
Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a
two-mass model of speech
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Nonlinear vocal fold dynamics arising from asymmetric flow formations within the glottis are

investigated using a two-mass model of speech with asymmetric vocal fold tensioning, representative

of unilateral vocal fold paralysis. A refined theoretical boundary-layer flow solver is implemented to

compute the intraglottal pressures, providing a more realistic description of the flow than the standard

one-dimensional, inviscid Bernoulli flow solution. Vocal fold dynamics are investigated for subglottal

pressures of 0.6< ps< 1.5 kPa and tension asymmetries of 0.5<Q< 0.8. As tension asymmetries

become pronounced the asymmetric flow incites nonlinear behavior in the vocal fold dynamics

at subglottal pressures that are associated with normal speech, behavior that is not captured with

standard Bernoulli flow solvers. Regions of bifurcation, coexistence of solutions, and chaos are

identified. VC 2011 American Institute of Physics. [doi:10.1063/1.3615726]

Understanding the nature of nonlinear behavior in nor-

mal and disordered voice has an impact on behavioral,

clinical, and technological aspects of speech science. Mod-

els that can mimic and predict these phenomena have

been shown to be useful tools for investigation, diagnosis,

and treatment of vocal maladies. Simplified lumped ele-

ment models of the vocal folds have received significant

attention due to their ability to efficiently perform com-

prehensive parameter variation investigations, a neces-

sary task that becomes prohibitive with more advanced

computational models. However, the limiting assump-

tions of these models often prevent them from replicating

complicated speech behaviors. In this study, a compact

physics-based asymmetric flow solution replaces the tra-

ditionally simplistic Bernoulli flow equation to compute

the aerodynamic loadings that drive the model vocal fold

motion. The new, more comprehensive flow model is used

to extend previous chaotic descriptions obtained using

advanced flow solvers for a limited set of conditions rep-

resentative of unilateral paralysis. It is shown that asym-

metric intraglottal flow incites chaotic vocal fold motion

in the pressure-imbalance bifurcation space at more com-

mon physiological conditions, thus increasing the chances

of encountering chaos in disordered speech.

I. INTRODUCTION

Various experimental methodologies exist for the investi-

gation of pathological voice conditions, with lumped-element

models of speech being some of the most ubiquitous. Their

relative simplicity and inexpensive computational cost enables

them to be used for broad parametric investigations of behav-

iors found in both normal and disordered speech. The model

presented by Steinecke and Herzel25 (SH) is one of the most

prevalent, as it has been used to benchmark analysis tools33,41

and its behavior has been related to excised larynx experi-

ments,11,29,34,41 irregularities in normal voices,16 and a variety

of pathological conditions including paralysis,11,25,28,30 Parkin-

sonian voice,39 vocal tremor,40 and breathiness.12

The ability of all lumped-element models to replicate

common phonatory conditions relies on a number of parame-

ters. The prescription of the fluid loading that imparts energy

to the system and drives the vocal fold (VF) motion is a key

component. In virtually all multi-mass models of speech, the

aerodynamics are modeled using a simple Bernoulli flow

solver that assumes symmetric, invsicid, 1D flow. A notable

exception includes the development of a flow solver that incor-

porates boundary layer effects, and a varying flow separation

point.21 However, this flow solver also assumes a symmetric

flow orientation within the glottis. In contrast, experimental

data reveal that during the closing phases of the vocal fold

cycle, when the glottis is divergent, complex viscous flow

behavior arises, characterized by asymmetric flow attachment

to the vocal fold walls, unsteady flow separation, vortex shed-

ding, and transition to turbulence.2,6,8,18,27

More detailed modeling of the flow behavior has been pro-

vided by Tao and Jiang,28,30 who coupled a computational fluid

dynamics (CFD) flow solver with the two-mass model (2MM)

of SH.25 Although the inclusion of a full CFD solver counteracts

the appeal of the efficient and cost-effective lumped element

approach, the advanced complexity of the CFD flow solver

highlighted the need for more realistic multi-mass flow solvers.

