
Feb. 7, 2000

A Much-Too-Terse Introduction to Unix
in the ODU Computer Science Dept.

STEVEN J. ZEIL

MARCH 30, 2000

Instructions on navigating this document.

A printable version of this document is available.

J I ➡ contents

http://www.cs.odu.edu/~zeil
http://www.cs.odu.edu/~zeil/unix/unix_p.pdf

1. Working on the CS Dept Network

The Computer Science Department maintains a large network of Sun workstations for teaching and
research. With only a few exceptions, if you are taking a CS class, you will receive an account allowing
you to work on these machines.

These workstations run the Unix operating system. This document is designed to provide a quick
introduction to the commands and concepts you will need to work under Unix.

If you have worked before with networks of Windows or Mac PCs, you need to understand that
Unix offers a fundamentally different approach to running programs. On PC networks, when you run a
program, you run it on the machine you are sitting at and you see the output on the machine you are sitting
at. Unix programs are designed to run on any machine where they have been installed, and you still see
the output on the machine you are sitting at. That’s simple enough to accomplish when the program is
doing simple text I/O, but the Unix philosophy also applies to programs that do graphics, windows, etc.
That’s one of the big reasons why Unix skills are so important, especially to distance-learning students.
Both instructors and students can provide, design and build programs on the same machines, secure in
the belief that if it runs properly for them, it will run for others as well.

There are two ways to interact with Unix and Unix programs: through atext-onlyinterface, or via
a windowsinterface — the Unix windowing system is calledX. Which mode of interaction you use
depends upon how you are accessing to the network, the software on the machine you are sitting at, and
how fast your connection to the network is. But even if you are running X, one of the first things you are
likely to open is an “xterm”, a text-only command window. Unix users tend to launch programs from the
text-only interface. If the program itself supports windows, mice, etc., then they can point and click to

J I ➡ contents

their heart’s content.
For many of the programs I discuss here, there are alternatives that will accomplish the same task.

Experienced users may well argue with my choices. In particular, the X windowing system provides
simpler interfaces for electronic mail, debuggers, etc., but these are normally available only when seated
at the console. I tend to prefer techniques that can be used in both X and text-only modes, because these
offer more flexibility.

J I ➡ contents

2. The Basics

2.1. Logging In

2.1.1. Making a Connection

If you are a student registered for a CS course, and have never had a Unix account on the CS Dept
system, you can get your account by going to the CS Dept home page and clicking on the “Account
Management” link (under “Online Services”).

If you have had an account in the recent past, it should be regenerated for you in any semester when
you are registered for a CS course. Otherwise, you will need to contact your instructor or from the CS
systems staff to get your account.

The first thing you must do is to decide on what machine you are going to work. If you are seated at
one of the Dept.’s Sun workstations, the answer is easy — you will use the machine you’re seated at. Oth-
erwise, you need to pick a workstation. The easiest way to do this is to use the name “lab.cs.odu.edu ”,
a “fake” machine name that actually requests that you be assigned a random selection among the more
lightly loaded machines.1 If you’re not into pot-luck, however, you can select a specific machine from
this list.Note that you will probably need to add the string “.cs.odu.edu ” to any of these names.

Next, you need to get a log-in prompt from an ODU CS machine. How you do so depends upon your
access mode:

1If you know that you are going to be doing somve very CPU-intensive work, you can also opt for the fake name
“ fast.cs.odu.edu ”, which makes a random selection among the faster CPU’s in the Dept.

J I ➡ contents

CS Dept. Sun Workstations If you are seated at one of the Dept.’s Sun workstations, just hit the
return key to bring up the login screen. The screen will offer you the choice of logging in to the
“Common Desktop Environment” (CDE) or to “OpenWindows”. These are different “flavors” of X. You
can use either one, but the CDE offers built-in tutorials for first-time users.

Other Unix/Linux Machines If you are logged into a non-CS workstation running Unix or Linux,
and your internet connection is reasonably fast2, go ahead and start X on that machine, if you have not
already done so. Get into anxterm window, and issue the commands

xhost +machine-name
xon machine-name

wheremachine-nameis the name of one of the CS Dept. machines (see this list).
Because you are connecting from outside the CS Dept., you must give the full machine name, ending

in .cs.odu.edu . In the above lines, thexhost command gives the selected machine permission to
send information to your screen, and thexon command makes the actual connection.3

2A 56k modem is OK, but you wouldn’t want anything much slower.
3Note that you cannot use the fake names “lab.cs.odu.edu ” and “fast.cs.odu.edu ” because these choose

a machine at random, and would make a different choice each time. Therefore you would wind up giving one machine
permission to draw on your screen, and then trying to connect to a different machine.

The xhost command isn’t necessary if your X server is set to give permission by default or to prompt you for specific
permission when a connection is made. Try just doing thexon command and see if that works on your system. If so, you can
uselab.cs.odu.edu andfast.cs.odu.edu .

J I ➡ contents

Win32 machines with X servers If you are seated at a Win95/98/NT (collectively referred to as
Win32) machine with a reasonably fast internet connection4, you might want to see if it has X server
software installed. The most commonly used X-servers appear in the Start button menu as “Exceed” or
“X-Win32”. 5

The trickiest part is getting started. There are two techniques:

1. The recommended technique is to create a “session” describing how you want to connect. For
Exceed, this is done by running the “Session wizard”. For X-Win32, you start theX-Util32
program, and select “New session”. In both cases, you want to create anrexec session running
the command

/usr/openwin/bin/xterm -ls -display $DISPLAY

on one of the CS machines (see ‘Logging In’ on page 4). Run this session (e.g., run X-win32, click
on the X-win32 icon on the taskbar, and select your new session) to connect to the CS network.

2. The alternative is to first connect via telnet, set your DISPLAY variable to point to the machine you
are sitting at and then connect to the remote machine usingxon :

setenv DISPLAY local-machine-name:0
xon remote-machine-name

4Again, a 56k modem is OK, but you wouldn’t want anything much slower.
5If you want to try using X on your own PC, StarNet has a fully functional demo of their X-Win32 server available for

free downloading.

J I ➡ contents

Other machines If you are seated at a machine that doesn’t have X server software, or that has a slow
internet connection, then you need to run atelnet program. I can’t tell you where that will be or how
to run it, as that information depends upon the machine you’re sitting at. (I can tell you, however, that the
Win32 operating systems come with a program named (surprise!) “telnet ”.) Use your telnet program
to connect tolab.cs.odu.edu or a specific machine you have chosen.

Before going any further with telnet, find out the kind of terminal being emulated by your telnet
program. Some programs may give you a choice of several terminals. You may want to try different
ones to see which works best for you. Common choices include “vt100”, “vt102”, “vt52”, “vpoint”, and
“adm3a”. You’ll need that information in just a minute.

2.1.2. Logging In

Now that you have a login prompt, enter your login name. At the “password:” prompt, enter your
password.

2.1.3. You’re logged in - What will you see?

Exactly what will appear on your screen after you successfully enter your password depends on your
access mode and, for console users, the particular machine you chose and how your account is set up.

Telnet: You will have a “command-line” interface - you can type commands and see the output, if any,
listed immediately after the command.

J I ➡ contents

Console, X: Console users may get nothing more than a command-line interface as well. If so, you will
want to quickly move up to using the X windows interface. Console users may also find themselves
placed automatically into one of two “flavors” of the X windowing system:

Common Desktop Environment You can recognize this because, when you logged in, the phrase
“Common Desktop Environment” was prominently displayed. You can also recognize it by the
fancy “toolbar” at the bottom of the screen containing a number of icons and, in the middle, a
set of buttons titled “One”, “Two”, “Three”, and “Four”.
In this environment, look for a window titled “Terminal”, or click on the toolbar’s picture of a
screen and keyboard to get a terminal window. Click on the bar across the top of the window
to select it, and you are ready to begin entering commands.
For help on all the features of this environment, click on the toolbar icon with the question
mark.

other X window managers On those machines that do not run the common desktop environment,
you may find yourself confronted with a screen with one or more “windows”. The appearance
and behavior of these windows is described further here.in Section . For now, though, try
moving the mouse to an unoccupied portion of the screen and holding down the right mouse
button. You will probably get a menu that includes an option to open a “terminal”, “xterm”,
or “shell”. Select this to get a windo3w in which you can enter commands. Click on the bar
across the top of the window to select it before typing anything.

J I ➡ contents

2.1.4. Setting Your Terminal Type

If you are at the console, you may skip this Section. If you are connected via via the Internettelnet
program, you must now tell the Unix workstation what kind of terminal you are using. The command to
do so is

setenv term xxxx

wherexxxxis the kind of terminal (e.g,setenv term vt100).6

Some people also recommend that you follow this command with

tset -Q

which resets the terminal. In my own experience, this is usually unnecessary,and I have found that many
communications programs don’t deal well with this, but try it if your terminal seems to be misbehaving.

Most “dumb” terminals provide for 24 lines of text. Many communications programs, however, allow
more. If yours is one of these, you should tell Unix how many lines you are using by giving the command

stty rows nn

wherenn is the number of rows/lines.
6The proper terminal name for Internet users depends upon the machine you are actually sitting at. Consult the documen-

tation for your telnet program, the local staff, or your Internet Service Provider for suggestions.

J I ➡ contents

2.1.5. Changing Your Password

Whether we like it or not, we need to worry about the security of our computing environment. There are
people who would take advantage of this computer system if they had any, or more complete, access to
it. This could range from the use of computer resources they have no right to, to the willful destruction
and/or appropriation of the information we all have online. In order to maintain the level of security in
our computing environment that we need, there are some things we all have to take responsibility for.
Even though you may not feel like you personally have much to lose if someone had access to your
account or files, you have to realize that as soon as someone gains ANY access to our system, it’s 100
times easier for them to gain access to ALL of it. So when you are lax with your own account, you are
endangering the work and research of everyone else working here.

Your password is the fundamental element of security not only for your personal account, but for the
whole UNIX system that we share. Without an account and password a person has NO access to our
system. If someone discovers (or you tell someone) your password, not only will they have access to
your personal files, but they will have a much better chance to launch attacks against the security of the
entire system.

Your account password is the key to accessing and modifying all of your files. If another user dis-
covers your password, he or she can delete all your files, modify important data, read your private corre-
spondence, and send mail out in your name. You can lose much time and effort recovering from such an
attack. If you practice the following suggestions, you can minimize the risk.

1. NEVER give another user your password. There is no reason to do this. You can change permis-
sions and have groups set up if you need to share access with other individuals. Your account should

J I ➡ contents

be yours alone.

