Conversión Análoga - Digital

ELO 313 –Procesamiento Digital de Señales con Aplicaciones Primer semestre - 2012

Matías Zañartu, Ph.D.

Departamento de Electrónica

Universidad Técnica Federico Santa María

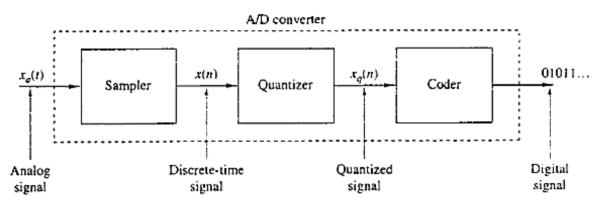
Conversión de Señales

Conversión Análoga/Digital

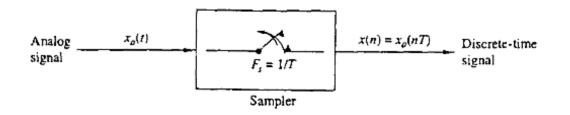
Conversión Análoga/Digital

Tres etapas fundamentales:

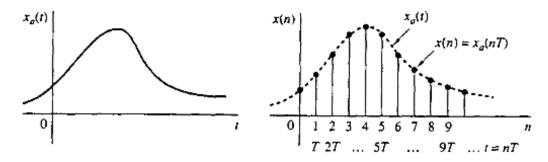
- Muestreo
 - Señal en tiempo continuo a tiempo discreto
 - $x_a(t) \rightarrow x_a(nT_s) \equiv x[n]$ con Ts = tiempo de muestreo
- Cuantización
 - Discretización de amplitud, i.e. $x[n] \rightarrow x_q[n]$
- Codificación
 - Señal en tiempo y amplitud discreta a secuencia digital
 - $x_q[n] \to 01010011...$



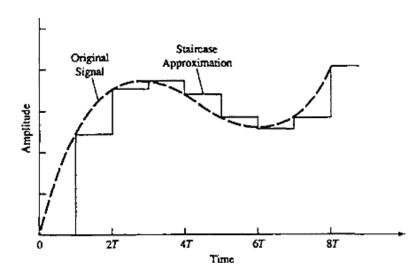
Conversión Análoga/Digital



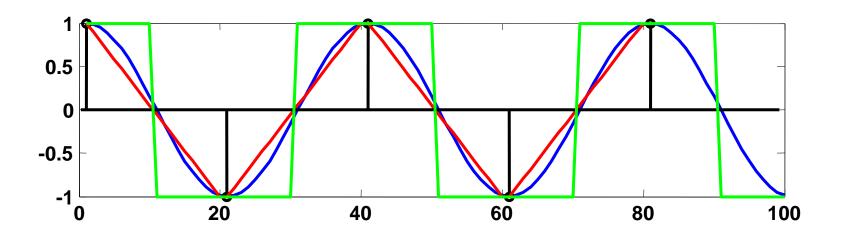
Muestreo



Cuantización y aproximación básica



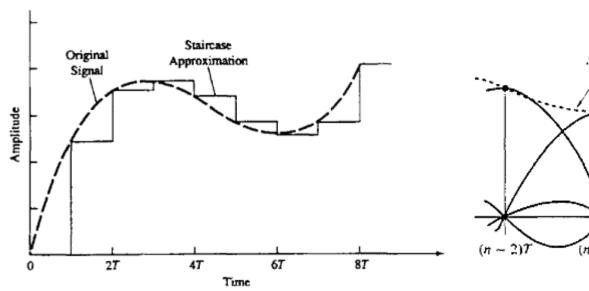
Reconstrucción de una señal muestreada

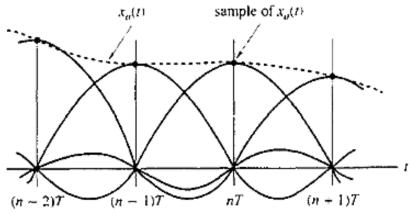


Observaciones y preguntas:

- Es la posible asociar múltiples señales a una señal muestreada
- Qué hace el comando plot de MATLAB?
- El teorema del muestreo establece un método de reconstrucción PERFECTA ¿Cómo es esto posible?