It was found that the fully-coupled CFD solver incited chaotic

motion in the 2MM vocal fold dynamics for subglottal pressures

that were associated with normal speech,28,30 as opposed to prior

work that only observed the onset of chaotic motion ata)Electronic mail: erath@gwu.edu.
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unrealistically high subglottal pressures.16,25 Unfortunately, the

limited range of CFD investigations prevented a complete

understanding of the role of asymmetric fluid loadings over a

broad range of subglottal pressures and tissue asymmetries.

Recently, Erath et al.3 developed a novel, physics-based

flow solver derived from boundary layer theory to describe

asymmetric flow attachment within the divergent glottis. Easily

incorporated into any lumped element model, this theoretical

flow solution generates a simple algebraic description of the

asymmetric intraglottal pressures that arise from the flow

physics, and ultimately drive the vocal fold motion. The solution

can be seamlessly integrated into existing codes for multi-mass

speech models, allowing quick, efficient investigations of asym-

metric flow behavior in a variety of pathological conditions.

Because the refined flow solver only models the development of

asymmetric intraglottal flows, neglecting vortex shedding and

flow transition to turbulence, it facilitates identification of the

specific traits of vocal fold dynamics that arise due to asymmet-

ric flow attachment within the glottis.

This paper seeks to elucidate the influence of asymmetric

flow loading on the vocal folds under pathological conditions

representative of unilateral paralysis. The genesis of nonlinear

behavior arising from the refined flow solver is investigated over

a wide range of subglottal pressures and asymmetry conditions

that are encountered for both normal and pathological speech

conditions. Comparisons of the vocal fold dynamics resulting

from the compact asymmetric flow solution are made to those

generated from the Bernoulli and fully-coupled CFD flow simu-

lations. In these investigations, nonlinear analysis tools are used

to elucidate irregular behavior where standard linear analysis

techniques may fail.15 These methods are gaining importance in

speech science and show promise as clinical techniques for

improved identification of various vocal pathologies.11,13,14,35,38

II. NUMERICAL METHODS AND ANALYSIS

A. Numerical Two-Mass Model

Steinecke and Herzel25 developed a 2MM of speech that

enables tension asymmetries to be prescribed for the oppos-

ing vocal folds. The SH model represents each vocal fold as

two coupled spring-mass-dampers. Figure 1 shows the rele-

vant parameters of the model. Although the SH model is a

simplified view of vocal fold geometry, its ubiquity and rele-

vance in the speech literature renders it an ideal candidate

for modification and comparison purposes.

The orientations of the vocal folds are denoted by two

subscripts, j and a, where j¼ 1 and 2, and identifies the inferior

and superior (subglottal and supraglottal) positions of the

masses, respectively. The second subscript, a¼L and R,

denotes the left and the right vocal fold, respectively. Masses

are denoted as mja, spring constants are kja, and damping con-

stants are bja, with the spring and damping coefficients describ-

ing the tissue properties. The masses on each side are coupled

together with a spring kca, where the subscript c is a dummy

index that merely identifies the coupling spring constant.

The governing equations for the vocal fold motion are

m1a €Y1a þ b1a _Y1a þ k1aY1a þHð�a1Þ
c1aa1

2l

þ kcaðY1a � Y2aÞ ¼ GðtÞ (1a)

m2a €Y2a þ b2a _Y2a þ k2aY2a þHð�a2Þ
c2aa2

2l

þ kcaðY2a � Y1aÞ ¼ 0; (1b)

where Yja is the displacement of the mass from the glottal mid-

line (as shown in Fig. 1), with a dot over the variable indicat-

ing differentiation with respect to time t. Additional springs

with constants cja (not shown in Fig. 1) model the impact

forces that occur during vocal fold collision, and are modu-

lated by the Heaviside function, H, such that they are only

activated when the area between the vocal fold masses aj< 0.

All simulations are computed for 600 ms using a Runge-Kutta

solver with a step size that corresponds to a sampling fre-

quency of fs¼ 20 kHz. The total length of the vocal folds in

the anterior=posterior direction (into the page in Fig. 1) is l.
Finally, G(t) is a time-varying forcing function resulting from

the aerodynamic loading that drives the vocal fold motion.

