Algunas Herramientas de Apoyo al Análisis y Diseño de Software

Agustín J. González

ELO329: Diseño y programación orientados a objetos

Resumen

- Para desarrollar software hay varias herramientas de gran utilidad independientemente de la metodología usada en el desarrollo.
- Veremos:
 - Descripción de casos de uso,
 - Tarjetas CRC (Clase, Responsabilidad y Colaboradores,
 - Diagramas UML (Unified Modeling Language)

Casos de Uso

- Recordemos las principales actividades del desarrollo:
 Definición de requerimientos, análisis, diseño, implementación, pruebas, distribución.
- Se requiere de técnica para capturar información sobre cómo un sistema o negocio trabaja (o se comporta), o sobre cómo se desea que trabaje o comporte
- El estudio de casos de uso es una técnica que sirve tanto para definir requerimientos como de análisis. También es de utilidad durante las pruebas.
- Cada caso de uso se concentra en un escenario específico y describe la interacción entre un actor principal y el sistema.
- Caso de uso = Secuencia de acciones
 - Acción = Interacción entre actor(es) y el sistema bajo desarrollo.

Casos de Uso (cont.)

- Actores pueden ser usuarios, otros sistemas, hardware, todos fuera del sistema de software que estamos definiendo.
- Cada resultado (salida) tiene un valor para uno de los actores
- Se usa variaciones para situaciones excepcionales.
- Se construye en base a levantamiento inicial de requerimientos y en reuniones de análisis con usuarios.
- Un caso de uso debe ser simple, claro y conciso. No debe dar lugar a especificaciones ambiguas.

Casos de Uso (cont.)

- Se pueden presentar gráficamente usando Diagramas UML de Casos de Uso.
- Son buenos para capturar requerimientos reflejados en comportamientos del sistema ante determinadas entradas (son los requerimientos funcionales).
- No son buenos para requerimientos no funcionales. Ej.: Plataforma, desempeño, seguridad, tiempo de respuesta.

- Esta es una de varias posibles.
- Nombre: Nombre del caso de uso, usar verbo y sustantivo, debe sintetizar el objetivo deseado. Ej. Cambiar nota
- Propósito: Resume brevemente qué se desea lograr con este caso de uso.
- Actores: Entes externos que participan en el caso de uso.
- Pre-condiciones: Pre-requisitos existentes (que se prevén) para el correcto funcionamiento de la funcionalidad especificada en el caso de uso.

- Evento: Situación que gatilla el inicio del caso de uso.
- Pos-condiciones: Situación que ocurre después de usar la funcionalidad especificada en el caso de uso
- Tipo: Manual o automático, Ej.: Un timer expira, es automático.

Curso Normal de Eventos (o detalle): aquí se describe una secuencia numerada de pasos relatando el flujo básico o feliz del caso de uso. Se sugiere separar en dos columnas:

Entorno	Sistema
1)	
	2)

 Curso Alternativo de eventos: funcionalidad que se requiere en caso de error.

- Requerimientos no funcionales: Especificación narrativa de solicitudes no funcionales del usuario que especifican situaciones de rendimiento, volúmenes de información, seguridad, tiempos de respuesta, etc.
- Autor: Persona(s) responsable del análisis y redacción del caso de uso.

Ejemplo de caso de uso: Sistema de mensajes de voz en teléfono.

- Nombre: Dejar un mensaje
- Propósito: El llamador desea dejar un mensaje en una casilla de voz.
- Actor: llamador
- Pre-condición: Existe la casilla buscada.
- Evento: El llamador llama a una casilla.
- Post-condición: El mensaje queda grabado en casilla.
- Tipo: manual

Ejemplo de caso de uso: Sistema de mensajes de voz en teléfono.

Curso Normal de Eventos:

Actor	Sistema
1. El llamador marca el número principal del sistema de mensaje de voz.	2. El sistema responde con un mensaje hablado pidiendo: Ingrese el número de la casilla seguido por un signo #.
3. El usuario marca el número de la extensión.	4. El sistema le habla: Usted se ha contactado con la casilla xxxx, Por favor deje su mensaje ahora.
5. El llamador deja el mensaje.	
6. El llamador cuelga.	7. El sistema pone el mensaje en la casilla.

Ejemplo de caso de uso: Sistema de mensajes de voz en teléfono.

- Curso Alternativo de eventos
- Es común especificar variantes de un caso de uso:
- Variante 1:
- 3A1. El usuario ingresa un número de extensión inválido.
- 4A1. El sistema de mensaje de voz responde:
 - Usted ha marcado un número de casilla inválido.
- 5A1: Continúa con paso 2.
- Variante 2
- 5A2. El usuario cuelga en lugar de dejar un mensaje.
- 7A2. El sistema de mensaje de voz descarta el mensaje vacío.