Reconstrucción de una señal muestreada



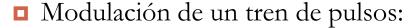


Reconstrucción usando el método ZH (zero hold)

Reconstrucción usando señales sinc

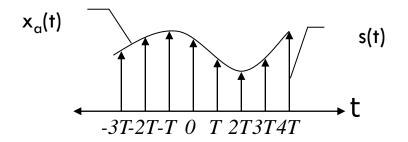
Interpretaciones del muestreo

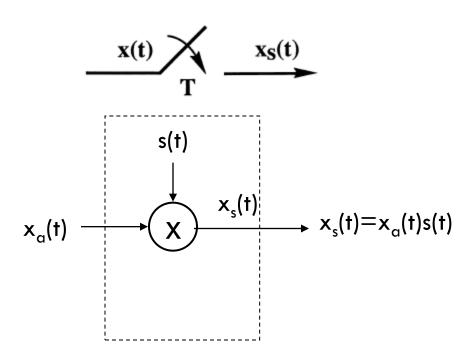
- Interrupciones:
 - T es el tiempo de muestreo



s(t) es la señal moduladora (un tren de impulsos ideal)

■ Resultado:





OBS:

- La señal resultante en esta etapa es aun en tiempo continuo
- ¿Cuál es la CTFT de $x_s(t)$?
- Es esta implementación factible?

Modulación en frecuencia

$$x_{s}(t) = x_{a}(t)s(t)$$

$$= \sum_{n=-\infty}^{\infty} x_{a}(t)\delta(t-nT_{s})$$

$$= \sum_{n=-\infty}^{\infty} x_{a}(t)\delta(t-nT_{s})$$

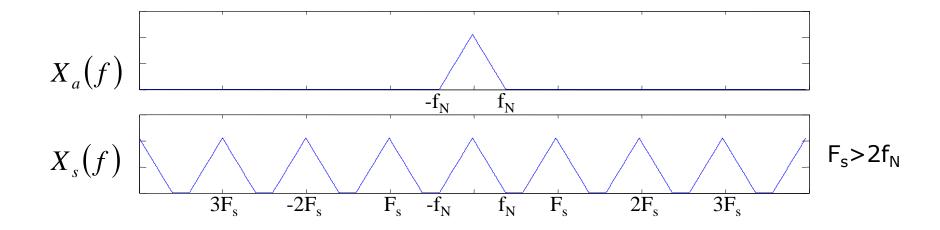
$$= Comb_{T_{s}}[x_{a}(t)]$$

$$= Comb_{T_{s}}[x_{a}(t)]$$

$$= X_{s}(t) = X_{a}(t) * S(f)$$

$$= \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{a}(f-k\frac{1}{T_{s}})$$

$$= F_{s} \operatorname{rep}_{F_{s}}[X_{a}(f)]$$



Muestreo de una señal análoga

Modulación en frecuencia

(Lo mismo en otras palabras)

