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Abstract: The simplified two-mass model of human vocal folds, pro-
posed by Steinecke and Herzel [J. Acoust. Soc. Am. 97(3), 1874–1884
(1995)], has seen widespread use throughout the speech community.
Herein, an error is corrected in the contact loadings on colliding vocal
folds with asymmetric tissue properties, as arises clinically in cases of
unilateral paralysis. A revised contact model is proposed that remediates
the erroneous asymmetric contact forces. The vibration regime map pre-
sented in Steinecke and Herzel illustrating the dynamical behavior of the
system is revised using the corrected collision model.
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1. Introduction

Human speech is a complex phenomenon involving coupled fluid, structure, and acous-
tic interactions in the vocal tract.1 Energy is exchanged between the air flowing
through the vocal folds and the viscoelastic vocal tissue. Originally proposed by Ishi-
zaka and Flanagan,2 two-element lumped-mass models are often used to illustrate the
causal coupled fluid-structure interactions of human speech. Two mass models repre-
sent each vocal fold as two coupled oscillating masses and the associated tissue proper-
ties with springs and dampers. By using two masses to model each vocal fold the pri-
mary oscillation modes are captured, namely the bulk displacement and the mucosal
wave. The Ishizaka and Flanagan model assumes bilateral symmetry and non-linear
springs to model tissue properties. A simplified two-mass model proposed by Steinecke
and Herzel3 uses linear springs and introduces asymmetric tissue properties. The

a)Author to whom correspondence should be addressed.
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Steinecke and Herzel model, herein referred to as the “SH95 model,” has seen wide-
spread implementation in the study of various vocal pathologies and speech phenom-
ena. A schematic overview of the SH95 model is shown in Fig. 1, adopting the nomen-
clature established in the original publication.3

Figure 1 shows a cross section of the vocal fold model in the coronal plane;
the model is extruded a distance l into the page. The equation of motion for each of
the four masses depicted in Fig. 1 is given by

mia€xia þ ria _xia þ kiaxia þHð�aiÞciaðai=2lÞ þ kcaðxia � xjaÞ ¼ Fi; (1)

where m is mass, x is displacement of the mass, r is the damping coefficient, and k and
c are spring constants, the latter not indicated on Fig. 1 as it arises only during colli-
sion. The subscript i denotes the inferior or superior mass, 1 or 2, the subscript j has
the opposite value of i, that is, 2 or 1, and the subscript a refers to the left or right
side, l or r. The subscript c denotes that the associated spring is the coupling spring
between the two masses of a given vocal fold. Aerodynamic loading is applied to each
mass by Fi and the function H is defined such that HðxÞ ¼ 1 for x> 0 and HðxÞ ¼ 0
otherwise. Thus, H dictates when the contact forces are included in the dynamics.3

Contact between contralateral masses is modeled by the addition of two
springs that are activated when the masses overlap, i.e., the area between opposing
masses ai is less than zero. The contact force experienced by the colliding masses is
proportional to the deformation of the contact springs, which, in the SH95 model, is
calculated from the displacement and coordinate offset of each mass

air ¼ a0i=2þ lxir; (2)

ail ¼ a0i=2þ lxil ; (3)

where a0i is the area between the masses when they are in their rest positions. The total
upper and lower areas are found by summing the left and right contributions

ai ¼ air þ ail: (4)

When adjacent upper or lower masses collide, the calculated area of the channel will
be negative and the Hð�aiÞciaðai=2lÞ term in Eq. (1), which determines the contact
force FC,ia on each mass, is activated.

The SH95 model introduces an asymmetry parameter, Q, allowing asymmetric
tissue properties as necessary for modeling pathologies such as unilateral paralysis. As
discussed in Sec. 2, it is this asymmetry parameter that leads to non-physical manifes-
tations of the contact forces that require correction.