Tarjeta CRC: Class, Responsibilities, Collaborators

Tarjeta CRC: Class, Responsibilities, Collaborators.

- Es una herramienta principalmente de diseño.
- Creamos una tarjeta por cada clase (fijarse en sustantivos en casos se uso)
- El nombre de la clase va en la parte superior.
- Responsabilidades a la izquierda y
 - 1-3 responsabilidades (fijarse en verbos en casos de uso)
- Colaboradores a la derecha.
 - Colaboradores de la clase, no de cada responsabilidad.

Ejemplo tarjeta CRC:

- Típicamente los sustantivos de los casos de uso son una buena pista para encontrar candidatos a clases.
- Los verbos de los casos de uso son candidatos a responsabilidades.

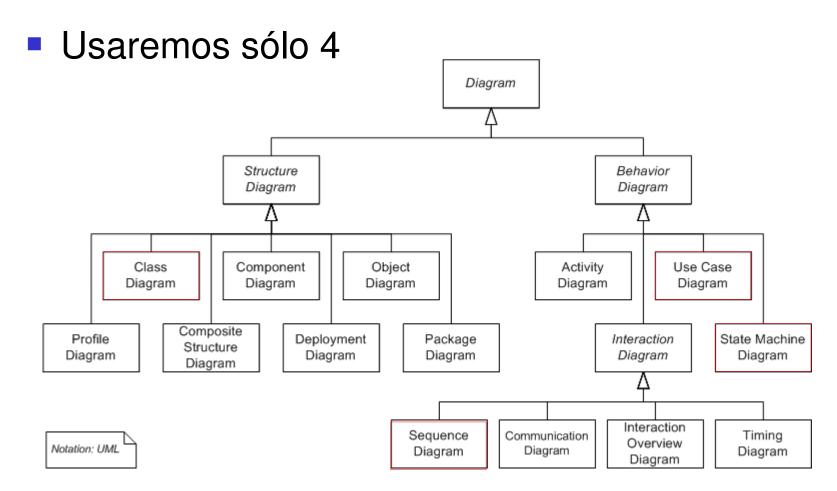
М	ailbox	
manage passcode manage greeting	MessageQue	ue (Casilla)
manage new and saved m	essages	

Recorrido de Caso de Uso

- El recorrido de los casos de uso permite identificar otras clases.
- Caso de uso: Dejar un Mensaje
- Llamador se conecta al sistema de mensajería.
- Llamador marca extensión.
- "Alguien" debe ubicar la casilla (Mailbox).
- Ni la casilla ni el mensaje pueden hacer esto.
- Surge una nueva clase: SistemaMensajeria (MailSystem).
- Responsabilidad: Administrar las casillas.

CRC inicial para: SistemaMensajeria

- Usar los casos de uso para llenar las tarjetas CRC.
- Cambiar las tarjetas a gusto. Es común hacer cambios al considerar nuevos casos de uso.
- Lo común: el primer diseño no es el perfecto.

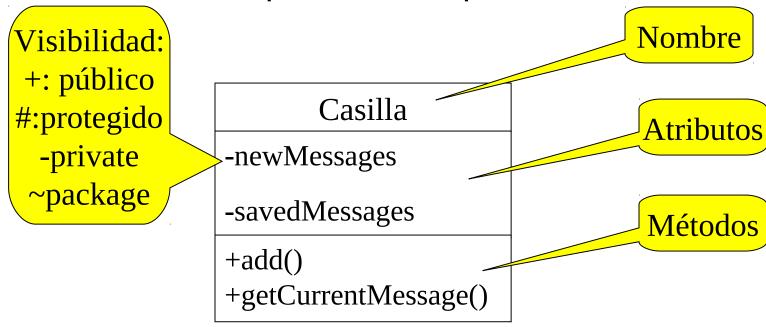

MailSystem		
manage mailboxes	Mailbox	

(SistemaMensajeria)

Diagramas UML

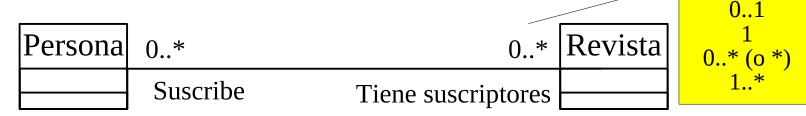
- UML= Unified Modeling Language
- Hay varios tipos de diagramas.
- Nosotros veremos sólo cuatro tipos:
 - Diagrama de Casos de Uso
 - Diagrama de Clases (ya algo conocen)
 - Diagrama de Secuencia (idem)
 - Diagrama de Estados

Tipos de Diagramas UML


Diagrama de Casos de Uso

 Su objetivo es presentar gráficamente una funcionalidad provista por el sistema.

Diagrama de Clases


Cada clase es representada por:

 La representación varía según la herramienta usada.