$$x_{s}(t) = x_{a}(t)s(t)$$

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_{s})$$

$$= \operatorname{rep}_{T_{s}}[\delta(t)]$$

$$X_{s}(f) = X_{a}(f) * S(f)$$

$$S(f) = F_{s} \sum_{k = -\infty}^{\infty} \delta(f - kF_{s})$$

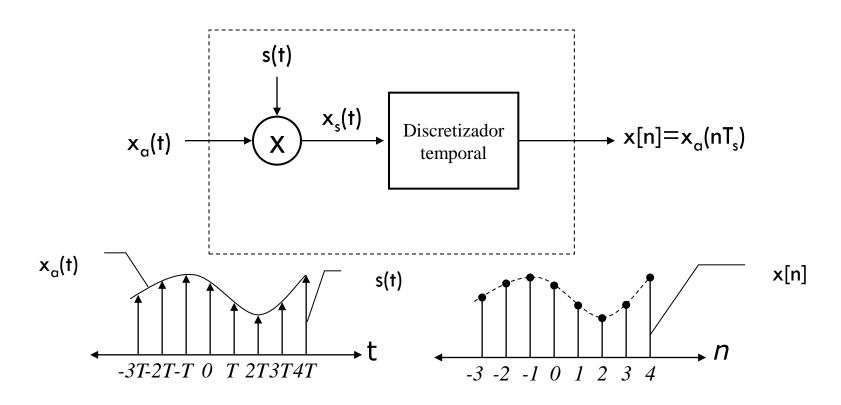
$$= F_{s} \operatorname{comb}_{F_{s}}[1]$$

$$x_s(t) = x_a(t)s(t)$$
 \longleftrightarrow $X_s(f) = X_a(f) * F_s \text{comb}_{F_s}[1]$
= $F_s \operatorname{rep}_{F_s}[X_a(f)]$

Muestreo de una señal análoga

Muestreo y modulación: Primera corrección

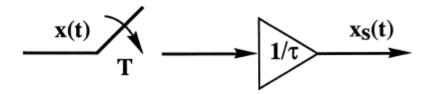
■ Es necesario discretizar la señal para pasar de tiempo continuo a tiempo discreto



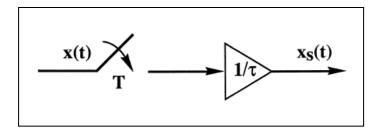
Muestreo de una señal análoga

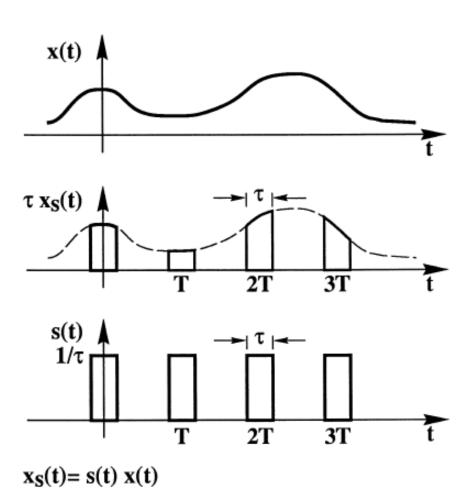
Muestreo y modulación: Segunda corrección

- Es necesario integrar sobre un periodo de tiempo en la práctica (no existen los impulsos instantáneos en tiempo continuo)
- Se debe corregir (amplificar) el efecto de integrar en el tiempo



Muestreo y modulación con implementación factible





Muestreo y modulación con implementación factible

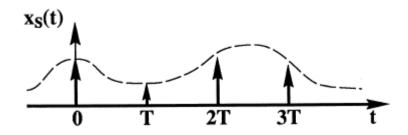
$$\begin{split} X_s(f) &= S(f) * X(f) \\ s(t) &= rep_T[\frac{1}{\tau} \ rect \ (\frac{t}{\tau})] \\ S(f) &= \frac{1}{T} \ comb \frac{1}{T} \ [sinc \ (\tau f)] \\ &= \frac{1}{T} \ \sum_k sinc \ (\tau k/T) \ \delta(f - k/T) \\ X_s(f) &= \frac{1}{T} \ \sum_k sinc \ (\tau k/T) \ X(f - k/T) \end{split}$$

Muestreo y modulación con muestreo ideal

$$\tau \rightarrow 0$$
?

$$s(t) \rightarrow \sum_{m} \delta(t - mT)$$

$$x_s(t) \xrightarrow{} \sum\limits_m x(mT) \; \delta(t-mT) = comb_T[x(t)]$$



$$X_s(f) \rightarrow \frac{1}{T} \sum_k X(f - k/T) = \frac{1}{T} \operatorname{rep} \frac{1}{T} [X(f)]$$