2. Never write down your password. Another person can read it from your blotter, calendar, etc. as
easily as you can.

3. Never use passwords that can be easily guessed. Personal information about you (birth date, etc.)
may be known to the attacker or may be recorded in on-line databases that the attacker has already
obtained.

Passwords should not be single words (in any language) because on-line dictionaries are widely
available for use in spelling checkers. A common approach to cracking passwords is to compile a
set of such words and to run a program that tries each one on each account on the machine. Consider
inserting punctuation and other “odd” characters into your password to foil such attacks.

A person with local knowledge can also try your spouse’s name, pets’ names, etc. Your account is
vulnerable to this type of cracking unless you choose your password carefully.

4. Change your password the very first time you log in, and every few months thereafter. Security
problems are often traceable to stale passwords and accounts. These are accounts that have become
inactive for one reason or another or the password has not changed for a long time. In our particular
environment we have had break-ins via such stale accounts. A password that remains the same for
a long time provides an intruder the opportunity to run much more advanced and longer running
programs to break such passwords.

5. Vary the system by which you choose a password. For example, don’t repeatedly use combinations
like BLUEgreen and REDyellow. If an intruder discovers your pattern, he or she can guess future

J I ➡ contents

passwords.

The command to change your password is

yppasswd

This command will first prompt you for your old password (just to check that you really are you!) and
then will ask you to type your new password (twice, so that an inadvertent typing mistake won’t leave
you with a password that even you don’t know!).

2.2. The Unix File System

Files in Unix are organized by listing them indirectories. Directories are themselves files, and so may
appear within other directories. The result is a tree-like hierarchy. At the root of this tree is a directory
known simply as “/”.7 This directory lists various others:

/

bin home usr ...

7It may be more precise to say that this directory’s name is the empty string “”.

J I ➡ contents

Thebin directory contains many of the programs for performing common Unix commands. Theusr
directory contains many of the data files that are required by those and other commands. Of particular
interest, however, is thehome directory, which contains all of the files associated with individual users
like you and me. Each individual user gets a directory withinhome bearing their own login name. My
login name iszeil .

We can expand our view of the Unix files then as:

/

bin home usr ...

... ...cd ls zeil

cd andls are two common Unix commands, as will be explained later.
Within my own home directory, I have a directory also named “bin”, containing my own personal

programs. Two of these are called “clpr” and “psnup”. So these files are arranged as:

J I ➡ contents

/

bin home usr ...

... ...cd ls zeil

bin

clpr psnup ...

The full name of any file is given by listing the entire path from the root of the directory tree down
to the file itself, with “/” characters separating each directory from what follows. For example, the full
names of the four programs in the above diagram are

/bin/cd
/bin/ls
/home/zeil/bin/clpr
/home/zeil/bin/psnup

There are some common abbreviations that can be used to shorten file names.

• You can refer to the home directory of someone with login namenameas˜ name.

J I ➡ contents

• You can refer to your own home directory simply as˜ .

So you could refer to the file containing myclpr program as either/home/zeil/bin/clpr
or ˜zeil/bin/clpr .

When I myself am logged in, I can refer to this program by either of those two names, or simply as
˜/bin/clpr .

• At all times when entering Unix commands, you have a “working” directory. If the file you want is
within that directory (or within other directories contained in the working directory), the name of
the working directory may be omitted from the start of the filename. When you first log in, your
home directory is your working directory. For example, when I have just logged in, I could refer to
my program simply asbin/clpr , dropping the leading/home/zeil/ because that would be
my working directory at that time.

• The working directory itself can be referred to as simply “.”.

• The “parent” of the working directory (i.e., the directory containing the working directory) can be
referred to as “..”.

Unix filenames can be almost any length and may contain almost any characters. As a practical matter,
however, you should avoid using punctuation characters other than the hyphen, the underscore, and the
period. Also, avoid blanks, and non-printable characters within file names. All of these have special
meanings when you are typing commands and so would be very hard to enter within a filename.

Some things to keep in mind about Unix file names that may be different from other file systems you
have used:

J I ➡ contents

• Unix file names are often very long so that they describe their contents.8 The rather perverse ex-
ception to this rule is that program/command names are, by tradition, very short, often confusingly
so.

• Upper and lower case letters are distinct in Unix filenames. “MyFile ” and “myfile ” are different
names.

• Periods (“.”) are not treated by Unix as a special character. “This.Is.a.legal.name ” is
perfectly acceptable as a Unix filename. Many programs, however, expect names of their data files
to end in a period followed by a short “standard” extension indicating the type of data in that file.
Thus data files with names like “arglebargle.txt ” for text files or “nonsense.p ” for Pascal
source code are common.

By convention, files containing executable programs generally do not receive such an extension.

• Keep in mind that directories are separated by “/” in file names, not by “\” as is common in some
other operating systems.

2.3. Shell Games: Typing Unix Commands

To run a Unix command (or any program, for that matter), you normally must type the name of the
command/program file followed by any arguments. There is actually a program running that accepts

8As we will see, one almost never needs to type an entire filename in a Unix command, so long file names are no harder
to work with than short ones.

J I ➡ contents

your keystrokes and launches the appropriate program. The program that reads and interprets your
keystrokes is called theshell. There are many shells available, all of which offer different features. The
default shell for ODU CS is called tcsh, and we’ll concentrate on that.

The command/program name is usually not given as a full file name. Instead, certain directories, such
as/bin , are automatically searched for a program of the appropriate name. Thus, one can invoke the
ls command as either

/bin/ls

or simply as

ls

As you type, some characters have a special meaning. For example, if you have entered the first few
letters of a file name and hit the “Tab” key, the shell will examine what you have typed so far and attempt
to complete the filename by filling in the remaining characters. If the shell is unable to complete the
filename, a bell or beep sound will be given. Even in this case, the shell will fill in as many characters as
it can.

Most special characters are entered by holding down the “Control” key while typing a letter. By
convention, we designate this by placing the symbol “ˆ” in front of the name of the second key. For
example, if you have typed zero or more letters of a filename and want to see a list of what filenames
begin with what you have typed, you could type ˆD, i.e., hold down the “Control” key and type “d”.

Some other useful special keys are:

• ˆC is used to abort a program/command that is running too long or working incorrectly. Beware:
aborting a program that is updating a file may leave garbage in that file.

J I ➡ contents

• ˆD is used when a command/program is reading many lines of input from the keyboard and you
want to signal the end of the input.

• ˆH, the “Backspace” key, and the “Delete” key all delete the most recently typed character.

• ˆB moves the cursorBackwards over what you have just typed, without deleting those characters.
This is useful in correcting typing mistakes. The “left” arrow on your keyboard may also do the
same thing.

• ˆF moves the cursorForwards over what you have just typed, without deleting those characters.
The “right” arrow on your keyboard may also do the same thing.

• ˆP retrieves thePrevious command that you had typed in. Repeated ˆP’s may be used to look back
through a number of commands that you have issued recently.

The “up” arrow on your keyboard may also do the same thing.

• ˆN is the opposite of ˆP. After one or more ˆP’s, a ˆN allows you to move back to theNext more
recent command.

The “down” arrow on your keyboard may also do the same thing.

• In many programs, ˆZ pauses the program and returns you temporarily to the shell. To return to the
paused program, give the command:fg

J I ➡ contents

2.4. Some Basic Unix Commands

If you have not yet done so, log in now so that you can work though the following commands.
Upon logging in, yourworking directoryshould be your home directory. The commandpwd will

print theworkingdirectory. Give the command

pwd

You should see something like

˜yourname

Now, let’s make a place to play in.mkdir will make a new directory. Enter the command

mkdir playing

to create a directory named “playing”.
The commandls lists the contents of the working directory. More generally,ls directoryname

will list the contents of any directory.9 Give the command

ls

and you should seeplaying listed. In fact, it may be the only thing listed.
The commandcd is used tochange the workingdirectory. Give the command sequence
9Well, not reallyanydirectory. People can protect their own directories from the prying eyes of others, in which casels

will fail.

J I ➡ contents

pwd
cd playing
pwd
cd ..
pwd
cd ./playing
pwd

to see this in action.
Thecp command copies one or more files. You can give this command ascp file1 file2 to

make a copy of filefile1 , the copy being namedfile2 . Alternatively, you can copy one or more files
into a directory by giving the command as

cp file 1 file 2...file n directory

Now try the following:

ls ˜public/Misc [Notice that there are a number
of files ending with .txt]

cp ˜public/Misc/*.txt ˜/playing
ls ˜/playing

The “* ” is a wildcardcharacter. It tells the shell to substitute any combination of zero or more characters
that results in an existing filename. In cases where there are multiple possibilities, such as this one,

J I ➡ contents

the shell forms a list of all the matches. So thecp command actually saw a list of all files in the
˜public/Misc directory whose names ended in “.txt”.

To get a better feel for wildcards, try the following:

ls /usr/include
ls /usr/include/*.* [List only file names containing a "."]
ls /usr/include/f*.*
ls /usr/include/*f*.*

Here are some other common Unix commands. (A longer, more complete list can be found in˜pub-
lic/Unix/commands.txt and in Appendix A.) Try experimenting with these in your˜playing
directory.

cancelrequestRemove a file from the printer queue, so that it won’t get printed. Therequestidentifier
is found using thelpstat command.

cat file1. . .filen Lists the contents of each of the listed files on your screen.

exit Shut down the current shell. If this shell is the one you got at log-in, this command logs you out.

mv file1 file2 Renamesfile1 asfile2. file2 may be in a different directory.

mv file1 directory Movesfile1 to the given directory.

lp file Send file to printer for printing. Most sites have multiple printers, each having its own name. One
of these will be the “default” printer used by thelp command. For the others, you must give the
printer name as part of the printer command:

J I ➡ contents

lp -d printer file

For example, at the Norfolk ODU campus,lp by itself prints to a fast printer in the public work-
station lab for text only.lp -dcookie prints to “cookie”, a printer in the same room that offers
the extra capability of printing Postscript graphics.

You will need to consult your local staff to see what printers are available at other sites.

lpstat Shows the list of files you have “queued up” awaiting their turn on printers. Entered by itself,

lpstat

it lists only your own print jobs, giving a unique identifier for each one.

To see the entire list of print jobs on some printer, enter

lpstat -o printer

ls -a By default, filenames beginning with “.” are considered “hidden” and not shown by thels com-
mand. The-a (for “all”) option causes these files to be shown as well.

ls -l This is the “long” form ofls . It displays additional information about each file, such as the size
and date on which the file was last modified.