Tipos de Relaciones entre clases

Asociación: es la relación más general representa una familia de relaciones, la asociación puede ser unidireccional o bidireccional. Puede tener roles, algunos la usan a cambio de agregación. Relación de asociación es más general. Multiplicidad

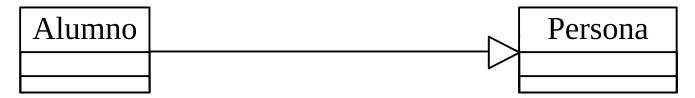
Para indicar direccionalidad se usan flechas

Por ejemplo un mensaje no sabe en qué cola de mensajes está.

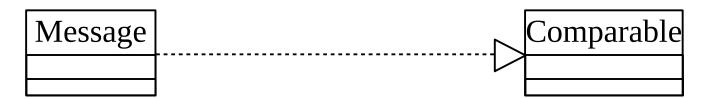
Tipos de Relaciones entre Clases (cont)

 Agregación: relación "tiene" o "contiene", la parte puede existir fuera del todo.

 Composición: Caso especial de agregación. Contenido no existe fuera de la clase. La parte sólo existe en la medida que el todo exista.



Diferencia entre Agregación y Composición

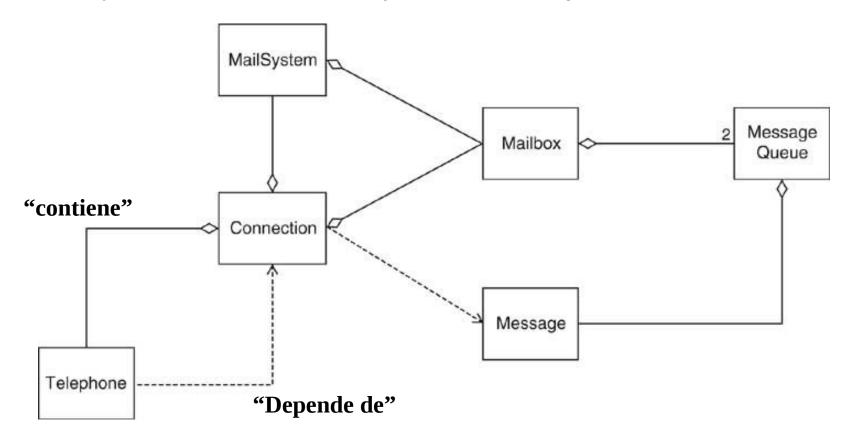

- La composición es más específica.
- Por ejemplo:
 - Un comité tiene miembros. Es agregación porque los miembros existen por sí solos incluso fuera de ese comité o en otro comité.
 - Una trabajador tiene nombre y salario. Es composición porque el nombre o salario por sí solos no tienen sentido. Cuando el trabajador se destruye, desaparece también su nombre y salario.

Tipos de Relaciones entre Clases (cont)

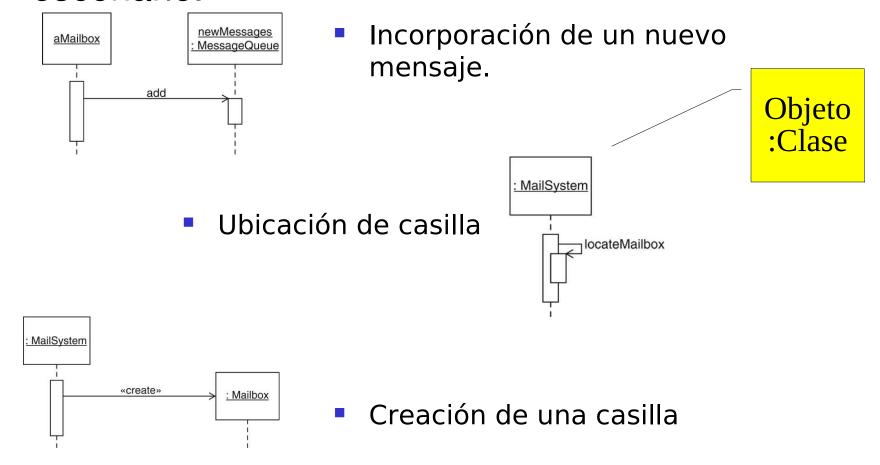
Herencia: Cuando se cumple la relación es-un y además hay una relación de sub-tipo válida. Una clase extiende la otra.

- Interfaces: Describe un conjunto de métodos.
- No hay estado ni implementación.

Tipos de Relaciones entre clases (cont)


Dependencia: Es la más débil de las asociaciones. Indica que una clase usa otra en algún momento. Existe dependencia si una clase aparece en un parámetro o variable local de un método de la otra.

- Recomendaciones
- Usar UML para informar, no para impresionar.
- No dibujar un único diagrama sobrecargado.
- Cada diagrama debe tener un propósito específico.
- Omitir detalles no esenciales.


