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Abstract
The Internet and computer’s multimedia support have enabled geographically
distributed multimedia applications.  Today’s Internet best-effort services introduce
unavoidable uncertainties in the data transfer delay and create the need for
synchronization mechanisms that preserve the temporal relationship among streams.
We present algorithms for stream synchronization that are immune to moderate clock
drifting between sender and receivers and take into account the different time
constraints of each media. In our time model we include delays outside the computer
and network boundary, and we introduce the idea of virtual observer, which perceives
the session as being in the same room with a sender.  Specific media temporal
requirements are fulfilled through a number of policies for delay management and
special consideration is given to the time the algorithms take to reach steady state,
which is crucial in interactive applications.  We avoid the need for globally
synchronized clocks for media synchronization by introducing the concept of user’s
multimedia presence, which defines a new manner for combining streams coming
from multiple sites.  Finally, we implement and evaluate this framework with traces
collected from the Internet.

1 Introduction
Multimedia equipment of today’s computers and the Internet services have made possible the
development of multimedia applications and their use across continents.  These applications
include video, audio, and other types of components, such as tele-pointers, and shared tools.  The
principles of application level framing and integrated layer processing proposed by Clark and
Tennenhouse [3] and transport protocols such as Real Time Protocol (RTP) [12] have driven
modular designs where each media or logic component is delivered through an independent
stream.  Regardless of the transport layer employed, these streams have to be synchronously
played out or rendered at receiving sites in order to perceive a consistent and truthful view of the
scene and actions at the sender site.  The main objective of stream synchronization is to faithfully
reconstruct the temporal relationship between events. Stream synchronization can be subdivided
into intra-stream synchronization and inter-stream synchronization.  While the former refers to
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preserving temporal relationships of data within a stream, the latter deals with the temporal
dependencies across streams.

Multimedia application can be classified as off-line or on-line depending of whether
sender sites have access to the entire stream or just up to a point shortly before transmission.
While video on demand and multimedia library retrieval are examples of the former case,
applications that involve real-time human-to-human interactions1 are examples of the latter case.
Since interactive applications naturally ensure synchronicity at the sender, here stream
synchronization focuses on the reconstruction of the temporal relationship at receiving sites
without access to future references.

Time model defines the time references used by synchronization algorithms and the terms
involved in the synchronization conditions, which is the time condition that data units must
satisfy.  Normally it includes time references from the sender to the receiving machines.  We
extend it to include delays outside the reach of application, such as sound waive air propagation2.
Synchronization can be achieved by associating time to data units at senders and then preserving
the same time relationship at the receiving sites, but with a delay to absorb unavoidable delay
and jitter of the transmission path.  At receivers, data units are buffered and played out after a
fixed delay.  Even though sequence number and timestamp have been used to evaluate the
synchronization condition, the flexibility of timestamps for expressing a richer variety in media
semantics has made it the preferred approach for media synchronization.  Multimedia
applications can use a fixed a-priori transfer delay bound when the underlying transport
protocols provide it as quality of service, or they can measure the experienced delay on-line and
adapt to it in order to reduce delay while maintaining stream synchronization within humans’
perception.  We propose a generic adaptive timestamp-based algorithm that can be tailored to
meet synchronization constraints of each media.

Inter-media synchronization imposes requirements that extend the scope of a single
stream.  A common approach is to use a globally synchronized clock to relate streams coming
from multiple sites.  While some studies assume this condition as preexistent [6] [11], others
include mechanisms for clock differences estimation within their algorithms[2] [8].  We propose
a different session view model that does not require synchronized clock for combining multiple
streams.

The remainder of this paper is organized as follows.  We present our synchronization
model for intra- and inter-media synchronization in Section 2. In Section 3 we relax the
synchronization condition, and in Section 4 we propose delay management policies.  Sections 5
                                                
1 In this work interactivity refers to human-to-human interactions.
2 Note that 15-millisecond delay is added when a loudspeaker is located 5 [m] away.
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and 6 present our intra- and inter-stream synchronization algorithms respectively, and in Section
7 we illustrate their operation with Internet traces. Finally, we discuss related works in Section 8
and give our conclusions in Section 9.

