
CS 342: Object-Oriented Software Development Lab

The C++ Preprocessor

Shawn M. Hannan
Department of Computer Science
Washington University, St. Louis

hannan@cs.wustl.edu

http://classes.cec.wustl.edu/�cs342/

CS 342: OO Software Development Lab OO Programming with C++

The C++ Preprocessor

� What does the preprocessor do?

� Preprocessor directives

� For more information

Copyright c
1997-2001 Dept. of Computer Science, Washington University 1

CS 342: OO Software Development Lab OO Programming with C++

Preprocessor Responsibilities

� Header file inclusion

– Supports factoring of common code, notably declarations

� Macro expansion

– Supports compile-time decisions

� Conditional compilation

– Supports platform dependencies
– Supports compile-time application configuration

� Miscellaneous

– Supports source file name and line number access

Copyright c
1997-2001 Dept. of Computer Science, Washington University 2

CS 342: OO Software Development Lab OO Programming with C++

Header File Inclusion
� The #include directive has two forms, e.g.,

– #include <stdio.h> for system header files
– #include "Stack.h" for other (application) headers

� The two forms differ in the include path and where subsequent
headers are included from (with some compilers/options)

– Specify the include path using -I compiler options
– The include path is searched, in order, for each header
– The compiler usually provides an implicit path to search for system

headers
– The most useful distinctions are 1) documentation, and 2) tool

usages, such as dependency generation for Makefiles

Copyright c
1997-2001 Dept. of Computer Science, Washington University 3

CS 342: OO Software Development Lab OO Programming with C++

Macro Expansion

� The #define directive creates a macro, e.g.,

– #define BUFSIZ 1024

� Any occurrence of a macro is expanded in place, e.g.,

– All (complete) occurrences of BUFSIZ will be replaced by 1024

� Usually cleaner to use C++ static constants. And C++ constants are
type-checked, while #define s are not.

� Can disable a macro with #undef , but that can be dangerous. It’s
mostly used for disabling troublesome macros in system header files.

Copyright c
1997-2001 Dept. of Computer Science, Washington University 4

CS 342: OO Software Development Lab OO Programming with C++

Macro Example

� ACE #define s a macro for the size of each built-in type:

// The number of bytes in a long.
if !defined (ACE_SIZEOF_LONG)
if (ULONG_MAX) == 65535UL
define ACE_SIZEOF_LONG 2
elif ((ULONG_MAX) == 4294967295UL)
define ACE_SIZEOF_LONG 4
elif ((ULONG_MAX) == 18446744073709551615UL)
define ACE_SIZEOF_LONG 8
else
error: unsupported long size, update for this plat
endif /* ULONG_MAX */
endif /* !defined (ACE_SIZEOF_LONG) */

Copyright c
1997-2001 Dept. of Computer Science, Washington University 5

CS 342: OO Software Development Lab OO Programming with C++

Macro Example, (cont’d)

� These are used to create platform-independent types of known sizes,
e.g.,

if ACE_SIZEOF_INT == 4
typedef int ACE_INT32;
typedef unsigned int ACE_UINT32;

elif ACE_SIZEOF_LONG == 4
typedef long ACE_INT32;
typedef unsigned long ACE_UINT32;

else
error Have to add to the ACE_UINT32 type setting
endif

� #if defined and #if ! defined are functionally equivalent to
#ifdef and #ifndef , respectively.

Copyright c
1997-2001 Dept. of Computer Science, Washington University 6

CS 342: OO Software Development Lab OO Programming with C++

Conditional Compilation
� #if , #elif , #else , #endif , e.g.,

#if SIZE == 1
[...]

#elif SIZE == 2
[...]

#else
[...]

#endif

� Header file include protection:
#ifndef STACK_H
#define STACK_H

[...]

#endif /* STACK_H */

Copyright c
1997-2001 Dept. of Computer Science, Washington University 7

CS 342: OO Software Development Lab OO Programming with C++

Conditional Compilation, (cont’d)

� Can use conditional compilation to disable blocks of code.

#define DEBUG 1
.
.
.

#if DEBUG
cout << ‘‘Value of x is ‘‘ << x << endl;

#endif /* DEBUG */

Copyright c
1997-2001 Dept. of Computer Science, Washington University 8

CS 342: OO Software Development Lab OO Programming with C++

Miscellaneous

� __FILE__ and __LINE__ are useful predefined macros.

– Contain the current filename and line number, respectively.
– cout<<‘‘at ‘‘<<__LINE__<<‘‘ in ‘‘<<__FILE__<<endl;

� Other, less useful, predefined macros include __DATE__ and
__TIME__ (of compilation).

Copyright c
1997-2001 Dept. of Computer Science, Washington University 9

CS 342: OO Software Development Lab OO Programming with C++

Miscellaneous

� #error causes unconditional compilation failure, with message to
user, e.g.,

#if ! defined (DEFAULT_SIZE)
error DEFAULT_SIZE was not defined!
#endif /* ! DEFAULT_SIZE */

� #pragma can be used for compiler-dependent features, e.g., to
disable a specific warning or instantiate a template

Copyright c
1997-2001 Dept. of Computer Science, Washington University 10

CS 342: OO Software Development Lab OO Programming with C++

The C Preprocessor and C++
� C++ tries to reduce reliance on the preprocessor

– Typed constants are type-safer than macros.

#define MAX_AGE 100
...

const int MAX_AGE = 100;

– The preprocessor complicates debugging, because the debugger
sees the preprocessor output, not source code input.

� The preprocessor is typically used to enhance performance and
improve portability

� Static consts and templates provide powerful compile-time alternatives.

� C++ relies on a rich set of headers for portability.

Copyright c
1997-2001 Dept. of Computer Science, Washington University 11

CS 342: OO Software Development Lab OO Programming with C++

For More Information

� man cpp

� info cpp , for information on GNU cpp

Copyright c
1997-2001 Dept. of Computer Science, Washington University 12