Note that options can be combined. For example, you can sayls -la to get extra information
including normally hidden files.

J I ➡ contents

ls -F Adds a little bit of extra information to each file name. If the file is an executable program, its name
is marked with an “*”. If the file is a directory, its name is marked with “/”.

more file1. . .filen Lists files one screen at a time, pausing after each screen-full. Hit the space bar to
advance to the next screen.

A related program isless , which also allows you to move backwards through the files by hitting
“b”.

rlogin machine Logs you in to another machine on the network. Use this if the machine you are on
seems to be running slowly and thewho command indicates that there are lots of others on the
same machine.

rm file1. . .filen Deletes the listed files. Be very careful using wildcards with this command.rm * will
delete everything in the current working directory!

rm -i file1. . .filen Deletes the listed files, but firsts asks permission to delete each one.

rm -r file1. . .filen Deletes the listed files. If any of these files is a directory, it deletes that directory and
everything in it as well.

rmdir directory Deletes a directory.

who Lists everyone logged into the same machine that you are using.

J I ➡ contents

2.5. File Protection

2.5.1. Protections

Not every file on the system should be readable by everyone. Likewise, some files that everyone needs
(such as the executables for commands likecp , mv, etc.) should not be subject to accidental deletion or
alteration by ordinary users. This is where fileprotectioncomes into play.

Unix allows three forms of access to any file: read, write, and execute. For an ordinary file, if you
have read (r) permission, you can use that file as input to any command/program. If you have write (w)
permission, you can make changes to that file. If you have execute (x) permission, you can ask the shell
to run that file as a program.

The owner of a file can decide to give any, all, or none of these permissions to each of three classes
of people:

• To the owner of the file him/herself

• To members of a designated “group” established by the systems staff. Groups are generally set
up for people who will be working together on a project and need to share files among the group
members.

• To anyone else in the world.

These three classes are abbreviated “u”, “g”, and “o”, respectively. The “u” is for “user”, “g” for “group”,
and “o” is for “others”. Until you actually join a project that needs its own group, you will mainly be
concerned with “u” and “o” classes.

J I ➡ contents

The ls -l command will show the permissions granted to each class. For example, if you said

ls -l ˜/playing

you might see the response

-rwxrwx--- 1 zeil 311296 Jul 21 09:17 a.out
-rw-rw---- 1 zeil 82 Jul 21 09:12 hello.c
-rw-rw---- 1 zeil 92 Jul 21 09:13 hello.cpp
-rw-rw---- 1 zeil 85 Jul 20 15:27 hello.wc

Look at the pattern of hyphens and letters at the left. The first character will be a “d” if the file is a
directory, “-” if it is not. Obviously, none of these are directories. The next 3 positions indicate the
owner’s (u) permissions. By default, you get read and write permission for your own files, so each file
has an “r” and a “w”.a.out is an executable program, so the compiler makes sure that you get execute
(x) permission on it. The other files can’t be executed, so they get no “x”. This way the shell will not
even try to let you usehello.c or any of the other source code files as a program.

The next three character positions indicate the group permissions. In this case, the group permissions
are the same as the owner’s permissions. Knowing the group permissions isn’t very helpful, however,
unless you know to which group it refers. The commandls -g produces output similar tols -l but
lists the files’ groups instead of their owners. For example, if you said

ls -l ˜/playing

you might see the response

J I ➡ contents

-rwxrwx--- 1 student 311296 Jul 21 09:17 a.out
-rw-rw---- 1 student 82 Jul 21 09:12 hello.c
-rw-rw---- 1 student 92 Jul 21 09:13 hello.cpp
-rw-rw---- 1 student 85 Jul 20 15:27 hello.wc

Some typical groups are “wheel”, “faculty”, “gradstud”, and “student”. “Wheel” has no members, but
groups like “student” and “gradstud” have very broad membership, as their names imply. Although, as
we shall see, the files in this example do not give any privileges to the world (others), they can be read
and written by all students because of the group permissions.

The final three character positions indicate the permissions given to the world (others). Note that in
this case, people other than the owner or members of the same group cannot read, write, or execute any
of these files.

Directories also can get the samerwx permissions, though the meaning is slightly different. If you
have read permission on a directory, you can see the list of files in the directory vials or other com-
mands. If you have execute permission on a directory, then you can use that directory inside a file name
to get at the files it contains. So, if you have execute permission but not read permission on a directory,
you can use those files in the directory whose names you already know, but you cannot look to see what
other files are in there. If you have write permission on a directory, you can change the contents of that
directory (i.e., you can add or delete files).

2.5.2. chmod

Thechmod command changes the permissions on files. The general pattern is

J I ➡ contents

chmod class ±permissions files

Use “+” to add a permission, “- ” to remove it. For example,chmod o+x a.out gives everyone
permission to executea.out . chmod g-rwx hello.* denies members of your group permission
to do anything at all with the “hello” program source code files.

You can also add a-r option tochmod to make it “recursive” (i.e., when applied to any directories,
it also applies to all files in the directory (and if any of those are directories, to the files inside them, and
if. . .). For example, if I discovered that I really did not want the group to have permission to write or
execute my files iñ/playing , I could say:

chmod -r g-rx ˜/playing

2.5.3. Beware the umask!

Suppose you never use thechmod command. What would be the protection levels on any files you
created?

The answer depends upon the value ofumask. Look in your˜/.cshrc file for a command by that
name, and note the number that follows it. If you don’t have one, just give the command

umask

and note the number that it prints.
The umask number is a 3 digit (base 8) number. The first digit describes the default permissions for

the owner (you), the second digit describes the default permissions for the group,10 and the final digit
10Of course, if the number appears written using only 1 or 2 digits, the missing digits are simply leading zeros.

J I ➡ contents

describes the default permissions for others.
Each of these three numbers is, in turn, formed as a 3-digit binary number where the first digit is the

read permission, the second is the write permission, and the thrid digit is the execute permission. In each
binary digit, a 0 indicates that the permission is given, a 1 that the permission is denied.

So if my umask is027, that means that

• I (the owner) have000 — permission to read, write and execute my own files.

• The group to which a file belongs has010, permission to read, no permission to write, and permis-
sion to execute that file.

• The rest of the world has111, no permission to read, write or execute.

Of course, these permissions can be changed for individual files via thechmod command. The umask
only sets the default permissions for cases where you don’t saychmod.

If you want to change your default permissions, you do it via theumask command by giving it the
appropriate 3-digit octal number for the new default permissions. Some common forms are:

umask 022 Owner has all permissions. Everyone else can read and execute, but not write.

umask 077 Owner has all permissions. Everyone else is prohibited from reading, writing, or execut-
ing.

Since the point of theumask command is to establish the default behavior for all your files, this com-
mand is normally placed within your.cshrc file.

J I ➡ contents

2.5.4. Planning for Protection

At the very least, you will want to make sure that files that you are preparing to turn in for class assign-
ments are protected from prying eyes. You need to do a little bit of planning to prepare for this. There
are two plausible approaches:

• Use a stringent enough umask (e.g.,umask 077) so that everything is protected by default.

– The only disadvantage is that files that youwant to share (e.g., the files that make up your
personal Web page) must be explicitly made world-readable (chmod go+r files).

• Use a more relaxed umask (e.g.,umask 022) so that your files are readable by default, but estab-
lish certain directories in which you carry out all your private work and protect those directories so
that no one can access the files within them. For example, you might do

cd ˜
mkdir Assignments
chmod go-rwx Assignments

Now you can put anything you want inside˜/Assignments , including subdirectories for spe-
cific courses, specific projects, etc. Even if the files inside˜/Assignments are themselves un-
protected, other people will be unable to get into˜/Assignments to get at those files.

– The one disadvantage to this approach is that it calls for discipline on your part. If you forget,
and place your private files in another directory outside of˜/Assignments , then the relaxed
umask means that those files will be readable by everyone!

J I ➡ contents

2.6. Getting Help

As you explore Unix, you are bound to have questions. Some ways to get answers include:

• The entire Unix manual is on-line.

man command

displays the manual page for the given command.

man -k keyword

looks up the given keyword in an index and lists the commands that may be relevant.

• The CS Department systems staff has collected a variety of additional help documents. If you are
using X windows, you can access these via the command

netscape &

and then selecting “Unix & Labs”.

• A staff member is generally on duty in the public CS workstation room of the Norfolk campus
whenever that room is open.

• If none of the above help, then send e-mail to “root”. This is also how you report bugs, machine
failures, etc.

J I ➡ contents

3. Editing Text Files

An editor is a program that allows you to easily create and alter text files. There are a variety of editors
on the system, of which the most popular arevi andemacs. Neither is exactly the easiest thing in the
world to learn to use. I suggest learningemacs, because

• It offers a built-in tutorial to get you started.

• As you gain more facility withemacs and with Unix in general, you will find thatemacs of-
fers many advanced facilities for doing specific tasks. For example, I useemacs to compile my
programs, and to aid in debugging them.

• emacs is widely available (for free) for all Unix systems and also for MSDOS.

To run emacs, make sure that you have correctly identified your terminal kind (see Section 2.1).
Then give the command

emacs

Then follow the directions given to bring up the tutorial (i.e., type ˆ\ followed by “t”.).
When you are done with the tutorial, here are few extra things you should know aboutemacs:

• emacs offers a customized modes for different kinds of files that you might be editing. Some
of these are chosen automatically for you depending upon the file name you give. Others can be
chosen automatically by giving the commandM-x name-mode wherenameindicates the desired
mode. Some of the most popular modes are:text , pascal , c , andc++ . The programming

J I ➡ contents

language modes generally offer automatic indenting at the end of each line, though you may have
to end lines with the “Line feed” or “C-j” key rather than “Return” or “Enter” to get this.

• The commandM-/ is a special friend to all programmers who use long variable names but hate to
type them. Type a few letters of any word, then hitM-/ . emacs will search backwards through
what you have previously typed looking for a word beginning with those letters. When it finds one,
it fills in the remaining letters. If that wasn’t the word you wanted, just hitM-/ again andemacs
will search for a different word beginning with the same characters.

• Before starting up,emacs tries to read a filẽ/.emacs Many people store special commands in
there to customizeemacs to their own liking. (Reading the.emacs file of an experienceemacs
user can be instructive although, unfortunately, sometimes a bit intimidating. (Feel free to take a
look at mine: ˜zeil/.emacs

J I ➡ contents

4. X Windows

If you are working at theconsole, you can take advantage of theX windowing system. By runningX,
you can have several windows on the screen open at once, each devoted to a different task. For example,
you can be reading electronic mail in one window while a lengthy compilation is running in another.X
also allows the display of graphics and of a variety of fonts.

