 2 and optimal noise shaping coding.

using a bit-rate limited communication channel.
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