Diagrama de clases para sistema de mensajería

 A esto se llega luego de analizar varios casos de uso y construir las tarjetas CRC para cada clase.

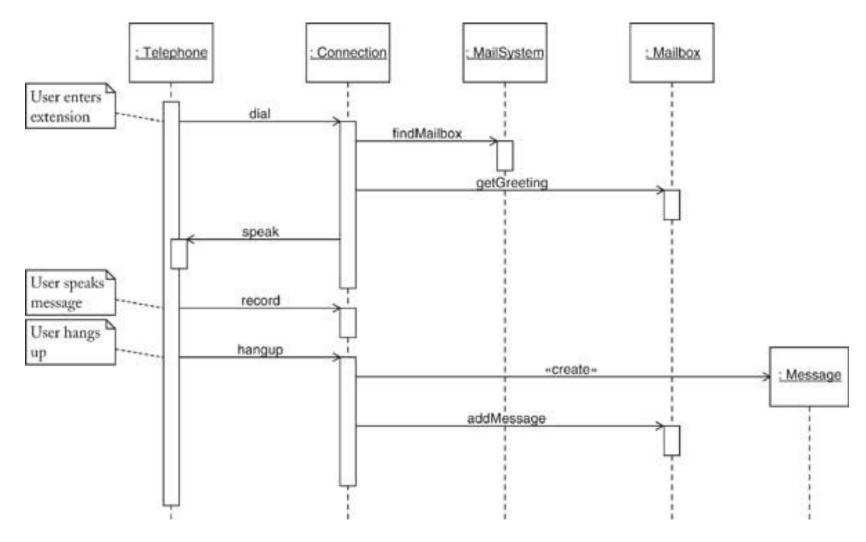


Diagrama de Secuencia

Cada diagrama muestra la dinámica de un escenario.

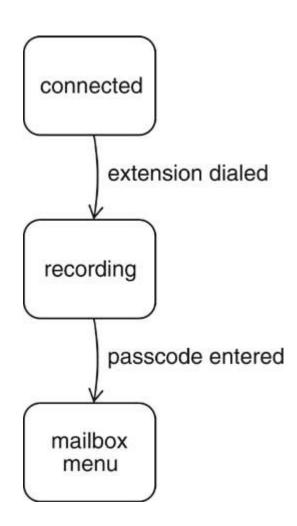


Diagrama de secuencia para: "Dejar un Mensaje"

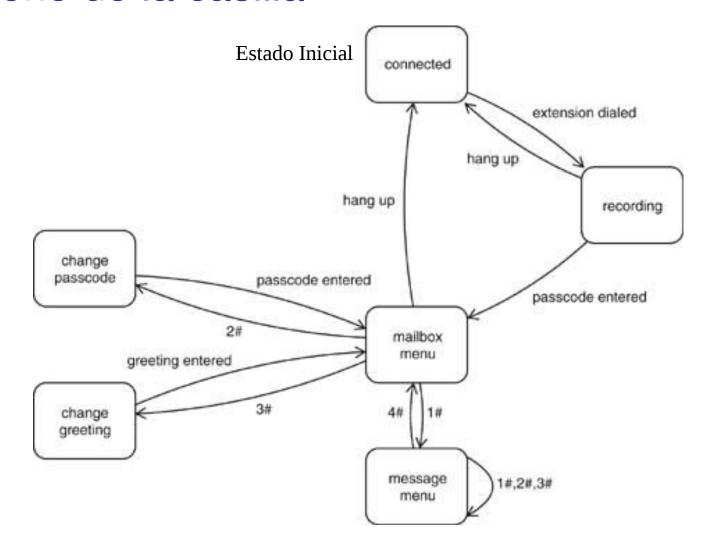


Diagrama de Estados

- Son utilizados en las clases cuyos objetos tiene estados de interés.
- Similares a los diagrama de estados que verán o vieron en "Sistemas Digitales".

Diagrama de Estado para la conexión del dueño de la casilla

Elo329: Diseño y Programación Orientados a Objetos

Herramientas de software

- Varios IDE (Integrated Development Environment) incluyen facilidades para crear estos diagramas; por ejemplo:
- Jgrasp lo provee, en su versión estándar.
- Eclipse no lo provee directamente, pero se puede incluir agregando un plug-in para ese propósito (yo no lo he probado aún)
- NetBeans incluye un módulo que lo permite, para ello se debe bajar la versión completa e instalar lo necesario. Cuando las clases ya se tienen, se usa
 - Botón derecho en proyecto->reverse engineer
 - Luego en Model: seleccionar las clases a diagramar
 - Botón derecho en las clases->Create diagram from selected elements.
- También pueden revisar Umbrello (no lo he estudiado completamente)