4.1. X Window Managers

X is a windowing system that can present a number of different appearances to the user. The appearance
and behaviors that you actually see is controlled by awindow manager, a program that is generally run
as part of theX start-up procedure.

The most common window manager in our Dept. is theCommon Desktop Environment. Most of our
workstations are set up to run this all the time, as soon as you log in. Help and tutorial information is
available by clicking on the picture of a set of books with a question mark in front, usually located near
the bottom right corner of the screen.

4.2. Running X

If, however, you log in at a console and find yourself staring at a simple command-line interface, try
giving the command

˜public/xdemo/demo

J I ➡ contents

to run an on-line tutorial of X under the default window manager for our environment, or give the
command

X

to runX “for real”.

4.3. Working in X

I will simply note a few important items, including some not described in the tutorials:

• One of the first things you will want to do is to get a working window where you can enter Unix
commands.

In the Common Desktop Environment, look for a window titled “Terminal”, or click on the toolbar’s
picture of a screen and keyboard to get a terminal window.

In other X window managers, try moving the mouse to an unoccupied portion of the screen and
holding down the right mouse button. You will probably get a menu that includes an option to open
a “terminal”, “xterm”, or “shell”. Select this to get a windo3w in which you can enter commands.
Click on the bar across the top of the window to select it before typing anything.

Click on the bar across the top of the window to select it, and you are ready to begin entering
commands.

J I ➡ contents

• Any time you enter commands in Unix, you can place an ampersand (“&”) at the end of the com-
mand to run that command in the background. This “disconnects” the command from your key-
board (in that window). You get a prompt immediately and can enter your next command even if
the one you just launched has not yet completed.

Now this capability is not all that useful if you’re not running X. After all, if the program you are
running needs input from you, it has been disconnected and can’t see your subsequent keystrokes.
Also, if that program produces output, it will still appear, but will be intermingled with the outputs
of any new commands you have entered in the meantime. So, if you’re not in X, the & is useful
only for commands and programs that need no additional inputs and produce no additional outputs.

Under X, however, many useful programs open their own windows and direct their inputs and out-
puts through those new windows. For example, you would enter “emacs &” rather than “emacs”,
and “netscape & ” rather than “netscape ”. Without the &, the window where you entered the
command to launch a program would be useless to you until that program has finished. With the &,
that program runs in its own window and the old window gets a new prompt and can still be used
to issue more commands.

• Most programs that run underX support a very simple “cut-and-paste” facility. Simply drag the
mouse across a block of text in any window while holding down the left mouse button. Then
position the mouse into a window where you would like that text to be “typed”. Click the middle
mouse button, and the selected text will be sent to that window just as if you had typed it yourself.

• Whenemacs is run underX, this cut-and-paste feature is supported, but in a different fashion. Text
that has been selected in another window by dragging the mouse can be retrieved inemacs by the

J I ➡ contents

command C-Y (ˆY). Text that has been “killed” inemacs by C-K, C-W, or M-W can be inserted
into other windows by clicking the middle mouse button.

J I ➡ contents

5. Customizing Your Unix Environment

By now, you are probably tired of typing “setenv term . . . ” and other initial commands each time
you log in. Now that you can edit files, one of the first things to do is to customize your login procedure.

The shell uses two important files to customize behavior. When the shell is started up, it executes the
commands in a file called̃/.cshrc Now, in a typical Unix session, you may actually be running many
copies of the shell at the same time, perhaps without even being aware of it. The first time, however,
that a shell is started because you have just logged in, it also executes the commands in a file called
˜/.login

You may or may not already have versions of these files.11 You can check by giving the command

ls -a ˜

If you don’t have either of these, you should make one. If you do, consider changing it as described
here.

First, let’s create a.login file. Enter emacs, and create a file with the following:

if ("$TERM" == "vt100" || "$TERM" == "network") then
set term=vt102

tset -Q
endif

11Note that because each of these filenames starts with a “.”, you won’t see these files with als command unless you use
the-a option.

J I ➡ contents

Instead of “vt102”, you should enter whatever terminal type you use most often. If you find that the
tset command has been necessary for you in the past, delete the # character. If you usually reset the
number of lines withstty , add that command as well. Now your terminal kind will be set automatically
for you whenever you dial in.

If you would like to automatically runX whenever you are working at the console, add the following
lines:

if ("‘tty‘" == "/dev/console") then
echo -n "Entering X windows (Control-C to interrupt)"
sleep 5
X

endif

Be sure to enter everything exactly as shown above, including the quotes. Note that" is the double-
quotation key, and that the‘ characters around the wordtty are the “backwards” apostrophe (You may
need to hunt around on your keyboard to find this one, but it willnotbe on the same key as the").

Now let’s add a few useful items to the.cshrc file. Edit your.cshrc file and insert the following:

setenv EDITOR emacs
limit coredumpsize 0
#
skip remaining setup if not an interactive shell
#
if ($?USER == 0 || $?prompt == 0) exit

J I ➡ contents

set history=40
set ignoreeof
set prompt="‘hostname‘: "
alias cp ’cp -i’
alias mv ’mv -i’
alias rm ’rm -i’
alias ls ’ls -F’
alias ff ’find . -name \!* -print’

Thesetenv line indicates thatemacs is your editor of choice. Some programs, including the e-mail
programs introduced in ‘Using Electronic Mail’ on page 41, will use this information to load an editor
when you have large amounts of text to enter/alter.

Of the remaining lines, the most interesting are thealias commands. These set up “abbreviations”
for commands. In this case, we are mainly adding options to familiar commands. The first three aliases
add a-i option to thecp , mv, andrm commands. This option causes each command to prompt for
a confirmation whenever its action would result in a file being deleted. The fourth alias adds the-F
option to allls commands, making it easier to tell the difference between ordinary files, directories, and
executable programs. The final alias sets up a “find-file” command,ff . This will search the current
directory and all subdirectories within it for a file matching a given pattern. For example the command
sequence

cd ˜
ff ’*.txt’

J I ➡ contents

will list all of your files with the.txt extension.
After you have checked these two files and saved them, you will have to log out and then log back in

again before they take effect.

J I ➡ contents

6. Using Electronic Mail

Electronic mail, or “e-mail”, for short, is an important part of the ODU CS environment. Besides being a
useful way to exchange personal messages, e-mail is used by the Department for official announcements.
Many instructors distribute grades by e-mail. They may send hints and corrections for projects and
assignments that way, or distribute special files needed by all students in the class. E-mail may be the
best way to pose a short question to your instructor outside of class, since you don’t actually need to
catch your instructor in person at a time when he/she’s not busy with someone else.

Of course, you may already have an e-mail account at work, with the University, or with your own
Internet Service Provider (ISP). If you prefer to receive all your mail at another account, see section 6.3
for instructions.

6.1. E-Mail addresses

Just as with physical mail, you can’t send someone e-mail unless you know their name and address. For
e-mail, the name and address are usually combined as

name@machine

wherenameis the login name of the recipient andmachineis the full name of the computer that processes
their mail. This combination is generally called the person’s “e-mail address”.

For example, my login name is “zeil”, and my mail is handled by the machine “cs.odu.edu”, so my
e-mail address iszeil@cs.odu.edu .

J I ➡ contents

Actually all e-mail for CS Dept. login accounts is handled bycs.odu.edu . When you are sending
mail to a user with the same mail handling machine, you can omit the “@” and everything that follows
it. So if you are logged in to a CS Dept machine and want to send me e-mail you could just send it to
zeil . But if you are logged in to a Teletechnet PC or a machine elsewhere on the Internet, you would
need to give the full form,zeil@cs.odu.edu .

6.2. E-Mail Programs

There are several programs that you can use to get e-mail, and people tend to become rather fanatical
about their personal favorite. The most basic of these is the Unixmail command, which also has the
advantage of being universally available on any Unix machine. Butmail is showing its age. New
standards (the Multipurpose Internet Mail Extensions or MIME for short) have evolved to allow people
to package files, graphics, sounds, etc., as part of an “extended” e-mail message. Themail command
predates these standards and so cannot handle MIME e-mail. Also,mail is not the easiest e-mail
program to learn.

I recommend thepine program for e-mail on our system. It is menu-driven, includes a substantial
built-in help system, and can process and send MIME mail. I do occasionally fall back on the basic
mail command, so I describe both of these in the following sections.

Later, you may want to check out the X-Windows mail tool, themush, or elm programs, or thevm
command for reading e-mail from within theemacs editor.

J I ➡ contents

PINE 3.90 MAIN MENU Folder: INBOX 22 Messages

? HELP - Get help using Pine

C COMPOSE MESSAGE - Compose and send/post a message

I FOLDER INDEX - View messages in current folder

L FOLDER LIST - Select a folder OR news group to view

A ADDRESS BOOK - Update address book

S SETUP - Configure or update Pine

Q QUIT - Exit the Pine program

Figure 1: Pine Main Menu

6.2.1. The PINE E-mail program

To runpine , make sure that you have correctly identified your terminal kind. Then give the command

pine

You should see a menu resembling Figure 1. If you get a garbled screen instead, you probably have
not set your terminal kind correctly.

The most important choices are “C” to compose a message and send it to someone, and “I” to view
an index of messages sent to you.

J I ➡ contents

To :
Cc :
Attchmnt:
Subject :
----- Message Text -----

ˆG Get Help ˆX Send ˆR Rich Hdr ˆY PrvPg/Top ˆK Cut Line ˆO Postpone
ˆC Cancel ˆD Del Char ˆJ Attach ˆV NxtPg/End ˆU UnDel LineˆT To AddrBk

Figure 2: Sending mail with Pine

Sending Messages Type “C” to compose a message to send to someone. You should see a screen
resembling Figure 2. One thing to note is the list of possible commands in the lower two lines of the
screen. In almost any context,pine will list the commands available to you, including a command to
get “help” information.

Use your up/down arrow keys to select the “To:” line at the top of the screen. Here you can enter the
e-mail address you want to send a message to. Just below that, on the “CC:” line, you can add the e-mail
addresses of any other people to whom you would like copies of your message sent. Two lines down is
the “Subject:” line. Although you are not required to put anything here, proper e-mail “etiquette” calls
for all messages to carry a useful entry in the “Subject:” line.

Finally, move the cursor below the “Message Text” line, and you can begin typing your message.
When you are done and are ready to send your message, type ˆX to send it.