Teorema del Muestreo

□ Teorema del Muestreo

- Nombres: Nyquist, Shannon, Nyquist—Shannon—Kotelnikov, Whittaker—Shannon—Kotelnikov, Whittaker—Nyquist—Kotelnikov—Shannon
- Define la frecuencia de muestreo que permite reconstrucción ideal
- \blacksquare Requiere conocer el contenido de frecuencias (espectro) de la señal análoga, en particular: $f_{\rm max}$
- Condición que establece: $F_s \ge 2f_{\text{max}}$
- El caso límite donde $F_s = 2f_{\text{max}}$ se conoce como el límite de Nyquist
 - \rightarrow dos muestras para el período asociado a f_{max}
 - \rightarrow puede coincidir con ceros, por lo que es más seguro $F_s > 2f_{\text{max}}$

Teorema del Muestreo

Teorema del Muestreo (Formal)

Si la frecuencia más alta f_{max} contenida en una señal análoga $x_a(t)$ y la frecuencia de muestreo $F_s \ge 2f_{\text{max}} = 2B$ entonces la señal puede ser reconstruida perfectamente usando una función de interpolación g(t) dada por

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt} = \operatorname{sinc}(2Bt)$$
 , de modo que

$$x_a(t) = \sum_{n = -\infty}^{\infty} x_a \left(\frac{n}{F_s}\right) g\left(t - \frac{n}{F_s}\right)$$
, y donde

$$x_a \left(\frac{n}{F_s}\right) = x_a(nT_s) \equiv x[n]$$
 son las muestras de $x_a(t)$

□ Teorema del Muestreo

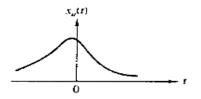
- La función sinc tiene un interés más teórico que práctico
 - La función sinc en frecuencia es el pasabajo ideal (rectwin)
 - Otros filtros pasabajo resultan más prácticos
- Rango de frecuencia digital:
 - En Radianes: $[-\pi, \pi] \leftrightarrow [0, 2\pi]$
 - En Hz: $[-Fs/2, Fs/2] \leftrightarrow [0, Fs]$
 - En frecuencia normalizada: $[-1/2, 1/2] \leftrightarrow [0, 1]$
- □ ¿Es el teorema del muestreo el fin de esta historia? NO
 - Temas de investigación: Errores de cuantización, métodos de interpolación, eficiencia, oversampling

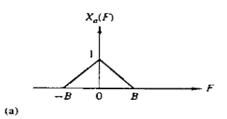
Aliasing en frecuencia

Aliasing

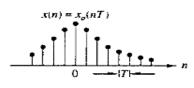
- Distorsión en la composición espectral de una señal (por ende en la señal) producto de un muestreo inadecuado
 - Señal muestreada es periódica en 2π
 - Si el ancho de banda no queda entre 0 y π → Superposición de componentes con otros periodos
- Qué pasa cuando una señal sinusoidal se ve afectada por aliasing?
- Siempre se necesita un filtro anti-aliasing (pasabajo) que permita "asegurar" que se cumple al menos el límite de Nyquist
 - ¿Se puede realmente asegurar que se cumple el límite?
 - ¿Qué criterios de diseño debiese tener este filtro?
 - No todos los DAQ cuentan con este filtro, el cual es generalmente análogo. ¿Es posible hacer un filtro anti-aliasing digital?

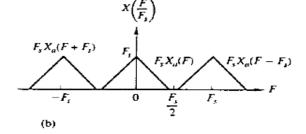
Aliasing en frecuencia



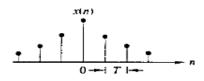


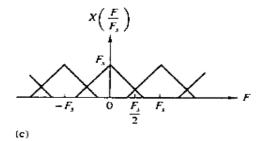
Sin aliasing



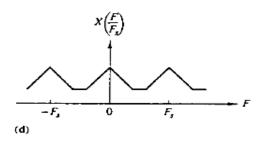


Con aliasing

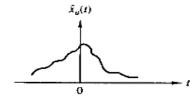


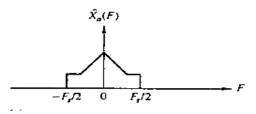


x(n)



