
E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 1 of 11

GUI Event Driven Programming

UI), the designer must
ions with the user. In
g a single stream of

ing a single stream
terface allows a user
might press a graphic
scrollbar. The GUI
a timely fashion.

ns is to use interrupts.
ser action events to
normal processing.
t access to interrupts.
s of objects, called
sed by the GUI. The

plement. The methods
occur.

k at a Java application
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

When programming for a Graphics User Interface (G
take into account the wide variety of possible interact
old style programming, the user is limited to providin
character input from a keyboard and is limited to view
of character output on the terminal. The graphical in
many more possible actions. For example, the user
button, or type characters into a text field, or move a
program must respond to all of these action events in

The best way to handle all the possible user interactio
In this way the CPU does not waist time waiting for u
occur; it simply responds to the events and resumes
Ordinarily, programming languages do not give direc
The Java API allows the programmer to make classe
listeners, that provide indirect access to interrupts cau
Java API has interfaces that listener classes must im
in the interfaces get called when the specified events

As an example of listeners handling events, let us loo
that makes a closeable window on the screen.



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 2 of 11

import.java.event.*;
import.javax.swing.*;

stener object
));

ner {

) {}

{}
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

class CloseableFrame extends JFrame {
public CloseableFrame() {

setTitle(“My Closeable Frame”);
setSize(300, 200);
//cause window events to be sent to window li
addWindowListener(new MyWindowListener(

}
}

class MyWindowListener implements WindowListe
//Do nothing methods required by interface
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e)
public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
//override windowClosing method to exit program
public void windowClosing(WindowEvent e) {



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GUI page 3 of 11

System.exit(0); //normal exit
}

to appear on the
do this and an
by making multiple

o the window with
ppens to the
y calls the

jects in the
respond to events

re seven methods
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

Event Driven Programming October 28, 1999

}

class Main {
public static void main(String[] args) {

CloseableFrame f = new CloseableFrame();
f.show(); //makes the frame visible

}
}

1. Objects in theCloseableFrameclass cause a window
users screen. Only an application (not applet) can
application can make as many windows as desired
CloseableFrameobjects.

2. A MyWindowListener object is registered to listen t
theaddWindowListener method. When an event ha
window, the Java runtime environment automaticall
appropriate method in theWindowListener interface.

3. TheWindowListener interface is implemented by ob
MyWindowListener interface so that the objects can
in the window in which they are registered. There a



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 4 of 11

required by theWindowListener interface (see the Java API
Documentation for a detailed description of when each method is

Closing method.
the other 6 methods.

s the WindowListener
le of event driven
echoes it into a

bject
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

called), of which we are only interested in thewindow
Empty methods which do nothing are provided for

Most other event interfaces are not as complicated a
interface. The Mimic class, below is a simple examp
programming that takes user input from aTextField and
Label.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class Mimic extends JFrame {
MimicGUI gui = new MimicGUI();

public Mimic() {
setTitle(“Mimic”);
setSize(250, 100);
//fast way to setup closeable window listener o
addWindowListener(new WindowAdapter() {



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 5 of 11

public void windowClosing(WindowEvent e) {
System.exit(0);

s here”);

ner(this);
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

}
} );
getContentPane().add(gui);
setVisible(true);

}

public static void main(String[] args) {
Mimic mimic = new Mimic();

}
}

class MimicGUI extends JPanel {
private JLabel label = new JLabel(“Echo appear
private JTextField quote = new JTextField(20);
private MimicListener listener = new MimicListe

public MimicGUI() {
//add quote and label to window
add(quote);
add(label);



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 6 of 11

//register listener with quote object
quote.addActionListener(listener);
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

}

public void updateLabel() {
label.setText(quote.getText());

}
}

class MimicListener implements ActionListener {
private MimicGUI gui;

public MimicListener(MimicGUI guiref) {
gui = guiref;

}

//method required by action listener interface
public void actionPerformed(ActionEvent e) {

gui.updateLabel();
}

}



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 7 of 11

1. The listener is registered with theJTextField quote in MimicGUI() by
using thequote.addActionListener(listener)method. When the

hich keeps track of

t field and hits enter),
thod gets called
out the event are in
hod.

t by calling the
eld contents into the
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

listener is registered, it is added to an internal list w
which listeners to notify when events occur.

2. When a text field event occurs (user types into tex
the listener.actionPerformed(ActionEvent event)me
as defined in classMimicListener . Note that data ab
the event object passed as a parameter of the met

3. The code in the listener method handles the even
gui.updateLabel()method (which echoes the text fi
label displayed by the application window).



