Capítulo 7 Multimedia en Redes de Computadores

Material tomado de:
Computer Networking: A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July 2004.

Capítulo 7: Contenidos

- 7.1 Aplicaciones Multimedia en Red
- 7.2 Streaming de Audio y video almacenado
- 7.3 Real-time Multimedia:
 Estudio de telefonía en Internet
- 7.4 Distribución de Multimedia: Redes de distribución de Contenidos
- 7.5 protocolos para aplicaciones Interactivas de Tiempo Real
 - RTP, RTCP, SIP

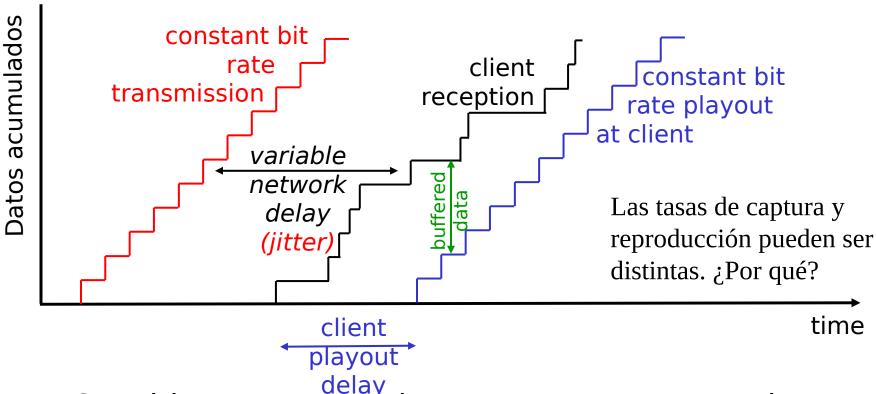
- 7.6 Más allá de Best Effort
- 7.7 Mecanismos de itineración y políticas
- 7.8 ServiciosIntegrados y ServiciosDiferenciados
- 7.9 RSVP

<u>Aplicaciones interactivas en tiempo</u> <u>real</u>

- □ Teléfono PC-a-PC
 - Skype
- PC-a-teléfono
 - Dialpad
 - Net2phone
 - skype
- Video conferencia con Webcams
 - Skype
 - Polycom

Veremos ahora un ejemplo en detalle de teléfono Internet de PC-a-PC

Mutlimedia Interactiva: Teléfono Internet


Introduciremos Teléfono Internet a través de un ejemplo

- Audio emisor: alterna habla con periodos de silencio.
 - 64 kbps durante momentos de habla
 - Paquetes son generados sólo durante el habla
 - Segmento de 20 msec a 8 Kbytes/sec: 160 bytes de datos
- Encabezado capa aplicación es agregado a cada segmento (Protocolo RTP).
- Segmento + encabezado es encapsulado en datagrama UDP.
- Aplicación envía datagrama UDP por el socket cada 20 ms durante habla.

Teléfono Internet: Pérdidas y retardo

- Pérdidas en la red: pérdida de datagrama IP debido a congestión en la red (overflow de buffer de router)
- Pérdida por retardo: Datagrama IP llega muy tarde para su reproducción en el receptor
 - retardo: procesamiento, colas en red; retardo en sistemas extremos (Tx y Rx)
 - Retardo máximo tolerable típico: 400 ms
- Tolerancia a pérdidas: dependiendo de codificación de voz, se puede tolerar entre 1% y 10% de paquetes perdidos.

Variaciones del retardo (Delay Jitter)


Consideremos retardo extremo a extremo de dos paquetes consecutivos: diferencia puede ser más o menos de 20 ms

<u>Teléfono Internet: Retardo de</u> <u>reproducción fijo</u>

- Receptor intenta reproducir cada golpe de habla exactamente q ms después que el habla fue generada.
 - habla tiene marca de tiempo t: reproducir después a t+q.
 - Habla llega después de t+q: datos llegan muy tarde para reproducción, datos son "perdidos"
- Compromiso para q:
 - q grande: menor pérdida de paquete, más retardo
 - q pequeño: mejor experiencia interactiva

Retardo de reproducción fijo

- Tx genera paquetes cada 20 ms durante habla.
- Primer paquete recibido en tiempo r
- Primer itinerario de reproducción: comienza en p
- Segundo itinerario de reproducción: comienza en p'

Retardo de reproducción Adaptativo, I

- Objetivo: minimizar retardo de reproducción, manteniendo baja la tasa de pérdida por retardo
- <u>Estrategia:</u> Ajuste del retardo de reproducción adaptativo:
 - Retardo de red estimado, ajustar el retardo de reproducción al comienzo de cada segmento de habla.
 - Periodos de silencio alargados o comprimidos.
 - Habla aún reproducida cada 20 ms durante su presencia.

```
t_i=marca de tiempo de i<sup>mo</sup> paquete r_i=tiempo recepción paquete i
```

 p_i = tiempo paquete i es reproducido

 $r_i - t_i = \text{retardo de red para i}^{\text{mo}}$ paquete

 d_i = retardo promedio estimado después de recibir i mo paquete

Estimación dinámica de retardo promedio en receptor, ojo con valores que adopta: $d_i = (1-u)d_{i-1} + u(r_i - t_i)$

Donde u es una constante fija (e.g., u = .01).