Following the implementation of SH, the forcing function is

only applied to the inferior masses. The forcing can be further

decomposed into opening and closing phase components,

G¼GopenþGa,close. Note that the closing phase has a wall (a)

dependency that will be discussed later. The aerodynamic

loading during the opening phase is driven by the subglottal

pressure, ps. Because the glottis forms a convergent channel,

during the opening phase, the pressure gradient is favorable,

and the boundary layers are thin, allowing the aerodynamic

loadings to be approximated by the Bernoulli equation as

Gopen ¼ ld1p1 ¼ ld1ps 1� amin

a1

� �2
" #

Hða1ÞHðctotÞ; (2)

where d1 is the length of the inferior masses in the X direc-

tion, and amin is the minimum glottal area, defined as

amin ¼ maxð0;minða1; a2ÞÞ: (3)

The total included angle of the two vocal folds is speci-

fied as ctot, see Fig. 1. Due to the limiting nature of the
FIG. 1. Schematic diagram of the two-mass model configuration and

parameters.
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function H, the opening force, Gopen, is zero when the glottis

forms a uniform or divergent channel.

Virtually all flow solutions implemented into multi-mass

model investigations of speech assume highly-idealized 1D,

symmetric, inviscid flow throughout the entire phonatory

cycle. The standard SH implementation specifies that when

the glottis forms a divergent channel, the flow symmetrically

separates at the minimal glottal diameter. Consequently,

Gclose¼ 0, and there is no force applied to either of the vocal

fold walls during the closing phases of the cycle. These sim-

plified flow models are incapable of modeling important flow

asymmetries that develop during the divergent portion of the

phonatory cycle. In response to this deficiency, Erath et al.3

developed a new theoretical flow solver using a boundary

layer estimation of the asymmetric pressure (BLEAP). This

model is predicated on experimental and numerical observa-

tions that the glottal jet attaches to one vocal fold wall when

the glottis forms a divergent channel.6,7,18,22,27,33

In short, the medial vocal fold surfaces are modeled as

two translating and rotating semi-infinite flat plates, where it

is assumed that the flow is fully-attached to one plate, and

fully-separated from the opposing one (non-flow wall). The

pressure distribution along the non-flow wall is assumed to

be constant and equal to the supraglottal pressure. The pres-

sure along the flow wall is found by approximating the flow

field as a boundary layer and solving the governing equations

using similarity analysis.10

As discussed by Erath et al.,3 the plate translation does

not significantly influence the pressure distribution along the

flow wall. The wall rotation, however, acts as a favorable pres-

sure gradient, regardless of the direction of rotation. Solving

the boundary layer equations in a rotating reference frame, the

pressure distribution along the flow wall can be estimated as

pðxÞ ¼ pi þ
1

2
qðu2

i � uðxÞ2Þ; (4)

where pi and ui are the pressure and velocity at the inlet of

the glottis, respectively, xe¼ d1þ d2 is the length of the

vocal fold wall, and u(x) is the velocity at the edge of the

boundary layer. The pressure at the glottal inlet is given by

pi ¼
1

2
qu2

i

xe þ xoff

xoff

� �2b

� 1

 !
: (5)

with

ui ¼
ffiffiffiffiffiffiffi
2ps

q

s
xoff

xe þ xoff

� �b

(6)

and

uðxÞ ¼ ui
xþ xoff

xoff

� �b

: (7)

In order to satisfy the similarity solution the velocity

must develop as a power-law relation, where b is the expo-

nent. The theoretical solution very closely matches experi-

mental data for values of b¼�0.015 and xoff¼ 0.2 mm.3

The variable xoff is an experimentally-measured value that is

introduced to ensure the theoretical boundary layer has a fi-

nite height at the glottal inlet. The result of Eq. (4) produces

a physically-realistic description of the flow (asymmetric

attachment to one wall, with complete separation from the

opposing wall) in a compact, algebraic relation that is easily

incorporated into existing 2MM fluid flow solvers.