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 8 of 11

In general, the objects required to deal with events are:

m classes defined in
fined classes that
in the Java API. It is
ese are created

ice routines) and then
method.

ts that can be used for
the Java API

mponent class names

istener

nt handler
ethod

r

)

Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

The GUI components and the Events are objects fro
the Java API. The Listeners are objects from user de
implement the appropriate listener interfaces defined
not necessary for the user to create Event objects; th
automatically (by the mouse/keyboard interrupt serv
passed as arguments to the listener’s event handling

The above pattern is repeated for all GUI componen
user input. The GUI component classes are listed in
documentation for the javax.swing package. The co

GUI
Component

add/remove
listener
method

L

eve
m

Event

event data

register listener

event occurs notify listene

(automatic) (automatic



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 9 of 11

all start with J and end with names that are similar to GUI components
defined in the old java.awt package. The new swing components are

entation for
rences.

event programming,
re detail. Before
how the user defined

t.

Java API, the only
Arrow 1 in the figure
w earlier. Note that the
r does not create

cally.
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

superior to the old components. Refer to the docum
javax.swing.JComponent for a discussion of the diffe

Mimic Example. Now that we have the basic idea of
let us go back and examine the Mimic program in mo
writing code, it often helps to make diagrams which s
classes and the methods through which they interac

Since the JTextField and JLabel classes are from the
code we need to write is for the other three classes.
corresponds to the event occurrence diagram we dre
ActionEvent class is not in this diagram since the use
objects from this class; the system does so automati

JTextField MimicListener

MimicGUI

JLabel Mimic

1: actionPerformed

3: getText

4: setText

2: updateLabel



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 10 of 11

The Mimic class describes the primary object which creates the application
window. Just as in the earlier example of graphics animation, the drawing

MimicGUI, which
the window display.

eparate class is not
cal organization of the
s the description of the

the greater capability
tField class only

ter. This means that the
ges when the user
tEventwhich is

e can cause the label
is event instead.
ntinstead of the

istener);

interface
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

surface of the window is described by another class,
will describe all of the GUI components used to make
Putting the description of the GUI components in a s
necessary, but it may be a good idea since the physi
GUI display can be quite complicated. This separate
physical organization of the display from other code.

Another thing that we can do is to take advantage of
of the swing components. TheActionEvent for theJTex
occurs when the user finishes typing and presses en
label does not change as the user types; it only chan
finishes. The newJTextField class also has aDocumen
triggered immediately upon any change to the text. W
to change continuously with the text entry by using th
Here are the changes necessary to use theDocumentEve
ActionEvent.

1. Register the listener in MimicGUI() as

quote.getDocument().addDocumentListener(l

2. The MimicListener class must implement the new



E C E N 4 2 1 3 E m b e d d e d C o m p u t e r S y s t e m s

GU page 11 of 11

class MimicListener implements DocumentListener {

st be replaced by
interface.

{

re added or deleted.
hanged which cannot
y a null method was
Dr. Louis G. Johnson
School of Electrical and Computer Engineering

Oklahoma State University

I Event Driven Programming October 28, 1999

3. The actionPerformed method in MimicListener mu
three methods required by the DocumentListener

public void insertUpdate(DocumentEvent e) {
gui.updateLabel();

}

public void removeUpdate(DocumentEvent e) {
gui.updateLabel();

}

public void changedUpdate(DocumentEvent e)
}

The first two methods are called when characters a
The third method is called when the text format is c
occur for objects in the JTextField class which is wh
provided.


	GUI Event Driven Programming
	When programming for a Graphics User Interface (GUI), the designer must take into account the wid...
	The best way to handle all the possible user interactions is to use interrupts. In this way the C...
	As an example of listeners handling events, let us look at a Java application that makes a closea...
	import.java.event.*; import.javax.swing.*; class CloseableFrame extends JFrame { public Closeable...

	1. Objects in the CloseableFrame class cause a window to appear on the users screen. Only an appl...
	2. A MyWindowListener object is registered to listen to the window with the addWindowListener met...
	3. The WindowListener interface is implemented by objects in the MyWindowListener interface so th...
	Most other event interfaces are not as complicated as the WindowListener interface. The Mimic cla...
	import java.awt.*; import java.awt.event.*; import javax.swing.*; import javax.swing.event.*; pub...


	1. The listener is registered with the JTextField quote in MimicGUI() by using the quote.addActio...
	2. When a text field event occurs (user types into text field and hits enter), the listener.actio...
	3. The code in the listener method handles the event by calling the gui.updateLabel() method (whi...
	In general, the objects required to deal with events are:
	GUI Component add/remove listener method
	The GUI components and the Events are objects from classes defined in the Java API. The Listeners...
	The above pattern is repeated for all GUI components that can be used for user input. The GUI com...

	Mimic Example
	Now that we have the basic idea of event programming, let us go back and examine the Mimic progra...
	Since the JTextField and JLabel classes are from the Java API, the only code we need to write is ...
	The Mimic class describes the primary object which creates the application window. Just as in the...
	Another thing that we can do is to take advantage of the greater capability of the swing componen...
	1. Register the listener in MimicGUI() as
	quote.getDocument().addDocumentListener(listener);

	2. The MimicListener class must implement the new interface
	class MimicListener implements DocumentListener {

	3. The actionPerformed method in MimicListener must be replaced by three methods required by the ...
	public void insertUpdate(DocumentEvent e) { gui.updateLabel(); } public void removeUpdate(Documen...




