CS 342: Object-Oriented Software Development Lab
The C++ Preprocessor

Shawn M. Hannan
Department of Computer Science
Washington University, St. Louis

hannan@cs.wustl.edu

http://classes.cec.wustl.edu/~cs342/

CS 342: OO0 Software Development Lab

The C++ Preprocessor

OO Programming with C++

e What does the preprocessor do?
e Preprocessor directives

e For more information

Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++

Preprocessor Responsibilities

Header file inclusion

— Supports factoring of common code, notably declarations
Macro expansion

— Supports compile-time decisions

Conditional compilation

— Supports platform dependencies
— Supports compile-time application configuration

Miscellaneous

— Supports source file name and line number access

Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO0 Software Development Lab
Header File Inclusion

OO Programming with C++

e The #include directive has two forms, e.g.,

— #include <stdio.h> for system header files
— #include "Stack.h" for other (application) headers

e The two forms differ in the include path and where subsequent
headers are included from (with some compilers/options)

— Specify the include path using - compiler options

— The include path is searched, in order, for each header

— The compiler usually provides an implicit path to search for system
headers

— The most useful distinctions are 1) documentation, and 2) tool
usages, such as dependency generation for Makefiles

Copyright ©1997-2001 Dept. of Computer Science, Washington University




CS 342: OO Software Development Lab OO Programming with C++ CS 342: OO Software Development Lab OO Programming with C++
Macro Expansion Macro Example

The #define  directive creates a macro, e.g., e ACE #define s a macro for the size of each built-in type:

— #define BUFSIZ 1024 /Il The number of bytes in a long.
# if ldefined (ACE_SIZEOF_LONG)

if (ULONG_MAX) == 65535UL
define ACE_SIZEOF_LONG 2
elif (ULONG_MAX) == 4294967295UL)
define ACE_SIZEOF_LONG 4
elif (ULONG_MAX) == 18446744073709551615UL)
define ACE_SIZEOF _LONG 8
else
error: unsupported long size, update for this plat
endif /¥ ULONG_MAX */
# endif /* !defined (ACE_SIZEOF_LONG) */

Any occurrence of a macro is expanded in place, e.g.,
— All (complete) occurrences of BUFSIZ will be replaced by 1024

Usually cleaner to use C++ static constants. And C++ constants are
type-checked, while #define s are not.

Can disable a macro with #undef , but that can be dangerous. It's
mostly used for disabling troublesome macros in system header files.

HHHFHFHFHHHHR

Copyright ©1997-2001 Dept. of Computer Science, Washington University Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++ CS 342: OO Software Development Lab OO Programming with C++

Macro Example, (contd) Conditional Compilation
_ _ o #if | #elif | #else , #endif ,e.g.,
e These are used to create platform-independent types of known sizes, #if SIZE ==

e.g. L]
# if ACE_SIZEOF_INT == #elif SIZE ==

typedef int ACE_INT32; -]

typedef unsigned int ACE_UINT32; #else

elif ACE_SIZEOF_LONG == -]

typedef long ACE_INT32; #endif

typedef unsigned long ACE_UINT32; e Header file include protection:

# else #ifndef STACK_H
# error Have to add to the ACE_UINT32 type setting #define STACK H
iy _

endif

e #if defined and #if ! defined are functionally equivalent to (-]
#ifdef and #ifndef , respectively.

#endif /* STACK_H */

Copyright ©1997-2001 Dept. of Computer Science, Washington University Copyright ©1997-2001 Dept. of Computer Science, Washington University




CS 342: OO Software Development Lab OO Programming with C++

Conditional Compilation, (cont'd)

e Can use conditional compilation to disable blocks of code.

#define DEBUG 1

#if DEBUG
cout << “Value of x is “ << x << endl
#endif /* DEBUG */

Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO0 Software Development Lab

Miscellaneous

OO Programming with C++

e FILE  and__ LINE__ are useful predefined macros.

— Contain the current filename and line number, respectively.
— cout<<"at “<<_ LINE_ <<" in “<<_ FILE <<end;

e Other, less useful, predefined macros include _ DATE__ and
__TIME___ (of compilation).

Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO0 Software Development Lab

Miscellaneous

OO Programming with C++

e #error causes unconditional compilation failure, with message to
user, e.g.,

#if | defined (DEFAULT_SIZE)
# error DEFAULT SIZE was not defined!
#endif /* | DEFAULT_SIZE */

e #pragma can be used for compiler-dependent features, e.g., to
disable a specific warning or instantiate a template

Copyright ©1997-2001 Dept. of Computer Science, Washington University

CS 342: OO Software Development Lab OO Programming with C++
The C Preprocessor and C++

C++ tries to reduce reliance on the preprocessor

— Typed constants are type-safer than macros.
#define MAX_AGE 100

const int MAX_AGE = 100;

— The preprocessor complicates debugging, because the debugger
sees the preprocessor output, not source code input.

The preprocessor is typically used to enhance performance and
improve portability

Static consts and templates provide powerful compile-time alternatives.

C++ relies on a rich set of headers for portability.

Copyright ©1997-2001 Dept. of Computer Science, Washington University




CS 342: OO Software Development Lab OO Programming with C++
For More Information

e man cpp

e info cpp , for information on GNU cpp

Copyright ©1997-2001 Dept. of Computer Science, Washington University