For the case of asymmetric flow attachment to one wall

the closing force Ga,close is defined as

Ga;close ¼ HðaminÞHð�cÞ
ðxe

0

pðxÞdx; (8)

where p(x) is obtained from Eq. (4). The subscript a denotes

the wall to which the flow is attached. This is determined

during the computation by specifying that the flow attaches

to the vocal fold wall that has the shallower divergence angle

(more positive) when the total divergence angle ctot becomes

negative. The preference of the flow to repeatedly attach to

the shallower-angled wall has been established with experi-

mental investigations.4–6 Once the flow attaches to one wall

in the numerical model, it remains attached until either

ctot> 0, or amin¼ 0.

B. Time Series and Non-linear Analysis

The 2MM of SH is useful for investigating speech path-

ologies, including superior laryngeal nerve (SLN) paraly-

sis.25 Tension imbalance is modeled by defining a symmetry

parameter, 0<Q< 1.0, such that

mj;R ¼ mj;L=Q; kj;R ¼ Qkj;L;

kc;R ¼ Qkc;L; cj;R ¼ Qcj;L:
(9)

When Q¼ 1.0 vocal fold tension is perfectly symmetric,

while values of Q� 0.5 are considered highly-asymmetric.

As Q varies, different attractors arise, manifest by the left

and right vocal folds oscillating at different frequencies.

Figure 2 shows the temporal history of the left and the right

vocal fold oscillations and the minimal glottal area for

ps¼ 1.392 kPa and Q¼ 0.539 with the BLEAP flow solver.

Initial conditions for this, as well as all other simulations, are

given by

FIG. 2. Temporal evolution of (a) the minimal glottal area and (b) Y1L (—)

and Y1R(- - -) with the BLEAP flow solution for ps¼ 1.392 kPa and

Q¼ 0.539. Over the oscillation period (T) there are three peaks in the oscil-

lations of the right mass and four peaks in the oscillations of the left mass.
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Y1að0Þ ¼ _Y1að0Þ ¼ 0:1; Y2að0Þ ¼ _Y2að0Þ ¼ 0:0: (10)

The coupling between the right and the left vocal fold

oscillations is quantified by finding the fundamental period

(T) of amin [see Fig. 2(a)] by performing a correlation of the

final 100 ms of the amin signal with the same amin signal over

the range of 200< t< 600 ms. The period T is determined by

computing the spacing between the peaks in the correlation

function that are at least 99% of the maximum peak. The

number of peaks in Y1a over the period T is defined as /a. In

Fig. 2 there are three peaks in the right vocal fold cycle

/R ¼ 3ð Þ, and four peaks in the left vocal fold cycle

/L ¼ 4ð Þ [see Fig. 2(b)]. If T is not stationary over the corre-

lation function, or if there are no peaks in the correlation

function within 99% of the dominant peak, it is determined

that amin exhibited no repeating pattern (NRP). The right to

left oscillation ratio, (U), is quantified according to

U ¼

/1R

/1L

for
/1R

/1L

< 1:0

/1R for
/1R

/1L

¼ 1:0

0 for no repeating pattern ðNRPÞ

8>>>>><
>>>>>:

(11)

giving a ratio of 3:4 in Fig. 2.

The impact of the BLEAP scheme on the chaotic nature

of the 2MM vocal fold oscillations is assessed by applying

the nonlinear dynamics detection method proposed by Bara-

hona and Poon,1 and repeated in Tao and Jiang,28 for time

series analysis. While this method can produce spurious

results in the presence of colored noise, it provides a direct

correlation with the maximum Lyapunov exponent for noise-

free deterministic systems, as is employed here. A time se-

ries sn with n¼ 1, ..., N in multiples of the sampling time s
can be expressed as a Volterra-Weiner-Korenberg series