Distorsión temporal por aliasing en frecuencia

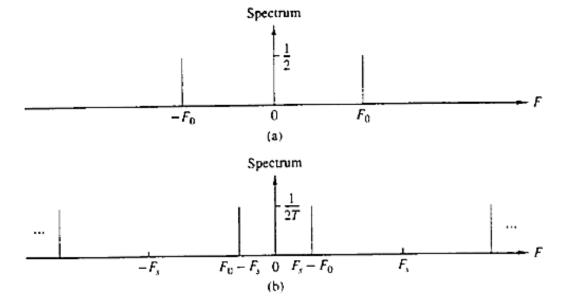


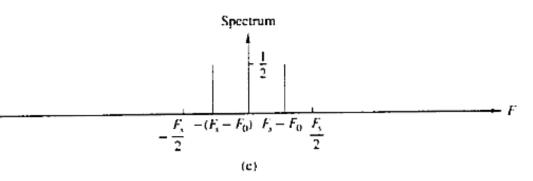


Aliasing en frecuencia para tonos puros

Con aliasing

Distorsión temporal por aliasing en frecuencia





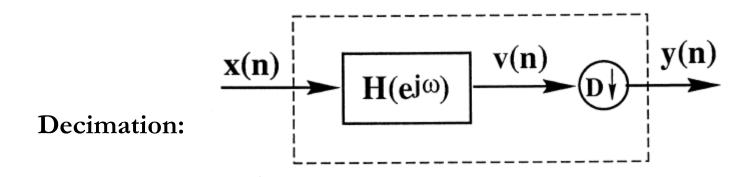
Conversión de Señales

Muestreo de señales discretas

Downsampling vs. Decimation

Downsampling

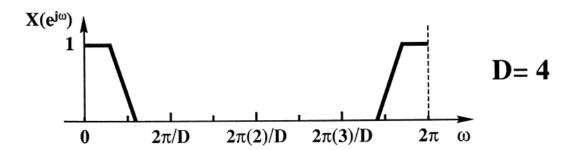
- Operación sujeta a aliasing
- Operación que puede generar pérdidas de altas frecuencias
- Al agregar un filtro anti-aliasing (pasa-bajo) ANTES de realizar la operación de downsampling, se elimina la distorsión por aliasing



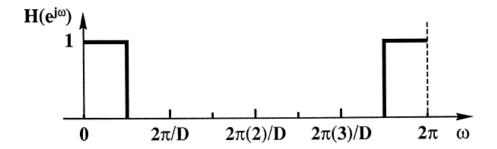
Comandos de MATLAB: downsample & decimate

Downsample vs. Decimation

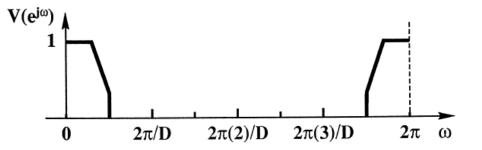
Espectro Original



Filtro pasa-bajo



Espectro Filtrado

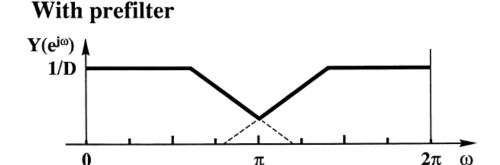


El filtro debe asegurar que sólo exista señal en $\pm \pi/D$

Downsample vs. Decimation

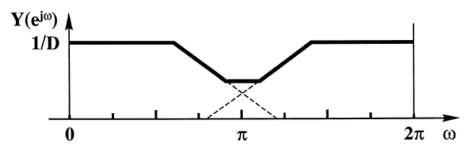
En este caso downsampling producirá perdidas de altas frecuencias incluso con un filtro anti-aliasing

El filtro pasa-bajo sólo previene el aliasing



 π

Without prefilter

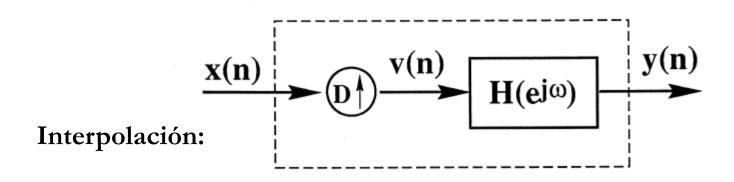


¿Si se aplica upsampling en este caso, se recupera la señal original?