Fig. 1. Schematic representation of the simplified two-mass model proposed by Steinecke and Herzel (Ref. 3).
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2. Erroneous calculation of asymmetric contact forces

The asymmetry parameter, Q, in the SH95 model results in asymmetric contact spring
stiffnesses as cir¼Qcil to model unilateral superior nerve paralysis, and c1r¼Qc1l for
recurrent laryngeal nerve paralysis, assuming the right vocal fold is the affected fold.
When modeling unilateral paralysis using the SH95 model, it is noted that an error
arises in the manner in which the contact forces between colliding left and right masses
are calculated. Specifically, the error pertains to the development of asymmetric con-
tact forces between the left and right vocal folds. By Newton’s third law of motion,
two objects colliding will experience an equal and opposite force; the manner in which
the SH95 model calculates contact forces does not adhere to this and is thus incorrect
for all cases with asymmetric tissue parameters. This error is alluded to by Dresel
et al.,4 although to the best of the authors’ knowledge there has yet to be an explicit
correction put forth to be applied to current implementations of the SH95 model.

Referring to Eq. (1), the governing equation of the SH95 dynamical model, it
is noted that the contact force on each mass is calculated from the contact spring stiff-
ness cia and the average overlap area distance ai/2l of the two contralateral masses.
Calculating the contact forces based on the average overlap area is indeed valid for the
symmetric implementation, as originally proposed by Ishizaka and Flanagan.2 With
symmetric tissue properties, the contact spring constants are always equal and thus the
displacements of both springs should be equal, as shown in Fig. 2(a). However, assum-
ing equal spring displacements when the spring stiffnesses are not equal, as in the case
of asymmetric tissue properties, leads to unequal contact forces on the two opposing
masses, a clear violation of Newton’s third law. Thus, by assuming the deformations
remain symmetric, the SH95 dynamical model over-estimates the contact forces on the
healthy vocal fold and under-estimates the contact forces on the pathological vocal
fold. Thus, the spring deformations should be dependent on Q such that the contact
forces are equal on the two opposing vocal folds, as shown in Fig. 2(b).

3. Development of revised contact model

To correctly calculate the contact forces when modeling asymmetric tissue properties,
a dynamical model is formulated by noting that the forces on the two colliding bodies
will remain equal throughout the collision. For the forces to remain equal, the contact
springs must deform such that the deformation of the two springs dia are related by
the asymmetry parameter Q, as

dir ¼ dil=Q: (5)

The total deformation of the colliding masses is calculated as xirþ xil� a0i/l, which is
the distance between the masses minus the offset of their local coordinate axes. Fur-
thermore, it must hold that the sum of the deformations of the left and right contact
spring are equal to the total deformation, as

dil þ dir ¼ xir þ xil � a0i=l: (6)

Fig. 2. (a) Symmetric case: both springs are of equal stiffness cir¼ cil and the springs undergo equal deformation
dir¼ dil with equal and opposite contact forces FC,ia developing. (b) Asymmetric case: the stiffness of the contact
springs are related by the asymmetry parameter such that cir¼Qcil and it follows that the deformations must
also be related such that dir¼ dil/Q in order for the contact force to remain symmetric.
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Solving the linear system formed from Eqs. (5) and (6), expressions for the individual
deformations of each contact spring are found; the deformation of the right, that is the
affected vocal fold, is given by Eq. (7) and the deformations of the left (healthy) vocal
fold by Eq. (8)

dir ¼ ½1=ðQþ 1Þ�ðxil þ xir � a0i=lÞ; (7)

dil ¼ ½Q=ðQþ 1Þ�ðxil þ xir � a0i=lÞ: (8)

Thus, the original governing differential equation, presented as Eq. (1), should be
modified to account for the asymmetric contact forces. The revised dynamical model is
as follows for right and left masses, respectively, assuming the right vocal fold is the
affected fold:

mir€xir þ rir _xir þ kirxir þHð�aiÞcirð1=ðQþ 1ÞÞðxil þ xir � a0i=lÞ þ kcrðxir � xjrÞ ¼ Fi;

(9)

mil€xil þ ril _xil þ kilxil þHð�aiÞcilðQ=ðQþ 1ÞÞðxil þ xir � a0i=lÞ þ kclðxil � xjlÞ ¼ Fi:

(10)

Modified differential equations of the form of Eqs. (9) and (10) are used to easily aug-
ment existing implementations of the SH95 model to correct the otherwise non-
physical contact dynamics.

