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ABSTRACT

This paper presents novel results on the joint problem of sampling
and quantization of non bandlimited signals. Existing literature typ-
ically focuses either on sampling in the absence of quantization, or,
conversely, studies quantization for already sampled signals. Our
emphasis here is on the issues that arise at the intersection of these
two design problems. We argue that the joint problem can be formu-
lated and solved to any desired level of accuracy, using moving hori-
zon optimization methods. We present several examples which show
that consideration of the combined sampling and quantization pro-
blem gives important performance gains, relative to strategies which
don’t specifically address the interaction between these two prob-
lems.

1. INTRODUCTION

In many DSP applications, one needs to convert continuous time,
continuous valued signals, to sampled ones, which have a finite bit-
rate. This leads to an important set of questions regarding the best
way to represent a signal by a sequence of sampled and quantized
values, such that the information loss inherent in the sampling pro-
cess is minimized in some sense. The above problems lead to impor-
tant questions such as:“ If one wants to represent a not bandlimited
signal using a fixed number of bits, then how should we quantize
and sample the signal to obtain the lowest possible reconstruction
distortion?”

Our approach to this joint design problem is to convert it into a
sampled data moving horizon optimization problem with quantized
decision variables.

Background to the work described here arises from four distinct
streams. The first of these is associated with the problem of sam-
pling in the absence of quantization [1][2]. Recent work has placed
these earlier results in a modern Hilbert space framework and has es-
tablished connections to splines and wavelets [3][4][5]. Also, there
has been work on the approximation error arising from the sampling
of not bandlimited signals [6][7][3].

The second related field of research is concerned with quanti-
zation of signals where the sampling strategy has been pre ordained
[8]. Recent work on this problem includes [9][10][11].

The third stream of prior work arises in the area of sampled data
control theory. Here, the emphasis has typically been on regulation
(zero reference) problems with unconstrained decision variables [12]
[13]. We will utilize related ideas here. However, we will need to
extend the concepts to account for non zero reference signals and
quantized decision variables.
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The fourth stream of prior work includes alternative methodolo-
gies for addressing the joint design problem. These include approx-
imating quantization as an additive noise source and using Hilbert-
space methods [14] [15] and other non optimization based approa-
ches [16].

Our approach differs from the work described above by virtue of
the fact that we design the joint optimal sampler and quantizer using
sampled data quantized moving horizon optimization. We show in
section 4 that our algorithm leads to significant performance gains,
compared with alternative approaches which do not take account of
the interaction between sampling and quantization.

2. PROBLEM FORMULATION

As foreshadowed in the introduction, we focus our attention to the
sampling-quantization structure depicted in figure 1.
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Fig. 1: Block diagram of the system

The following symbols and notation are used in figure 1 and in
the remainder of this paper:

• s(t) ∈ L2 is the input signal, not necessarily band-limited.

• T is the sampling period. Sampling is regularly spaced.

• fs , 1/T is the sampling frequency.

• ϕ(t) is the impulse response of the reconstruction filter. It is
a design choice.

• g(t) is the output of the system.

• w(t) is the impulse response of the weighting filter. It is as-
sumed given.

• U is the set of quantization levels. It is assumed given.

• The Fourier transform of a continuous time signal f(t) is
written bf(Ω). For a discrete time signal d[k], its discrete
Fourier transform is written bd(ejω).

• The continuous time convolution of two functions f1(t), f2(t)
is denoted by (f1 ∗ f2)(t).

• The symbol ′ denotes the time reversion of a signal, i.e.,

f ′(t) = f(−t)

.



Our goal is to find, for a given sampling rate and reconstruc-
tion filter, the pre-processing that minimizes the L2 norm of the fre-
quency weighted reconstruction error

‖ε(·)‖2L2
=

∞Z

−∞

ε2(t)dt (1)

where
ε(t) , w(t) ∗ [s(t)− g(t)] ; t ∈ < (2)

and
g(t) =

X

k∈Z
c[k]ϕ(t− k); t ∈ < (3)

When there are no quantization constraints, the optimal pre-processor
is known to be a linear time invariant filter matched to ϕ, see [3]. On
the other hand, when quantization is introduced, the problem must
be re stated as finding the optimal sampler-quantizer Q◦U 〈·〉

Q◦U 〈·〉 : s(t)
Q◦U〈·〉−−−→ c∗[·] (4)

such that {c◦ [k]} is the sequence that minimizes the error

‖ε(·)‖2L2
=

∞Z

−∞

"
v(t)−

X

k∈Z
c[k]f(t− k)

#2

dt (5)

where v(t) , (s ∗ w)(t) and f(t) , (ϕ ∗ w)(t). The quantization
constraint is formulated by restricting

c[k] ∈ U, ∀k ∈ Z. (6)

Note that the quantization constraint turns Q◦U 〈·〉 into a non-linear
operator.