Upsampling vs. Interpolación

Upsampling

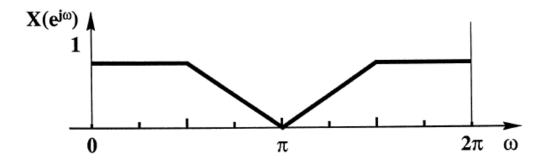
- Operación que escala todo el espectro (incluidas las replicas)
- Operación que puede generar nuevas altas frecuencias: ¿De dónde vienen?
- Al agregar un filtro pasa-bajo (anti-aliasing) DESPUES de realizar la operación de upsampling, se eliminan las nuevas frecuencias altas



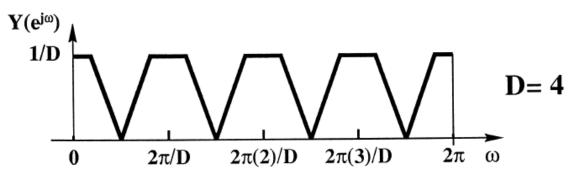
□ Comandos de MATLAB: upsample & interp

Upsample vs. Interpolación

Espectro Original



Espectro luego de la operación upsample



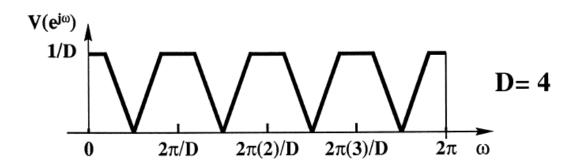
Las componentes periódicas en 2π también se escalan con la operación upsample y quedan en $2\pi/D$

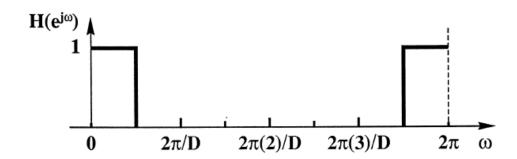
Upsample vs. Interpolación

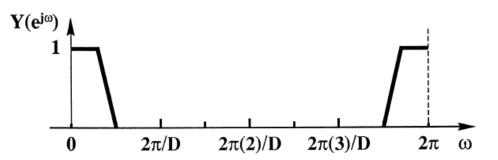
Espectro después upsampling

Filtro pasabajo

Espectro después de una operación de interpolación







Muestreo de una señal discreta

Problema

□ ¿Si tengo una señal muestreada a fs=8000 Hz, cómo la puedo convertir a una con fs=11025?

Resampling

- Equivalente a las operaciones decimation /interpolate, pero donde D es una fracción (p/q) y no necesariamente un entero
- Para lograr cambio de fs (o cambio de largo) se utiliza:
 - 1. Aplicar upsampling por un factor p
 - 2. Filtrar con un filtro pasa-bajo la señal de 1→ decimation/interpolation
 - 3. Downsampling la señal de 2 por un factor q
- □ Comando de MATLAB: resample

Aplicaciones

Muestreo de señales discretas

- Operaciones downsampling/decimation y upsampling/interpolación tienen gran aplicación en DSP
- Casos típicos: FFT, compresión de audio e imágenes, refinamiento progresivo de audio e imágenes
 - **FFT:** Calcula espectro luego de repetidas operaciones downsampling
 - Compresión de audio e imágenes: Menos sensibilidad en altas frecuencias → menos resolución es requerida en esas bandas
 - **Refinamiento progresivo**: Transmitir señal después del downsampling primero y agregar componentes de alta frecuencia progresivamente