4. Effect of revised contact dynamics

Having identified a simple modification to the SH95 model to remediate the calcula-
tion of contact forces, it remains to evaluate the effect of the revision on the results of
simulations. The effect of the revision is readily observed by tracking the magnitude of
the contact force acting on each mass element through the duration of a collision, as
shown in Fig. 3 for a subglottal pressure of Ps¼ 1.45 kPa and an asymmetry factor of
Q¼ 0.53. Figure 3(a) shows the contact forces calculated with the original SH95
model; the lower masses collide followed by the upper masses, showing the characteris-
tic mucosal wave. The magnitudes of the left and right contact forces are not equal for
the upper or lower masses throughout the collision. Results from the revised contact
model, as prescribed above, are shown in Fig. 3(b), where the magnitude of left and

Fig. 3. (Color online) Comparison of contact forces for Ps¼ 1.45 kPa and Q¼ 0.53 through one complete clos-
ing cycle. (a) Original SH95 model, and (b) revised contact dynamics.
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right contact forces are equal for both the upper and lower masses. Contact forces
have changed such that the right side experiences an increased contact force and the
left a reduced contact force with the magnitude of the difference being inversely pro-
portional to the asymmetry parameter Q.

A more holistic evaluation of the influence of the revision is gained through
discrete sampling from the Q-Ps plane. A two-parameter bifurcation diagram is gener-
ated with the corrected SH95 model and presented in Fig. 4(a), while the regions that
differ from the original SH95 regime map are highlighted in Fig. 4(b). The revised con-
tact dynamics alter the vibration regime in the Q-Ps zones identified in SH95 to be
associated with higher resonances, long transients, and chaos [see Fig. 4(b)]; the signifi-
cance of chaos and higher order dynamics in voice production is known5 and the effect
of the corrected contact dynamics may be of significance to those making use of the
SH95 model. In addition to influencing the dynamics, the revised model can alter im-
portant acoustic measures of speech, such as radiated sound pressure level, spectral
tilt, etc. For Q-Ps combinations that result in a different oscillation ratio between the
original SH95 and revised models, the effect of the contact fix on the acoustics is quite
pronounced, as exemplified by the minimum area history given in Fig. 4(c). For
regions that the oscillation ratio remains unaffected by the revision, the effect seems
less prominent, as for the case shown in Fig. 4(d). The changes of minimum area his-
tory in these regions consist primarily of a phase shift, with slight changes in magni-
tude, while the signals remain similar in frequency.

Fig. 4. (Color online) Comparison of the revised contact model and the original SH95 model. (a) Q-Ps plane re-
gime plot generated with the corrected dynamical equations, (b) binary difference plot showing any regions that
vary from the original SH95 model regime map (Ref. 3). Minimum glottal area calculated with the corrected
and original SH95 models at (c) Ps¼ 1.45 kPa, Q¼ 0.53 and (d) Ps¼ 1.45 kPa, Q¼ 0.57.
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5. Conclusions

Herein we presented a correction to an error in the contact force formulation in the
original Steinecke and Herzel3 two-mass vocal fold model when the tissue properties
are asymmetric. The corrected equations of motion should be used in place of those
presented by Steinecke and Herzel. We have shown that employing the corrected con-
tact force model causes potentially significant changes in the dynamics for a given sub-
glottal pressure and asymmetry factor. The recent developments of asymmetric fluid
loading models6 and interest in utilizing chaos as a potential diagnostic technique7

make it critical that the governing equations of the simplified model be correct.
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