J I ➡ contents

A common variation on this procedure is when you need to send someone a copy of a file as part
of your message. For example, if you are sending your instructor a question about some code you are
writing, you might want to include the code in question as part of the message. Pine provides two ways
to do this. The easiest is to go up to the “Attchmnt:” line near the top of the screen. Any file names
you type on this line will be “attached” to the final message when it is sent (i.e., a copy is sent — your
original files will be untouched). Alternatively, while you are typing your message you can ˆR to insert
a file directly into the text of your message.

Some point to keep in mind when deciding which approach to use are:

Attachment:

• Recipient of message must be usingpine or some other MIME-capable mail program.

• Can be used to send non-text files (e.g., programs, graphics, etc) as well as standard text.

• Can send multiple files without confusion. File names are preserved as part of the attachment.

ˆR

• Recipient of message can use any mail program.

• Can only be used to send text files.

• File names are lost. If you try to include more than one file in a message, the boundaries
between the files are likely to be unclear to the reader.

J I ➡ contents

PINE 3.90 FOLDER INDEX Folder: INBOX Message 5 of 5

+ A 1 Nov 6 JohnDoe@elsewhere. (34,483) Looking for volunteers
+ 2 Nov 8 JohnDoe@elsewhere. (2,472) Still need volunteers

3 Nov 13 MaryJones@aol.com (4,310) Conference on Programming
4 Nov 20 Root (1,432) Re: your account
5 Nov 22 Professor Z (747) Overdue Homework

? Help M Main Menu P PrevMsg - PrevPage D Delete R Reply
O OTHER CMDS V [ViewMsg] N NextMsg Spc NextPage U Undelete F Forward

Figure 3: Reading mail with Pine

Receiving Messages From the main menu screen, type “I” to get a list of the messages in your system
“mail-box”. It will look something like Figure 3. The plus signs in front of some messages indicate that
you have already read them. The “A” in front of message 1 indicates that you have already sent an answer
to that message.

Using your up/down arrow keys, you can select any of these messages and then type “V” to view the
message.

While viewing messages, refer to the bottom two lines of your screen for the commands to page
up/down through long messages, to compose and send replies to a message, to “forward” a copy of the
message to someone else, or to return to the main menu (Figure 1).

If the message you are viewing is a MIME style message with attached files, another “V” command
will allow you to view these files (if they are text, graphics, etc) or to save them in a directory of your

J I ➡ contents

choice. Also, the “E” (Export) command will allow you to save the text of the current message in a file
even if it is not a MIME message.

Folders After you have read some messages and try to exit frompine , pine will ask if you wish it
to move your read messages out of your system mail-box (called the “INBOX”) into a “read-messages
folder”. A folder is simply a container that can hold mail messages.Pine treats your system mail-box
as simply a special form of folder. To see a list of your folders and to select one in which you want to
view messages, use the “L” command from thepine main menu.

Moving read messages out of your system mail-box into another folder is often a good idea. It eases
strain on the system resource area used for incoming e-mail. It means that when you enterpine and
immediately hit the “I” key, you see your new mail right way instead of having it mixed in with old
stuff. Finally, you can organize your saved mail by creating your own folders to save messages in. For
example, you might have a folder for each class you are taking, to keep e-mail about different classes in
separate containers. You can create new folders from inside the “L” command. To move a mail message
that you are viewing into a folder, use the “S” save command.

6.2.2. The Unix mail command

Sending To send mail to someone with e-mail addressaddr, give the command

mail addr

For example, you could send me mail via the command

J I ➡ contents

mail zeil@cs.odu.edu

Although, if you are logged in to a CS Dept machine and want to send me e-mail you could just say

mail zeil

After you have given themail command, you will be prompted for a subject line to indicate what
your message is about. After that, you begin typing your message on the next line. When you are done,
type ˆD on a line by itself. You will then be prompted with “Cc: ”, which allows you to add the login
names of other people to whom you would like to send a copy of your message. (Many people like to
make a habit of cc’ing a copy to themselves.) If you do not want to send any extra copies, just hit the
“Return” key. Your message will then be sent.

As you type your message, you can send special instructions to the mail program by entering any of
the following at the start of a line:

˜e Enter the editor named by the EDITOR environment variable (see Section 5). This is a good way to
correct mistakes made on previous lines.

˜r filename Insert the contents of a file into your mail message.

˜p Print the message as it appears so far.

˜m # If you are actually replying to a mail message that you received (see Receiving, below), this inserts
the text of mail message number# into your reply.

J I ➡ contents

Receiving When you first log in, you will be informed if you have received e-mail. At that time, or
anytime thereafter, you can use thefrm command to list the messages awaiting.

To actually read your mail, give the commandmail with no arguments. You should see a numbered
list of your messages. If not, the command “h” (for headers) will list them. You can then read a message
by typing it’s number.12

After reading the message, you can take any of several actions:

r Send areply to the author of the message you just read.

R Send areply to the author of the message you just read and to anyone in the Cc: list of that first
message.

dp Delete this message and move on to the next (if any).

n Move on to the next message.

s filename Save a copy of this message in the specified file. If the file already exists, the message is
added to the end.

12If you have no messages at the moment but would like to practice reading mail, try following the instructions under
Section 6.2.2 to send yourself a couple of messages. Then just wait a few minutes untilfrm indicates that your messages
have arrived.

J I ➡ contents

6.3. Forwarding Addresses

If you prefer to read your e-mail on a different system, you can easily tell the Unix mailing system to
forward all mail sent to your Unix e-mail address to a different address.

You will want to create, in your home directory (i.e.,cd ˜) a file named “.forward ”. The contents
of this file should be a single line of text containing your preferred e-mail address.

You can create this file using your favorite text editor, or you can simply use the Unixecho com-
mand to write the desired text into the file. For example, if you wanted all your e-mail to be sent to
bogus@megacorp.com , you would do the following

cd ˜
echo "bogus@megacorp.com" > .forward
cat .forward

The finalcat command should show the contents of the.forward file to be your desired address.
(Note: Unix files that start with a “.” are invisible to the normalls command. To see them in a directory
listing, you have to add the-a option: ls -a .)

Now, test it out! If you have a bad e-mail address in your.forward file, you could lose
messages. So send yourself mail (to your ODU CS account). It should appear, in due course, at your
preferred e-mail address. How long it actually takes depends on many factors. It may take only a few
minutes. If after a few hours, you have not received the e-mail, delete your.forward file. Try again,
if you wish. Or you might try on another day just in case the CS Dept. mail server, or the one at your
preferred site, was temporarily out of commission. If you have repeated problems getting mail forwarded

J I ➡ contents

quickly, you might want to rethink your desire to use this feature. For most people, this procedure works
without much trouble.

You can actually have more than one forwarding address. The.forward file can contain a comma-
separated list of forwarding addresses. For example, you might use

bogus@megacorp.com, bogus@home.net

Some people like to keep a backup copy of their mail on the CS Dept system, but to get their ”normal”
mail somewhere else (e.g., because their mail server at work is crash-prone). This is possible, by making
your e-mail address on the CS Dept. system one of the forwarding addresses, so that you forward a copy
right back to yourself:

\yourLoginName, bogus@megacorp.com

The backslash is required: it helps prevent the mailer from consulting your.forward file a second
time (which would lead to an infinite cycle of mail forwarding).

J I ➡ contents

7. File Transfer

If you prepare files on one machine but want to use them on another, you need some means of transferring
them. For example, if you edit files on your home PC or on a PC at one of the Teletechnet sites, you will
eventually need to get those files onto the CS Department network. On the other hand, you may want to
take files your instructor has provided off of that network for use on your home PC.

Exactly how you do this depends upon your usual access to the CS network. You may need to try
several approaches until you find one that works well for you.

7.1. Text versus Binary Transfers

A further complicating factor is that you must decide whether the files you want to transfer should be
treated as “text” of as “binary”. Files that contain simple text, including program source code, should
be transferred in “text” mode. Compiled programs, compressed files (e.g., *.zip or *.Z files), and word
processor files with embedded formatting codes are generally transferred in “binary” mode.

The reason for this binary/text confusion is that Unix, MSDOS, IBM, and other systems disagree
on how to represent basic text. For example, the end of a line in a Unix text file is represented by
a single character (the ˆJ or “line-feed” character) while MSDOS uses a pair of characters at the end
of each line (a ˆM or “return” character followed by a ˆJ). Other operating systems have their own
peculiarities. Most file transfer programs will, when transferring text, try to convert the transferred
file into the appropriate format for the destination machine. These conversions may involve changing,
adding, or deleting characters. Of course, if the file being transferred were not text but a compiled

J I ➡ contents

program, any such changes to individual bytes would be disastrous. Consequently, you need to be aware
at all times whether the files you are working with are text or binary.

The easiest way to tell (though not foolproof) is to try listing the file on your screen using the Unix
“cat” command or the MSDOStypecommand. If it looks OK, its probably text. If not, or if in doubt,
transfer it in binary mode.

7.2. Transferring Files

7.2.1. At the console:

If you have physical access to the CS workstations, either on the Norfolk campus or at the Peninsula
Graduate Center, you may be able to transfer your files via 3.5” floppies. The floppies must have been
previously formatted on an IBM PC compatible machine, for either 720k or 1.44M capacity.

Look for a workstation with a floppy disk drive (not all have them). Insert the disk into the drive, and
typevolcheck to notify the workstation that a disk has been inserted.

You can now access the floppy disk as the Unix directory/floppy/floppy0/ , just as you would
any Unix directory. You canls to see the contents,cp andmvfiles to and from the disk, etc.

When you are done, typeeject and the workstation will eject your disk from its drive.
There are, however, just a few cautions to keep in mind:

• The Unix commands manipulate the files in binary mode. So your text files may wind up with the
wrong form of line terminators unless you usedos2unix andunix2dos .

J I ➡ contents

• The files on the disk will be known via their “short” MSDOS file names. If you have gotten used
to the long filenames of Windows 95/NT, you will need to remember that all filenames will be
truncated to “8.3 form”. For example, the command

cp -t longfilename.tar.gz /floppy/floppy

will actually result in a filelongfile.gz appearing on the disk.

7.2.2. Internet:

If you are on a machine that has an Internet connection, you can transfer files to other such machines
using theftp program. This would be the means of choice, for example, for exchanging files between
the laboratories at the Peninsula Graduate Center and the main Norfolk campus.

All ftp file transfers to the ODU CS Dept. network go through a single machine:ftp.cs.odu.edu .
As with all internet client programs, the way you actually launch and run the client is determined by

the particular software you run on your Internet Service Provider. You might, for example, just need to
click on an “ftp” icon and then enter the machine name (ftp.cs.odu.edu).