Retardo de Reproducción Adaptativo II

También es útil estimar el promedio de las variaciones de retardo, v_i :

$$v_i = (1-u)v_{i-1} + u | r_i - t_i - d_i |$$

- Los estimadores d_i y v_i son calculados para cada paquete recibido, aún cuando ellos son usados sólo al inicio de cada segmento de habla.
- El primer paquete de un segmento de habla es reproducido en tiempo: $p_i = t_i + d_i + Kv_i$

Donde K es una constante positiva (ej. 4).

- Si la reproducción es bajo demanda o en vivo no interactiva, podemos usar mayor K
- Paquetes restantes son reproducidos periódicamente.

Reproducción adaptativo, III

- Q: Cómo el receptor determina que un paquete es el primero en un segmento de habla?
- Si no hay pérdida, receptor mira marcas de tiempo sucesivas.
 - Diferencia de marcas de tiempo sucesivas > 20 ms => nuevo segmento de habla comienza.
- Con posible pérdida, receptor debe mirar las marcas de tiempo y números de secuencia.
 - Diferencia de marcas de tiempo sucesivas > 20 ms y números de secuencia sin espacios --> segmento de habla comienza. Ésta es la regla general.
- Se requiere detección del habla en transmisor. Más adelante.

Recuperación de pérdidas de paquetes (1)

forward error correction (FEC): esquema simple

- Por cada n paquetes crea un paquete redundante dando paridad
- envía n+1 paquetes, aumenta ancho de banda ocupado en factor 1/n.
- Se puede reconstruir los n paquetes originales si hay a lo más un paquete perdido de los n+1

- Retardo de reproducción debe ser suficiente para recibir todos los n+1 paquetes
- Hay compromiso:
 - aumentar n => menosBW perdido
 - aumentar n => mayor retardo de reproducción
 - aumentar n => mayor probabilidad que 2 ó más paquetes se pierdan

Recuperación de paquetes perdidos (2)

2º esquema FEC

- agrega un flujo de baj calidad
- envía flujo de baja resolución como información redundant
- por ejemplo, flujo nominal PCM a 64 kbps y flujo redundante GSM a 13 kbps.
 - Cuando no hay pérdidas consecutivas, el receptor puede subsanar la pérdida.
 - Se puede agregar también las tramas de baja calidad (n-1) y (n-2)

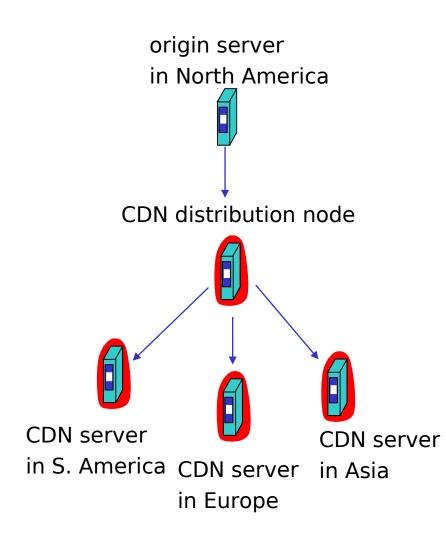
Recuperación de pérdida de paquetes (3)

Entrelazado

- Tramas son subdivididas en pequeñas unidades
- Por ejemplo, unidades de 4 ó 5 ms
- Paquete contiene pequeñas unidades de tramas diferentes

- Si paquete se pierde, aún se tiene la mayoría de cada trama
- No hay redundancia
- Se agrega retardo de reproducción