We will first show that the L2 (continuous time) optimization
problem with sampling in (5) is equivalent to an l2 (discrete time)
optimization problem, where the weighting values are time varying
and depend, inter-alia, on the continuous time signal in the time in-
tervals between samples. This is established in the following lemma.

Lemma 1 Define F [k, n] and Y [k], k, n ∈ Z via

Y [k] ,
∞Z

−∞

v(t)f(t− kT )dt (7)

F [k, n] ,
∞Z

−∞

f(t− kT )f(t− nT )dt (8)

Then

‖ε(·)‖2L2
=

∞Z

−∞

v2(t)dt− 2
X

k∈Z
c[k]Y [k]

+
X

k∈Z

X

n∈Z
c[k]c[n]F [k, n] (9)

Proof 1 The result is obtained by Expanding (5) and exchanging the
order of sum and integral.

Remark 2 The above result can be regarded as a more general form
of sampled data control techniques.

Remark 3 If there was no quantization, then the optimization be-
comes a convex quadratic problem, and c∗[k] can be found by dif-
ferentiating (9) and then solving

0 =
X

n∈Z
c[n]F [k, n]− Y [k]; ∀k ∈ Z (10)

Note that Y [k] = (v ∗ f ′)(kT ) and F [k, n] = (f ∗ f ′)([n− k]T ).
This turns the sum in (10) into a discrete time convolution. If, in
addition. we choose bw(Ω) = 1, it can be shown that c◦[k] =R

s(ξ)ϕ̃d

`
ξ
T
− j
´
d ξ

T
, where ϕ̃d(Ω) is the dual of ϕ, just as in [17].

When the coefficients c[k] are constrained to belong to a finite set
of scalars, finding c◦[k] requires the knowledge of the entire input
signal (which is unsuited for on-line applications). Furthermore, the
number of required calculations grows exponentially with the length
of the input sequence. Thus, Q◦U 〈·〉 cannot be implemented online.
This issue is addressed below.

3. THE MOVING HORIZON SAMPLER-QUANTIZER

The difficulties mentioned above can be avoided as follows:
At a given instant, rather than taking into account t ∈ <, we

consider only a fixed time interval and optimize the coefficients con-
tained therein. We then shift the horizon ahead by T and repeat
the calculations, in an iterative process which yields a near-optimal
result [18]. To be more precise, at iteration `, the horizon of coeffi-
cients to be optimized extends from c[`] to c[` + N − 1], N ∈ Z+.
The time interval over which the error is to be minimized by these
coefficients ranges from (` − B)T to (` + N)T , B ∈ Z+. Once
the optimal combination of coefficients is found, only the first of
them, c[`], is sent to the output of the sampler-quantizer. Then, the
horizon is shifted forward T , and iteration ` + 1 begins. N can be
considered the forward horizon length. It contains the coefficients to
be optimized. On the other hand, B can be viewed as the backward
horizon length, which accounts for non-causality of ϕ.

In each iteration, the cost function to be minimized with respect
to c[`], . . . c[` + N−1] is defined as

J̃l ,
(`+N)TZ

(`−B)T

ε̃2(t)dt (11)

Compare to (1). In (11),

ε̃(t) , v(t)−
`−1X

k=−∞
c[k]f(t− kT )−

`+N−1X

k=`

c[k]f(t− kT ) (12)

is the filtered error excluding the effect of the coefficients beyond the
horizon. The second term on the right hand side of (12) captures the
effect of decisions which have already been made 1 , whilst the third
term of (12) captures the effects of the current optimization vari-
ables. If f(t) is non-causal, the future coefficients (yet unknown)
will also affect the output within the present horizon, thus unavoid-
ably degrading the quality of the optimization. This effect is miti-
gated by the use of a long optimization horizon. Indeed, the horizon
lengths N and B are system design parameters, which allow one
to manage the trade-off between computational complexity and per-
formance. Fortunately, our experience with related schemes shows

1Notice that the second term on the right hand side of (12) can be conve-
niently captured by the use of a state space representation for ϕ and w



that near optimal performance can often be obtained for rather small
values of N [9][10][11]. Thus, excellent performance can often be
achieved in on-line applications

If we define the difference between the filtered input signal and
the part of the filtered output due to past coefficients in (12) as

y`(t) , v(t)−
`−1X

k=−∞
c[k]f(t− kT ) (13)

and substitute (12) into (11), then the cost function for the horizon at
iteration ` can be written in matrix form as

J̃` = ~cT
` FN~c` − 2YT

` ~c` +

(`+N)TZ

(`−B)T

y2(t)dt (14)

where
~c` , (c[`], . . . , c[` + N−1]) (15)

The vector Y` ∈ <N and the symmetric matrix FN ∈ <N×N

are defined as

Y`[j] ,
NTZ

−BT

y`(t + `T )f(t− jT )dt (16)

FN [j, k] ,
NTZ

−BT

f(t− jT )f(t− kT )dt (17)

We will denote ~c∗` the sequence of coefficients that minimizes (14).
The proposed algorithm, beginning at instant `T , can be stated

as follows:

Step 1.- Calculate the matrix FN in (17)
Step 2.- Calculate Y`

Step 3.- Find the optimizer ~c∗` by minimizing (14)
Step 4.- Output c∗` [`], the first element of ~c∗` (see (15))
Step 5.- Increment ` by 1 and go to Step 2.