If you are already logged in on a Unix system, give the command

ftp ftp.cs.odu.edu

Teletechnet students can useftp from the Teletechnet PC’s by selecting “Mainframe & TCPIP Ac-
cess” from the main menu, then “FTP to another host”. When prompted for a “hostname/IP address”,
respond with “ftp.cs.odu.edu ”.

J I ➡ contents

You will then be prompted for your login name and your password. Enter those as usual.13

What follows thereafter depends upon your particularftp program. The detailed instructions below
are correct for the Unix ftp and for the ftp program used by the Teletechnet PC’s. For others, the steps
are much the same, but the exact commands may differ.

Your next command should be

hash

This simply increases the amount of feedback you get about the progress made during file transfers.
Before actually transferring files, you must decide whether to use binary or text file transfer. If you

want binary transfers, give the command

binary

and if you want text transfers, give the command

ascii

13Some classes may provide materials in the “anonymous” area, especially early in the semester when not everyone has
their login names and passwords yet. To enter this area, use the login name “anonymous” and for a password give your e-mail
address. If you don’t have a login name yet, and therefore have no e-mail address, just enter your last name followed by
“@cs.odu.edu”.

J I ➡ contents

You can switch back and forth between these modes as necessary if you are transferring multiple files,
some text and some binary.

Now you can use the commandscd , pwd, andls to navigate the Unix directory structure as if you
were in the shell. To get a file from the CS Unix machine to your local machine, the command is

get filename

To put a file form your local machine onto the CS Unix machine, the command is

put filename

Neither theget nor put commands can include wildcards in the filename, but by changing the com-
mands tomget andmput , you are allowed to use wild cards.

To end yourftp session, the command is

quit

7.3. Problems and Inconsistencies

If you don’t know whether to use binary or text transfer mode, try binary first.
If, however, you have transferred files to a Unix system and discover them to be full of ˆM characters

(you can see this by viewing the file inemacs), this is a sign that you should have used text mode. You
can still recover, however, by using the commanddos2unix :

dos2unix file 1 file 2

J I ➡ contents

to produce a new filefile2 from file1 by converting the line ends to the Unix format.
On the other hand, if you have transferred files from a Unix system and find that the received files

appear to consist of a single, extremely long line, you can use the commandunix2dos :

unix2dos file 1 file 2

to get a new filefile2 with ˆMˆJ line terminators that can be transferred to your non-Unix machine instead
of the originalfile1.

Finally please note that, although easily transferred files may allow you to do most of the work of a
programming assignment on your home PC, do not fall into the trap of believing that you can simply
transfer the source code and submit it unchanged to your instructor for grading on the Unix system.
Different compilers for the same language often allow a variety of non-standard language extensions (or
because of bugs, fail to properly compile standard language constructs). Allow yourself ample time (at
least a few days) to port your code from one compiler to another.

J I ➡ contents

8. Using the Internet

If you have an account on the CS Dept. network, then you have access to the Internet through that
account. Of course, if you connected to the CS Dept. via the Internet, you obviously have access to
it already! But even if you are logged in at a console or via a terminal, you can use the most popular
Internet tools.

Console: You can open a terminal session on another machine anywhere on the Internet via telnet (be-
low). Note, however, that you can more easily log into other machines within the CS Dept network
usingrlogin (See Section 9).

You can transfer files to or from another machine anywhere on the Internet via ftp.

Finally, you can “surf” the World Wide Web using thenetscape command (if you are running X
windows). For example, try

netscape http://www.cs.odu.edu &

to see the CS Dept home page. Or look at

netscape http://www.cs.odu.edu/˜zeil/zeil.html &

for information about me.

Terminal: You can open a terminal session on another machine anywhere on the Internet via telnet.
Note, however, that you can more easily log into other machines within the CS Dept network using
rlogin (See Section 9).

J I ➡ contents

You can transfer files to or from another machine anywhere on the Internet via ftp.

J I ➡ contents

9. Compilers

9.1. Compiling in the Shell

Now that you know how to create and edit files, you can generate new programs. The most commonly
used languages in the CS Department at the moment are C++ and C. The most popular C++ and C
compilers areg++ andgcc .14

The simplest case for each compiler involves compiling a single-file program (or a program in which
all files are combined by#include statements). For example, use emacs to prepare the following files:

hello.cc
i n c l u d e < i o s t r e a m . h>
i n t main ()
{

cou t << ” He l l o from C++ ! ” << end l ;
r e t u r n 0 ;

}

14Actually, gcc andg++ are the same compiler being invoked with slightly different options.

J I ➡ contents

hello.c
i n c l u d e < s t d i o . h>
i n t main ()
{

p r i n t f (” He l l o from C!\ n ”) ;
r e t u r n 0 ;

}
To compile and run these, the commands are:

g++ -g hello.cpp
a.out
gcc -g hello.c
a.out

The compiler generates an executable program calleda.out . If you don’t like that name, you can use
themvcommand to rename it. Alternatively, use a-o option to specify the name you would like for the
compiled program:

g++ -g -o hello1 hello.cpp
hello1
gcc -g -o hello2 hello.c
hello2

When you have a program consisting of multiple files to be compiled separately, add a-c option

J I ➡ contents

to each compilation. This will cause the compiler to generate a.o file instead of an executable. Then
invoke the compiler on all the.o files together without the-c to produce an executable:

g++ -g -c file1.cpp
g++ -g -c file2.cpp
g++ -g -c file3.cpp
g++ -g -o programName file1.o file2.o file3.o

(Depending upon what else is in the same directory, the last command can often be abbreviated to “g++
-o programName -g *.o ”.) The same procedure works for thegcc compiler as well.

Actually, you don’t have to type separate compilation commands for each file. You can do the whole
thing in one step:

g++ -g -o programName file1.cpp file2.cpp file3.cpp

But the step-by-step procedure is a good habit to get into. As you begin debugging your code, you are
likely to make changes to only one file at a time. If, for example, you find and fix a bug infile2.cpp ,
you need to only recompile that file and relink:

g++ -g -c file2.cpp
g++ -g -o programName file1.o file2.o file3.o

An even better way to manage multiple source files is to use themake command.
Another useful option in these compilers is-D . If you add an option-D name=value , then all

occurrences of the identifiernamein the program will be replaced byvalue. This can be useful as a way

J I ➡ contents

of customizing programs without editing them. If you use this option without a value,-D name, then the
compiler still notes thatnamehas been “defined”. This is useful in conjunction with compiler directive
#ifdef , which causes certain code to be compiled only if a particular name is defined. For example,
many programmers will insert debugging output into their code this way:

...
x = f(x, y, z);
#ifdef DEBUG

cout << "the value of X is: " << x << endl;
#endif
y = g(z,x);
...

The output statement in this code will be ignored by the compiler unless the option-DDEBUGis included
in the command line when the compiler is run.15

Sometimes your program may need functions from a previously-compiled library. For example, the
sqrt and other mathmatical functions are kept in the “m” library (the filename is actuallylibm.a). To

15Zeil’s 1st Rule of Debugging: Never remove debugging output. Just make it conditional. If you remove it, you’re bound
to want it again later.

Zeil’s 2nd Rule of Debugging: Never leave your debugging code active when you submit your programs for grading. If the
grader is using an automatic program to check the correctness of the output, unexpected output will make your program fail
the tests. On the other hand, if the grader is reading the output to check its correctness, wading through extra output really
ticks the grader off!

J I ➡ contents

add functions from this library to your program, you would use the “-lm ” option. (The “m” in “-lm ” is
the library name.) This is a linkage option, so it goes at the end of the command:

g++ -g -c file1.cpp
g++ -g -c file2.cpp
g++ -g -c file3.cpp
g++ -g -o programName file1.o file2.o file3.o -lm

The general form of gcc/g++ commands is

g++ compilation-options files linkage-options

By default, gcc and g++ produce simple text applications — applications designed to run from within
a shell (bash). They can, however, produce GUI applications with windows, menus, etc., by using-l
to link in the windowing libraries.

Programming windowing code is a fairly involved process. I suggest getting a library that simpli-
fies this process for beginners. The V library is a good choice, and has the additional advantage that
code written for use with V can be compiled to produce either Microsoft Windows or Unix X windows
programs.

Here is a summary of the most commonly used options for gcc/g++:

J I ➡ contents

Compilation Flags
-c compile only, do not link
-o filename Usefilenameas the name of the compiled program
-Dsymbol=value Definesymbolduring compilation.
-g Include debugging information in compiled code

(required if you want to be able to run the debug-
ger.

-O Optimize the compiled code (produces smaller,
faster programs but takes longer to compile)

-I directory Add directory to the list of places searched when a
“system” include (#include <...>) is encoun-
tered.

Linkage Flags
-L directory Add directory to the list of places searched for pre-

compiled libraries.
-llibname Link with the precompiled librarylib libname.a

9.2. Compiling in emacs

When your programs contain mistakes, compiling them in the shell can result in large numbers of error
messages scrolling by faster than you can read them. For this reason, I find it best to compile from within
theemacs editor.

J I ➡ contents

Get intoemacs and call up one of the “hello” programs. Change it so that it contains one or more
syntax errors, and save this file. Now give theemacs command:M-x compile . At the bottom of the
screen, you will be asked for the compile command. If the suggested command is not what you want (it
won’t be, the first time you compile), then type in the proper command just as if you were typing it into
the shell.emacs will invoke the compiler, showing it’s output in a window.

In this case, there should be one or more error messages. Theemacs commandC-x ‘ will move
you to the source code location of the first error. Each subsequent use ofC-x ‘ will move you to the
next error location in turn, until all the reported error messages have been dealt with.16

9.3. Debugging

In the compilation commands given above, the-g option causes the compiler to emit information useful
for a run-time debugger. The debugger of choice with these compilers is calledgdb . The easiest way to
rungdb is, again, from insideemacs.

Try creating a longer program in the language of your choice, and compile it to produce an executable
programa.out . From withinemacs, look at one of the source code files for that program and then
give the commandM-x gdb .

At the prompt “Run gdb like this: ”, type the program namea.out . emacs will then launch
gdb , and eventually you will get the prompt “(gdb) ” in a window. You can now controlgdb by typing
commands into thegdb window. The most important commands are:

16Note carefully that the second character in theC-x ‘ command is the “backwards” apostrophe, not the regular one.