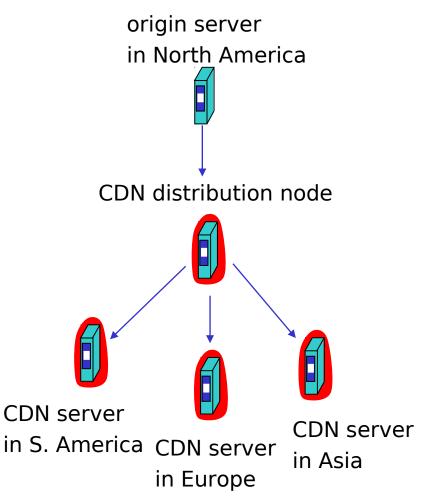
Capítulo 7: Contenidos

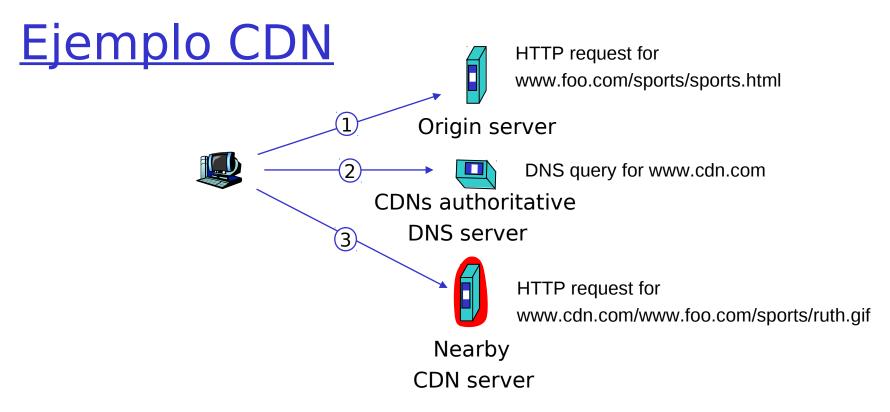

- 7.1 Aplicaciones Multimedia en Red
- 7.2 Streaming de Audio y video almacenado
- 7.3 Real-time Multimedia:
 Estudio de telefonía en Internet
- 7.4 Distribución de Multimedia: Redes de distribución de Contenidos
- 7.5 protocolos para aplicaciones Interactivas de Tiempo Real
 - RTP, RTCP, SIP

- 7.6 Más allá de Best Effort
- 7.7 Mecanismos de itineración y políticas
- 7.8 ServiciosIntegrados y ServiciosDiferenciados
- 7.9 RSVP

Redes de distribución de contenidos Content distribution networks (CDNs)

Replicación de contendido


- Desafío: envío gran archivo (e.g., video) desde único servidor de origen en tiempo real.
- Solución: replicar contenido en cientos de servidores a través de Internet
 - Contenido es bajado a servidor CDN con anticipación
 - Poner contenido "cerca" del usuario para evitar problemas (pérdidas, retardo) al enviar contenido sobre caminos más largos
 - Servidores CDN están típicamente en borde o red de acceso



Redes de distribución de contenidos (CDNs)

Replicación de contenidos

- En CDN (e.g., Akamai) el usuario es el proveedor de contenidos (e.g., CNN)
- CDN replica el contenido del usuario en servidores CDN. Cuando el proveedor actualiza el contendido, CDN actualiza servidores

Servidor origen (www.foo.com)

- distribuye HTML
- reemplaza:

http://www.foo.com/sports/ruth.mpg

por

http://www.cdn.com/www.foo.com/sports/ruth.mpg

Compañía CDN (cdn.com)

- Distribuye archivos mpg
- Usa su servidor DNS autoritario para redirigir los requerimientos

Más sobre CDNs

Ruteo de requerimientos

- CDN crea un "mapa", indicando distancias desde ISPs hojas y nodos CDN
- Cuando consulta llega a servidor DNS autoritario:
 - Servidor determina ISP desde el cual se origina la consulta
 - usa "mapa" para determinar mejor servidor CDN
- Nodos CDN crean red sobrepuesta en capa aplicación

Resumen: Multimedia en Internet: varios trucos

- use UDP para abolir control de congestión de TCP (retardo) en tráfico sensible en tiempo
- Retardo de reproducción adaptativo en lado del cliente: para compensar variaciones de retardo
- Lado servidor ajusta BW de flujo a BW disponible en ruta servidor a cliente
 - Elegir entre tasas de flujo pre-codificadas
 - Tasa de codificación dinámica
- Recuperación de errores (sobre UDP)
 - FEC, entrelazado
 - retransmisiones, si el tiempo lo permite
 - Subsanar errores: repetir datos cercanos
- CDN: traer el contenido más cerca del cliente.

Capítulo 7: Contenidos

- 7.1 Aplicaciones Multimedia en Red
- 7.2 Streaming de Audio y video almacenado
- 7.3 Real-time Multimedia:Estudio de telefonía en Internet
- 7.4 Distribución de Multimedia: Redes de distribución de Contenidos
- 7.5 protocolos para aplicaciones Interactivas de Tiempo Real
 - RTP, RTCP, SIP

- 7.6 Más allá de Best Effort
- 7.7 Mecanismos de itineración y políticas
- 7.8 ServiciosIntegrados y ServiciosDiferenciados
- 7.9 RSVP