The sequence c∗` [`] of step 4 forms the output of the moving
horizon sampler quantizer. The algorithm reduces filtered aliasing
and quantization noise. For that purpose, it does simultaneous adap-
tive filtering on the input signal and adaptive noise shaping of the
quantization noise, thus respecting the interaction between both phe-
nomena.

It is interesting to note that, as the horizon is made larger, the
output of the sampler-quantizer defined above approaches the opti-
mal feasible output sequence possible in (4)

4. EXPERIMENTAL RESULTS

The moving horizon sampler-quantizer defined in 3 was simulated,
utilizing a Riemann approximation of the integrals, for three audio
signals 22.6 [ms] long. The input sequences had zero DC value and
were normalized such that max |s(t)| = 1. Although the signals
were bandlimited to around 20 [kHz], the effects of aliasing were
induced by choosing sampling frequencies significantly below the
Nyquist rate.

In all cases the forward horizon N was fixed to 4 samples. This
horizon length provides near- optimal performance for a reasonably
low computational cost.

For each signal, the simulation is performed for 3 to 8 quanti-
zation levels, 2 different bit-rates and two different weighting filters.
The first type of weighting filter is bw(Ω) = 1. The second type
of weighting filter, denoted by wpsycho, is an approximation of the
psycho-acoustic response of the human ear [19]. Figure 2 a plot of
the frequency response of bwpsycho(Ω)
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Fig. 2: Frequency Response of the Psychoacoustic Weighting Filter

For every sampling rate, the chosen reconstruction filter is for-
med by a linear interpolation filter followed by a high order Butter-
worth low-pass filter, with cut-off frequency fixed at 22.05 [kHz].
The chosen interpolation filter has impulse response given by a sym-
metrical B-spline of order 1, expanded according to the sampling
rate:

ϕ(t) = β1( t
T

) (18)

where

β1(t) = (1 + t)µ(t + 1)− 2tµ(t) + tµ(t− 1) (19)

and µ(t) is the unit step function

µ(t) =


0 t < 0
1 t ≥ 0

(20)

The expansion by 1/T adapts the frequency response of the in-
terpolation filter to eliminate the sampling frequency from the out-
put. At the same time, the interpolation filter attenuates the images
in the output spectrum below the 22.05 [kHz].

Figure 3 shows that, as expected, decreasing the sampling rate
while keeping the same number of quantization levels produces hi-
gher output distortion. However, the rate of increase in the normal-
ized error is relatively slow, which suggests that the optimization
algorithm has the potential to give reductions in normalized distor-
tion by reducing the sampling frequency while keeping the bit-rate
constant.

The latter claim is verified in table 1, which shows the normal-
ized distortion, ‖ε‖2L2

/‖w ∗ g‖2L2
(with ‖ε‖2L2

as defined in (1)), at
the output of the system for one of the input signals, using wpsycho

as error weighting filter. For each of the two bit-rates, several com-
binations of sampling frequency (fs) and number of quantization
levels were simulated.

As expected, for a given number of quantization levels, a lower
sampling rate yields higher distortion. However, if the bit-rate is
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Table 1: Normalized Distortion as a function of Bit-Rate and Num-
ber of Quantization Levels, w = wpsycho. fs is the sampling rate

Norm. Distortion Number of Quantization Levels
Bit Rate 3 4 5 6 7 8

Bit-rate = 22 Kbps .22 .12 .11 .12 .13 .15
fs [kHz] 13 11 9.6 8.5 7.8 7

Bit-rate = 14 Kbps .25 .20 .19 .19 .22 .24
fs [kHz] 9.2 7 6.3 5.6 5.2 4.7

kept constant, reducing the sampling frequency can yield lower dis-
tortion, due to the reduction in the quantization step. Interestingly,
as seen in table 1, the lowest distortion at a bit-rate of 22 Kbps is
obtained for a sampling rate of 9.6 kHz, whereas the optimal at a
bit-rate of 14 Kbps is obtained at 5.6 kHz, sampling frequencies
well below the Nyquist rate in both cases.

5. CONCLUSIONS

This paper has presented a sampled data quantized moving hori-
zon approach to the joint design of a quantization and sampler for
not necessarily band limited signals. This allowed us to analyse the
trade-off between quantization errors and aliasing due to sampling,
obtaining the joint optimal sampler and quantizer. We showed that,
for band-limited signals, particularly at low bit-rates, the optimal
sampling rate can be lower than the Nyquist rate. Experimental re-
sults confirm the validity of this approach.
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