with degree d and embedding dimension j in order to predict

a time series ~sn, as
~sn ¼ e0 þ e1sn�1 þ e2sn�2 þ � � � þ ejsn�j þ ejþ1s2

n�1

þ ejþ2sn�1sn�2 þ � � � þ eK�1sd
n�j ¼

XK�1

k¼0

ekqkðnÞ; (12)

where the coefficients ek are found using a Gram-Schmidt

reorthonormalization approach. The total dimension of the

predictive time series is K¼ (jþ d)!=(j!d!). The nonlinear-

ity of the time series is now found by determining the predic-

tive capability of ~sn by searching for the optimum values of

j, d for both linear (d¼ 1) and nonlinear (d> 1) combina-

tions that minimize the information criterion

CðrÞ ¼ log �ðrÞ þ r

N
; (13)

where � is the one-step-ahead prediction error given by Bara-

hona and Poon1 and r is the total number of polynomial

terms from the truncated Volterra-Weiner-Korenberg series

for any combination of (j, d) with r 2 1;K½ �. Chaotic behav-

ior in the original time series is revealed if the best nonlinear

model Cnl, obtained with d> 1, is more predictive than the

linear model Clin, obtained with d¼ 1. This occurs when

Cnl<Clin for values of r> j. Failure to meet the above crite-

ria implies the signal is either not chaotic, or that any chaotic

component is too weak to be statistically determined.28

The optimal value of the time lag, s, is found for each

time series by using both the method of mutual information9

as well as investigating the graphical time-delay behavior of

each series.17 The embedding dimension j is chosen based

on the convergence of the correlation integral according to

the recommendations by Theiler,31 as well as the expected

behavior of Eq. (13) for deterministic data.

III. RESULTS

The vibratory behavior of the SH 2MM is investigated

by performing a parametric variation in the Q – ps plane. A

reproduction of the original SH regime plot is presented in

Fig. 3(a), with the initial conditions specified in Eq. (10).

The regime map is generated by plotting 101 points of each

variable such that Dps¼ 0.003 kPa and DQ¼ 0.003. When

U> 3, the number of peaks within a repeating cycle of amin

is > 3, and can be as high as 30. Domains demarcated by red

denote long tori and=or chaotic behavior in the vocal fold

dynamics, whereas U¼ 0 (blue) indicates NRP in amin over

the investigated time length. For some of the larger regions,

values for U are indicated. The relatively coarse resolution

of U (chosen for plotting visualization purposes) prevents

identification of all of the unique regions of oscillation ratios.

For a more detailed description, see Steinecke and Herzel.25

The original work of SH identified a variety of nonlinear

phenomena including period doubling and tripling, subhar-

monic regimes, and bifurcations arising from multiple attrac-

tors. For a few limited scenarios, chaotic behavior was also

observed.25 However, all of the nonlinear behavior was re-

stricted to low symmetry values (0.5<Q< 0.6) and high

subglottal pressures (ps>�0.12), which are generally out-

side of the realm of even the worst pathological cases.

A Q – ps regime map implementing the BLEAP flow so-

lution is shown in Fig. 3(b) over the expanded domain of

0.5<Q< 0.8 and 0.6< ps< 1.5 kPa with oscillation ratios

plotted as U. The resolution is Dps¼ 0.009 kPa and

DQ¼ 0.009. The dashed box demarcates the domain of the

original SH plot [Fig. 3(a)]. Regions of long transients

(U¼ 0-NRP), multiple period oscillations (0<U � 3), and

apparent chaotic behavior (U> 3) are observed. In contrast

to the SH plot, this behavior occurs over an expanded do-

main, with nonlinear behavior occurring at subglottal pres-

sures that are encountered during normal speech (0.3 – 1.0

kPa).26 Furthermore, it appears that long transients in the so-

lution and chaotic behavior are much more prevalent in the

vocal fold dynamics. Boundaries indicating transition from

one oscillatory regime to another are not as clearly demar-

cated as in Fig. 3(a), either. The following sections quantify

the nonlinear behavior of vocal fold dynamics that arise

when the more realistic BLEAP flow solver is implemented.