J I ➡ contents

set args . . . If your program expects arguments on its command lane when it is invoked from the shell,
list those arguments in this command before running the program.17.

break function Sets a breakpoint at the entry to the named function (i.e., indicates that you want execu-
tion to pause upon entry to that function).

run Starts the program running.

c Continues execution after it has been paused at a breakpoint.

n Executes thenext statement, then pauses execution. If that statement is a function/procedure call, the
entire call is performed before pausing.

You can also do this by giving theemacs commandC-C C-N.

s Like n, executes the next statement, but if that statement is a function procedure call, this commands
steps into the body of the function/procedure and pauses there.

You can also do this by giving theemacs commandC-C C-S .

p expressionPrints the value ofexpression, which may include any variables that are visible at the
current execution location.

quit Ends yourgdb session.
17These may include redirection of the input and output

J I ➡ contents

In addition to the above, theemacs commandC-C < moves your view of the code up the call stack,
allowing you to see the caller of the current procedure/function. The commandC-C > moves you back
down. If you change to a window containing the source code and give the commandC-X space , a
breakpoint will be set at the line of code where the cursor is positioned.

J I ➡ contents

10. More Shell Games

10.1. Redirection and Pipes

One of the interesting ideas that pervades Unix is that many, if not most, programs can be viewed as
“filters” or “transforms” that take a stream of text as input and produce an altered stream of text as
output. Many Unix commands are designed to perform relatively trivial tasks, perhaps not very useful
by themselves, that can be chained together in interesting and useful ways.

The practical consequence of this is that Unix shells devote special attention to astandard inputstream
that forms the main input to most programs/commands, and to astandard outputstream that forms the
main output from most programs/commands.18 The shell attempts to make it easy either toredirectone
of these standard streams to a file or topipethe standard output stream of one program into the standard
input of another.

For example, the programwc (for word count) reads text from its input stream and produces as its
output stream three number indicating the number of lines, words, and characters that it saw. You could
invoke this directly:

wc
Hello.
How are you?
ˆD

18There is actually a second output stream supported by many programs, thestandard errorstream, used for writing
error/debugging messages.

J I ➡ contents

in which case, you would see as output:

2 4 20

For this to be very useful, however, we need to make it accept a file as input. This is done by using the
< operator in the shell. Think of the< as an arrow indicating data flowing towards the command from a
filename:

wc < hello.c

wherehello.c is the file from Section 9.1, produces the output

6 13 80

On the output end, the shell operator> directs the standard output into a file (again, think of this as
an arrow indicating data flowing into a filename from the command):

wc < hello.p > hello.wc

produces no output on the screen, but creates a file calledhello.wc . That file will contain the output

6 13 80

of thewc command.
The output redirection operator has a couple of important variants. First, the shell generally does not

allow you to redirect into an existing file. If you give the command

wc < hello.c > hello.wc

J I ➡ contents

a second time, the shell will refuse to perform the command. You can force the shell to delete an existing
file and create a new one for redirection by changing the> to >! .

Second, sometimes we would like to add output to the end of an existing file instead of replacing that
file. This is done with the operator>>. So the code sequence

wc < hello.c >! hello.wc
wc < hello.c >> hello.wc

would result in a filehello.wc with contents

6 13 80
6 13 80

regardless of whetherhello.wc had existed previously.
To pipe the output of one command into the input of another, use the shell operator| . A common

example of a pipe is to take a command that may have a large amount of output and to pipe it through
more to facilitate viewing. For example, try

ls /bin | more

As you gain facility with a greater variety of Unix text manipulation commands, you will find that
redirection and pipes can be a powerful combination. For example, suppose that you have written pro-
grammyprog that emits a great deal of output, among which might be some error messages starting
with the phrase “ERROR:”. If you wanted to read only the error messages, you could, of course, just
view all the output, watching for the occasional error message:

J I ➡ contents

myprog | more

But if the program produces a lot of output, this will quickly become tedious. However, the program
grep searches its input stream for a given character string,19 emitting at its output only the lines con-
taining that string. By piping throughgrep , we can limit the output to the part we really want to see:

myprog | grep "ERROR:" | more

10.2. Scripts

You can put any sequence of Unix commands into a file and turn that file into a command. Such a file
is called ascript. For example, suppose that you are working on a programmyprog and have several
files of test data that you run through it each time you make a change. Create a filedotest1 with the
following lines:

myprog < test1.dat > test1.dat.out
myprog < test2.dat > test2.dat.out
myprog < test3.dat > test3.dat.out
myprog < test4.dat > test4.dat.out
myprog < test5.dat > test5.dat.out

Now, you can’t executedotest1 , because you don’t have execute permission. (Dols -l dotest1
to see this.) So use thechmod command to add execute permission:

19Actually, grep is far more powerful, enabling you to search for strings matching elaborate patterns.

J I ➡ contents

chmod u+x dotest1

Now you can executedotest1 by simply typing

dotest1

Most shells provide special facilities for use in scripts. Since these differ from one shell to another, it’s
a good idea to tell Unix which shell to use when running the script. You do this by placing the command
#!/bin/csh in the first line of the script.20

One such special feature is the use of the symbol$k to stand for thekth argument given to the script.
For example, suppose that we wanted the ability to use a different set of test files each time we used the
test script. One approach would be to create a scriptdotest2 , as follows:

#!/bin/csh
myprog < $1 > $1.out
myprog < $2 > $2.out
myprog < $3 > $3.out
myprog < $4 > $4.out
myprog < $5 > $5.out

After the appropriatechmod, this could then be invoked as

dotest2 test1.dat test2.dat test3.dat test4.dat test5.dat
20In fact, you can list any program there, not just/bin/csh , and Unix will use that program to process the remainder of

the lines in the script.

J I ➡ contents

or with any other five test files. Of course, if we want to test with only four files, or with six files, we’re
out of luck. It would be nicer if we could have the script loop through as many files as we list on the
command line each time we run it. Such a script begins to sound more like a program, and in fact most
shells provide loops, if’s, and other programming language-like statements. Here, for example, is the
scriptdotest3 that will process each argument in turn, however many there are:

#!/bin/csh
foreach file ($*)

myprog < $file > $file.out
end

Here we use another special feature, the use of$ to indicate that we want to retrieve a value from a
variable, in this case the variablefile which is assigned by theforeach loop. Also, we use$* ,
which denotes the entire list of arguments given to the script.

After the appropriatechmod, this script could then be invoked as

dotest3 test1.dat test2.dat test3.dat test4.dat test5.dat test6.dat

or perhaps as easily as

dotest3 test*.dat

Either way, theforeach statement will loop though all files named in the argument list, settingfile
to each file name in turn.

J I ➡ contents

11. Project Management with Make

When you begin to develop projects that involve multiple files that need to be compiled or otherwise
processed, keeping them all up-to-date can be a problem. Even more of a problem is passing them on to
someone else (e.g., your instructor) and expecting them to know what to do to build your project from
the source code.

The Unix programmake is designed to simplify such project management. In amakefile, you record
the steps necessary to build both the final file (e.g., your executable program) and each intermediate file
(e.g., the.o files produced by compiling a single source code file).

We say that a filefile1 depends upona second filefile2 if the file2 is used as input to some
command used to producefile1 .

When themake program is run, it then checks to be sure that all of the needed files exist, and that
each needed file has been updated more recently than all of the files it depends upon. The key bits of
information in a makefile, therefore are

• For each file, a list of other files it depends upon, and

• The command used to produce the dependent file from the files it depends upon.

A makefile may also include various macros/abbreviations designed to simplify the task of dealing with
many instances of the same commands or files.

Suppose that we are engaged in a project to produce 2 programs,progA andprogB . progA is pro-
duced by compiling filesutilities.c , progA1.cpp , andprogA2.cpp and linking together the
resulting.o files. ProgramprogB is produced by compiling fileutilities.c andprogB1.cpp

J I ➡ contents

and linking together the resulting.o files. All of the .c and.cpp files have#include statements for
a fileutilities.h . Also, both of the.cpp files have an#include statement for a fileprogA1.h .

Here is a makefile for this project. This file should reside in the project directory, and should be called
“Makefile ” or “ makefile ”.

J I ➡ contents

Macro definitions for "standard" language compilations
#
First, define special compilation flags. These may change when
we’re done testing and debugging.
FLAGS=-g -DDEBUG
#
The following is "boilerplate" to set up the stan-
dard compilation
commands:
.SUFFIXES:
.SUFFIXES: .cpp .c .cpp .h .o
.c.o: ; gcc $(FLAGS) -c $*.c
.cc.o: ; g++ $(FLAGS) -c $*.cc
.cpp.o: ; g++ $(FLAGS) -c $*.cpp
#
Targets:
#
progA: utilities.o progA1.o progA2.o

g++ $(FLAGS) utilities.o progA1.o progA2.o
mv a.out progA

progB: utilities.o progB1.o
g++ $(FLAGS) utilities.o progB1.o
mv a.out progB

utilities.o: utilities.c utilities.h

progA1.o: progA1.cpp utilities.h progA1.h

progA2.o: progA2.cpp utilities.h progA1.h

progB1.o: progB1.cpp

J I ➡ contents

In the “SUFFIXES” area, standard commands are defined for producing a.o file from a .c , .cc , or
.cpp file. Of course these standard commands simply invoke the C orC++ compilers.

The key information is in the area Labeled “Targets”. Each target begins with a single line containing
the name of the file to produce, a colon, and then a list of all files that serve as inputs to the commands
that produce the file. Following that are any number of command lines that give the Unix commands
to actually produce the file. Each command line starts with a “Tab” character (invisible in this listing).
Command lines are not needed if the standard commands form the “Suffixes” area can be used to build
the desired file.

Suppose that, with just thisMakefile and the various source code files in your directory, you
issued the commandmake progB . make reads theMakefile and notes thatprogB depends upon
utilities.o and progB1.o . Since neither of these files exists,make sets out to create them.
utilities.o depends uponutilities.c andutilities.h . Since these files exist and do not
themselves depend upon anything else,make will issue the command to createutilities.o from
them. This command is the “standard” command for making a.o file from a.c file:

gcc -g -DDEBUG -c utilities.c

Nextmake looks atprogB1.o . It depends uponprogB1.cpp which exists and does not depend upon
anything else. Somake uses the standard command forC++ files:

g++ -g -DDEBUG -c progB1.cpp

Now that both.o files have been created,make proceeds to build its main target,progB , using the
command lines provided for that purpose:

J I ➡ contents

g++ -g -DDEBUG utilities.o progB1.o

and theprogB program has been created.
Now suppose that we immediately give the command “make progA ” (or just “make”, since by

defaultmake builds the first target when none is explicitly given). Then the following commands would
be performed:

g++ -g -DDEBUG -c progA1.cpp
g++ -g -DDEBUG -c progA2.cpp
g++ -g -DDEBUG utilities.o progA1.o progA2.o
mv a.out progA

Note thatutilities.c is not recompiled, becausemake would notice thatutilities.o already
exists and was created more recently than the last time when eitherutilities.c or utilities.h
was changed.