The prevalence of nonlinear phenomena is investigated

by plotting one-parameter bifurcation diagrams of the max-

ima of Y1L for constant subglottal pressures of ps¼ 0.654,

0.933, and 1.311 kPa, in Figs. 4(a)–4(c), respectively. The

three subglottal pressures at which the bifurcation diagrams
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are plotted are demarcated as three horizontal lines (- .. -) in

Fig. 3(b). Bifurcation diagrams are created by plotting the

maximum amplitude of Y1L over multiple oscillations at each

symmetry parameter. Single and multiple period oscillations

appear as single or multiple points for each symmetry param-

eter, respectively, while chaotic oscillations are evidenced

by vertical bands with no discernible grouping of the points.

Multiple period oscillations are evident for a variety of sym-

metry parameters, with bifurcations in the oscillatory regime

occurring as a function of the symmetry parameter, Q. The

coexistence of solutions is observed by varying the initial

conditions Y1a and Y2a for a fixed subglottal pressure and

symmetry parameter. Figure 5 demonstrates the existence of

2 attractors for a constant subglottal pressure (ps¼ 0.654

kPa) and symmetry parameter (Q¼ 0.524). This parameter

set is next to a bifurcation where the vocal fold dynamics

transition from one distinct vibratory pattern to another [See

Figs. 3(b) and 4(a)]. While only one location is shown for

brevity, the coexistence of solutions is observed for many pa-

rameter sets that coincided with bifurcations in the oscilla-

tion ratio. In contrast to the behavior produced by the

Bernoulli flow solver [Fig. 3(a)] these nonlinear phenomena

occur at significantly lower subglottal pressures, and persist

for significantly higher values of Q. For ps¼ 0.933 and 1.311

kPa, the bifurcation maps [Figs. 4(b) and 4(c)] exhibit com-

plicated regimes of chaotic behavior, evidenced by vertical

bands in the figure. Once the stable regime of 1:1 oscillations

is reached for sufficient values of Q, the vocal fold dynamics

FIG. 4. Bifurcation diagrams of the maximum peaks of Y1L as a function of Q
at (a) ps¼ 0.654 kPa, (b) ps¼ 0.933 kPa, and (c) ps¼ 1.311 kPa. See Fig. 3(b)

for the location of the bifurcation diagrams with respect to the regime map.
FIG. 5. Basins of attractors at ps¼ 0.654 kPa and Q¼ 0.524 as a function of

initial conditions, Y1a and Y2a.

FIG. 3. (Color) Regime plot of two-parameter bifurcations in the Q – ps plane, with different attractors demarcated by U as specified in Eq. (11). (a) Regime

plot from SH (Ref. 25) with the symmetric Bernoulli flow solver. (b) Regime plot with the BLEAP flow solver. Subglottal pressures at which the bifurcation

diagrams of Fig. 4 are plotted are also shown as three lines (- .. -) at ps¼ 0.654 kPa, ps¼ 0.933 kPa, and ps¼ 1.311 kPa.
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are decidedly stable. This behavior is very similar to the

high-level CFD-based investigations of Tao and Jiang who

reported rich dynamical behavior at ps¼ 1.0 kPa for symme-

try values less than �0.6, with 1:1 VF oscillations at higher

values.28 However, an exception to the stable behavior at

larger values of Q occurs when Q� 0.72 in Fig. 4(b), and is

evidenced by a band of nonlinear behavior in Fig. 3(b).

The occurrence of chaotic vocal fold motion arising

from asymmetric intraglottal flow, modeled by the BLEAP

solution, is investigated by performing the nonlinear detec-

tion methods discussed in Tao and Jiang,28 and presented in

Sec. II B. The nonlinear behavior of the vocal fold dynamics

is reported for four cases. The first case, presented in Fig. 6

is for ps¼ 0.933 kPa and Q¼ 0.512. This location falls

within the 2:3 regime of Fig. 3(b), although it is surrounded

by areas of NRP. While the algorithm for determining oscil-

lation ratios identifies two oscillations of the right vocal fold

for every three oscillations of the left, the next maximum

plot of Fig. 6(b) for the right vocal fold reveals that the two

points are close enough together, and there is such a high

degree of variability in the peak amplitude, that it is difficult

to distinguish any pattern. In contrast, the three peaks of the

left vocal fold cycle, shown in Fig. 6(a), are easily identified,

although there is still variability from cycle to cycle. Plots

of the linear and nonlinear polynomial terms in Figs. 6(b)

and 6(d) indicate chaos in the left and the right vocal fold

motions, because the nonlinear polynomial terms are signifi-

cantly more predictive.