Now, creating a makefile may seem like a lot of trouble the first time that you want to compile your
program. The payoff comes while you are testing and debugging, and find yourself making changes
to two or three files and then needing to recompile. Which files do you really need to recompile? It
can be hard to remember some times, and the errors resulting from an incorrect guess may be hard to
understand.make eliminates this problem (as well as just being easier to type than a whole series of
recompilation commands). (This is why, when you give theM-x compile command inemacs, the
default compilation command is “make” rather than a direct use of any particular compiler.)

If you want to test your makefile without actually performing the commands, add a-n option to your
command (e.g.,make -n progB) andmake will simply list the commands it would issue without

J I ➡ contents

actually doing any of them.
Most of the details of generating a makefile can be automated. Although the details are beyond

the scope of this tutorial, you can obtain my “self-constructing” Makefile. To use it, copy it into your
working directory where you keep the source code files for any single program. Your copy must be
named “Makefile”. Edit your copy of the file to supply the appropriate program name, list of source code
files needed for that program, and to indicate whether the final step (linking) should be done with theC
(gcc) or C++ (g++) compiler.

Now you can compile your program by sayingmake.
As you continue to work with your code, just remember to keep theOBJS list in the Makefile up to

date.

J I ➡ contents

12. Where to Go From Here?

We’ve only scratched the surface in this document. There are many more useful commands and programs
available on the CS Department Unix machines, and many of the commands that we have covered have
additional options that have not been mentioned here. Remember that you can use the Unixman com-
mand to call up documentation on any command. The appendix lists a number of additional commands
that you may want to check out as you become more familiar with Unix.

J I ➡ contents

A. Unix Command Summary

[] denotes options
{} denotes required argument
ˆ denotes control key (depress while typing listed letter).
. . . indicates that command has many options. Useman to learn about this command.

J I ➡ contents

awk . . . a pattern matching and text manipulation language.
bg puts process in background after ˆz
cal [month]{year} displays calendar for that month
cal displays calendar for current month
cat{filename} displays filename
cat [options]

-b number the lines, as -n, but omit
the line numbers from blank lines.

-n precede each line output with its
line number.

cd [directoryname] changes to directoryname, no argument
indicates home directory

cd .. changes to directory one above current
cp{file1} {file2} copy file1 naming it file2
mv {file1} {file2 or directoryname} move files or rename them
date displays date
diff {file1} {file2} compares two files, reporting any differences
echo repeats line; useful when using∗ and ?

in filenames
fg puts first command in background into

the foreground
grep{pattern} {filename} find pattern in filename
head -n Prints the firstn lines of its input,

ignoring the restJ I ➡ contents

kill [option] {process id #} stop a process
-9 kill no matter what: can be DANGEROUS

logout end session, must be in login shell
lpr {filename} send file to printer for printing
lprm {request} {userid} remove a file from the printer queue
lpq check status of printer and jobs
ls [options] list files

-l long form
-a all files, including .files
-g groups

mail see ”man mail” and /home/public/help
for more information

mush shell for mail, see ”man mush” for
more information

man [option]{command} display manual page for command
mesg{y or n} enable/disable messages to terminal
mkdir {directoryname} create a directory
more{filename} list filename one screen at a time
nroff,troff . . . text formatting programs
phones gives instructions for using modems
hours gives lab hours
ps show processes you are running
pwd print working directory
rm [option]{filename} remove files

-i interactive
-r recursive (use with caution)J I ➡ contents

rmdir {directoryname} remove directoryname
rwho who is on your current network
X X windows environment
openwin openwindows environment
sed . . . A non-interactive editor, useful for

writing scripts that involve string
replacements, line deletions, etc.

sort [options]{filename} sort filename
-b ignore spaces and tabs
-f sort upper- and lower-case together
-r reverse the sorting order
-o filename save the output of sort in filename
-t letter set field separator to letter
-u remove duplicate lines

spell{filename} check spelling of filename
tail -n Prints the lastn lines of its input,
tr Replaces/deletes characters

ignoring the rest
wc [options]{filename} count words, lines, and characters

-c characters only
-l number of lines only
-w number of words only

who who is running remote logins on your
machine

J I ➡ contents

write {user} write message to user, ˆd to
quit

yppasswd change password, follow prompts

? matches any single character in a
filename

∗ matches any number of characters in a
filename (or no characters)

& puts command in background when
appended to a command line

| pipe, connects output of one command
with input of another

> redirects output of a command to a
file, erasing current contents
of a file

>> appends output of a command to an
existing file

< uses the file as an input for a command
ˆc aborts process (useful when ”hung-up”)
ˆd stops a process or signals ”done”

on console, indicates logout

J I ➡ contents

B. Emacs Command Summary

EMACS command summary

J I ➡ contents

C. Linking to this Document

Instructors interested in linking directly to specific sections of this document may do so by appending
the appropriate anchor name to the URL of this documents (e.g.,

http://www.cs.odu.edu/˜zeil/unix/unix.pdf#loggingin)

The defined anchors are listed in the tables below.

Anchor Section Page Section Title
theBasics 2 4 The Basics
loggingin 2.1 4 Logging In
termtypes 2.1.4 9 Setting Your Terminal Type
xon 1 5 Other Unix/Linux Machines
telnet 5 7 Other machines
unixFiles 2.2 12 The Unix File System
shellgamesi 2.3 16 Shell Games: Typing Unix Commands
basicUnix 2.4 19 Some Basic Unix Commands
fileprot 2.5 24 File Protection
emacs 3 31 Editing Text Files
Xwin 4 33 X Windows
custom 5 37 Customizing Your Unix Environment

J I ➡ contents

http://www.cs.odu.edu/~zeil/unix/unix.pdf#loggingin

Anchor Section Page Section Title
mail 6 41 Using Electronic Mail
mailsend 6.2.2 47 Sending
forwarding 6.3 50 Forwarding Addresses
filetransfer 7 52 File Transfer
xfermode 7.1 52 Text versus Binary Transfers
ftp 7.2.2 54 Internet:
dostounix 7.3 56 Problems and Inconsistencies
unixtodos 7.3 57 Problems and Inconsistencies

Anchor Section Page Section Title
gccCompilation 9 60 Compilers
compshell 9.1 60 Compiling in the Shell
emacscompile 9.2 65 Compiling in emacs
debugging 9.3 66 Debugging
shellgamesii 10 69 More Shell Games
redirect 10.1 69 Redirection and Pipes
make 11 75 Project Management with Make
commands A 82 Unix Command Summary
linking C 88 Linking to this Document

J I ➡ contents

D. Navigating this Document

You should see a toolbar at the top of the document. The critical controls on this toolbar are:

I Moves you to the next page. You may also be able to do this with the “page down” key.

J Moves you to the previous page. You may also be able to do this with the “page up” key.

➡Moves you backwards through the most recently visited pages. (Use this to return to the title page, if
you clicked on a link to get there).

You’ll find these controls also duplicated at the bottom of each page. Also at the bottom of the page is
the “contents” button, which takes you to the table of contents, from which you can go directly to any

topic. A slightly different table of contents can be found by clicking on the toolbar’s button.
A final note is that if this document appears inside a web browser window, you may find it easier to

read if you go to a “full screen” mode. In Internet Explorer, hit the F11 key to toggle to and from this
mode. In Netscape, click on the small textured rectangles on the left of each toolbar.

J I ➡ contents

E. Table of Contents

1 Working on the CS Dept Network 2

2 The Basics 4
2.1 Logging In .4

2.1.1 Making a Connection .4
2.1.2 Logging In . 7
2.1.3 You’re logged in - What will you see? .7
2.1.4 Setting Your Terminal Type .9
2.1.5 Changing Your Password .10

2.2 The Unix File System .12
2.3 Shell Games: Typing Unix Commands .16
2.4 Some Basic Unix Commands .19
2.5 File Protection .24

2.5.1 Protections .24
2.5.2 chmod .26
2.5.3 Beware the umask! .27
2.5.4 Planning for Protection .29

2.6 Getting Help .30

J I ➡ contents

3 Editing Text Files 31

4 X Windows 33
4.1 X Window Managers .33
4.2 Running X .33
4.3 Working in X .34

5 Customizing Your Unix Environment 37

6 Using Electronic Mail 41
6.1 E-Mail addresses .41
6.2 E-Mail Programs .42

6.2.1 The PINE E-mail program .43
6.2.2 The Unix mail command .47

6.3 Forwarding Addresses .50

7 File Transfer 52
7.1 Text versus Binary Transfers .52
7.2 Transferring Files .53

7.2.1 At the console: .53
7.2.2 Internet: .54

7.3 Problems and Inconsistencies .56

J I ➡ contents

8 Using the Internet 58

9 Compilers 60
9.1 Compiling in the Shell .60
9.2 Compiling in emacs .65
9.3 Debugging .66

10 More Shell Games 69
10.1 Redirection and Pipes .69
10.2 Scripts .72

11 Project Management with Make 75

12 Where to Go From Here? 81

A Unix Command Summary 82

B Emacs Command Summary 87

C Linking to this Document 88

D Navigating this Document 90

J I ➡ contents

E Table of Contents 91

J I ➡ contents

	Working on the CS Dept Network
	The Basics
	Logging In
	Making a Connection
	Logging In
	You're logged in - What will you see?
	Setting Your Terminal Type
	Changing Your Password

	The Unix File System
	Shell Games: Typing Unix Commands
	Some Basic Unix Commands
	File Protection
	Protections
	chmod
	Beware the umask!
	Planning for Protection

	Getting Help

	Editing Text Files
	X Windows
	X Window Managers
	Running X
	Working in X

	Customizing Your Unix Environment
	Using Electronic Mail
	E-Mail addresses
	E-Mail Programs
	The PINE E-mail program
	The Unix mail command

	Forwarding Addresses

	File Transfer
	Text versus Binary Transfers
	Transferring Files
	At the console:
	Internet:

	Problems and Inconsistencies

	Using the Internet
	Compilers
	Compiling in the Shell
	Compiling in emacs
	Debugging

	More Shell Games
	Redirection and Pipes
	Scripts

	Project Management with Make
	Where to Go From Here?
	Unix Command Summary
	Emacs Command Summary
	Linking to this Document
	Navigating this Document
	Table of Contents