In Fig. 7 the nonlinear dynamics of the vocal fold oscil-

lations are reported at ps¼ 1.311 kPa and Q¼ 0.587, where

the left to right oscillation peaks were found to be 8:11. In

Fig. 3(b) this point is located between regions of 2:2 and 1:1

oscillations, where the boundary exhibits significant variabil-

ity, albeit a “stable” oscillation ratio is found. The next maxi-

mum-plots of Fig. 7 exhibit a pattern of maximum peaks that

is difficult to distinguish. As is expected, the nonlinear poly-

nomial is also more predictive than the linear polynomial,

indicating the presence of chaotic vocal fold motion along

the region between two seemingly stable oscillation ratios in

the regime plot of Fig. 3(b). This is similar to the findings of

Tokuda et al. regarding the presence of chaotic regimes at

the interface of two attractors.34

Vocal fold behavior in regions of NRP, colored blue in

Fig. 3, is represented in Fig. 8 for ps¼ 1.311 kPa and

Q¼ 0.563. In these regions, the oscillation ratio algorithm is

unable to find any repeating pattern in the minimal glottal area

over the length of the available time series, and hence no oscil-

lation ratio is computed. As expected, there is no discernible

pattern in the next-maximum plots [Figs. 8(a) and 8(c)] and

FIG. 6. Next-maximum plots (a) and (c) and C(r) values as a function of the

polynomial terms, r, (b) and (d) at ps¼ 0.933 kPa and Q¼ 0.512 for Y1L and

Y1R. Values for the time lags and embedding dimensions are sL¼ 65,

jL¼ 12 and sR¼ 40, jR¼ 15, respectively.

FIG. 7. Next-maximum plots (a) and (c) and C(r) values as a function of the

polynomial terms, r, (b) and (d) at ps¼ 1.311 kPa and Q¼ 0.587 for Y1L and

Y1R. Values for the time lags and embedding dimensions are sL¼ 54,

jL¼ 13 and sR¼ 56, jR¼ 13, respectively.

FIG. 8. Next-maximum plots (a) and (c) and C(r) values as a function of the

polynomial terms, r, (b) and (d) at ps¼ 1.311 kPa and Q¼ 0.563 for Y1L and

Y1R. Values for the time lags and embedding dimensions are sL¼ 61,

jL¼ 13 and sR¼ 56, jR¼ 12, respectively.
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the nonlinear polynomial curves in Figs. 8(b) and 8(d) is the

most predictive, indicating chaos in the vocal fold dynamics.

Figure 9 shows the nonlinear analysis results of the

vocal fold oscillations for ps¼ 0.654 kPa and Q¼ 0.653; a

region of stable 2:2 oscillation ratio in Fig. 3(b). The next

maximum plots [Figs. 9(a) and 9(c)] indicate a bimodal pat-

tern of cycle-to-cycle amplitude variation for both the left

and the right vocal folds, although the amplitudes differ

between each side. Variations in the peak amplitudes vary by

less than �1.5% of the peak amplitude. Similarly, the linear

and nonlinear polynomial plots of C(r) [Figs. 9(b) and 9(d)]

do not predict chaotic motion.

IV. DISCUSSION AND CONCLUSIONS

The initial Q – ps regime plot proposed by SH indicates

nonlinear phenomena for values of ps well above the range

of “normal” phonation, and for excessive tension asymme-

tries.26 Implementation of the more physically-realistic

BLEAP scheme in the 2MM of SH results in the onset of

chaotic behavior in the vocal fold dynamics at much lower

values of subglottal pressure, and for more symmetric tissue

properties. It is interesting to note that for values of

Q>�0.76, ordered vocal fold oscillations occur with 1:1

oscillation ratios. These results suggest that the development

of asymmetric flows within the glottis during “normal” pho-

nation, where there are small tension and geometric imbalan-

ces between the vocal folds, do not influence the dynamics

of speech significantly. However, in pathological voice,

where tension imbalance may be more significant due to pa-

ralysis or degeneration, asymmetric flows have a pronounced

detrimental effect on speech quality. This behavior is con-

sistent with recent clinical investigations of speech where

small asymmetries appear to be well tolerated by the general

population with little impact on voice quality,24 but large

asymmetries like those found in SLN result in vocal fold

motion that has been described as gegenschlagen,20 or

“dashing-against-each-other”. In this scenario the glottal

space does not remain aligned with the glottal midline, and

the voice quality is severely affected.19

Modeling asymmetric glottal flows and imbalanced

vocal fold tension with the BLEAP scheme results in the

emergence of chaotic behavior within the range of normal

speech. This behavior is very similar to that previously

reported by Tao and Jiang28 and further expands their find-

ings. It appears to be especially sensitive along borders of

varying oscillation ratios, regions where a large number of

oscillations are needed to produce a repeating pattern in

amin, and in regions of NRP. These findings are consistent

with recent observations that the onset of chaos often occurs

at register transitions in voice.34,36 However, care should be

taken in labeling entire regions as “chaotic” since the rela-

tively few investigative points prevent a comprehensive

delineation of chaotic and non-chaotic behavior over the

broad parameter space, as evidenced by the periodic behav-

ior in Fig. 9. The advantage of the current BLEAP method

over fully-coupled CFD flow solvers is the ability to accu-

rately model the complex vocal fold dynamics with a simple

algebraic solution that is easily implemented into existing

2MM of speech without any added computational cost.

Based on their results obtained with a coupled CFD flow

solver and the SH 2MM of speech, Tao and Jiang proposed

that the onset of chaos in vocal fold dynamics is most likely

due to asymmetric flow attachment arising due to formation

of the Coanda effect within the glottis, although it was also

proposed that other factors such as unsteady flow separation,

vortex shedding and turbulence may also contribute to this

behavior.28 By only capturing asymmetric flow attachment

and not accounting for higher order effects, implementation

of the BLEAP scheme into the SH 2MM of speech demon-

strates that the Coanda effect is a dominant contributor to the

onset of chaotic vocal fold motion in tension imbalanced

speech. Nevertheless, the inability of the BLEAP scheme to

model higher-order fluid dynamics effects such as vortex

shedding and turbulence suggests that the regime map of

Fig. 3(b) is most likely a conservative estimate of nonlinear

phenomena that would be expected to occur during tension

imbalanced speech.

The ease with which the BLEAP scheme is implemented

into existing multi-mass speech models facilitates a wide

range of feasible studies that can be performed in order to

investigate the impact of the more physically-relevant flow

solver on pathological speech; including recurrent laryngeal

nerve paralysis,25 Parkinsonian speech,23,39 and vocal

tremor,23 to name a few.

The current investigation has neglected the role of

acoustic coupling during voiced speech; that is, the idea that

acoustic pressures create large resonances within the vocal

tract, which in turn act as a feedback loop and impact vocal

fold dynamics due to modulation of the subglottal and supra-

glottal pressure field.32,37 The inclusion of acoustic coupling

in the BLEAP investigations, which is an avenue of research

currently being pursued, is expected to magnify the impact

of the BLEAP flow solver on the vocal fold dynamics and

more importantly, the radiated sound field.

FIG. 9. Next-maximum plots (a) and (c) and C(r) values as a function of the

polynomial terms, r, (b) and (d) at ps¼ 0.654 kPa and Q¼ 0.653 for Y1L and

Y1R. Values for the time lags and embedding dimensions are sL¼ 56,

jL¼ 12 and sR¼ 56, jR¼ 12, respectively.
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