2 Synchronization Model
Our synchronization model derives from our understanding of people’s perception of the world.
We are familiar with the patterns we have perceived since our childhood and any variation from
them brings our attention and sometimes annoys us.  For instance, we expect a relationship
between what we hear and what we see when someone is speaking. Although this is a subjective
matter, certainly a delay of a second between both is annoying.  On the other hand, everyone is
used to hear a thunder several seconds after seeing the lightning and the delay between the two
gives us an idea of how far the event was.  Thus, we introduce the idea of a virtual observer
placed in the scene to define the temporal relationship that should be preserved within and
between different streams triggered by the same events.

The case of multi-user multimedia sessions brings up interesting new issues when trying
to produce a session view for its participants.  Multimedia sessions combine scenes taking place
in geographically distributed sites and for which we have to propose a model for the integration
of participants’ presence.  The main difficulties each model tries to overcome are communication
delays between sites and their variations.  One proposed model attempts to simulate a “face-to-
face” encounter by synthesizing at each site a unique view for all session members (e.g. [5],
[11]).  Hereafter, we refer to this model as global synchronization model.  This is accomplished
by equalizing all session participants’ delays to the maximum delay observed among sites, so the
communication path appears to have given the same delay to all flows and they are synchronized
at their destination.  Two advantages of this approach are that every receiving member has the
same experience similar to that of being in a room with other receivers and that global ordering
is guaranteed.  The main drawback is the unavoidable worst case delay imposed on all receivers.
In fact, global synchronization places participants at equidistant positions, where the delay
between them is the worst case delay between any two sites.  We could think of the session
members as being at the vertexes of an equilateral triangle or a pyramid in the case of 3 and 4
participants respectively.  Another drawback of the global synchronization model is the need of
synchronized clock among session participants.

Another way to combine each participant’s presence in a session is to equalize to a
common delay only the flows produced or controlled by a participant.  In other words, the flows
produced or controlled by a member are presented in a synchronized fashion to the other session
members according to individual sender-receiver link delays.  We refer to this model as
differentiated synchronization model.  Differentiated synchronization attempts to meet all user
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synchronization expectations for the flows originated from or controlled by an end user, but it
does not concern of time relationships among participants.  We define the set of flows produced
or controlled by a participant to be the multimedia presence of that member in the session.

While the synchronization requirements of one’s multimedia presence are well defined
by the principle of virtual observer mentioned above, it is not clear to us what is the more natural
way to synchronously combine multiple multimedia presences based on what a human being
would expect.  Our differentiated synchronization model imposes a delay between two end users
that depends only on the quality of service (QoS) offered by their communication channels. As a
result, each user’s session view differs from that of others due to the distinct end-to-end latency.
The level of interactivity measured in terms of end-to-end delay is improved for a given
communication QoS.  This is in contrast to the global synchronization model where the protocol
adds extra delays equal to the view of the longest link’s delay.  A drawback of differentiated
synchronization, however, is the lack of global ordering, which could lead to unexpected race
conditions.  Our experience with the Internet indicates that this situation, although possible, is
unlikely.  Global synchronization equalizes all flows’ delays and prevents this type of
inconsistency.  An important advantage of differentiated synchronization is that it can be
accomplished without relying on globally synchronized clock.

2.1 Time and Delay Model

Time and delay model refers to the time components involved from the generation of the original
phenomena until their perceptions by human beings.  We distinguish four time components in
the end-to-end media delay as depicted in Fig. 1.  For most of the media, the original
phenomenon takes place at the same machine where the virtual observer captures the media
presence we wish to synchronize at the receivers’ sites. This is the case of audio and video
streams.  Other streams might be controlled remotely by a user and, therefore, do not originate at
the virtual observer’s site; yet they should be synchronized at the receiving sites, as they are
related flows and part of a user’s multimedia presence. For example, assume a session running a
centralized shared tool, such as XTV [1].  The floor holder operates the shared tool remotely and
after some delay sees the responses to her commands.  The virtual observer at the floor holder
machine relates the changes in the shared tool with the audio, video, and possible other streams
when the commands responses are displayed on the floor holder machine.  Thus, the shared tool
stream should be synchronized with any other locally generated flows, such as audio and video
streams.
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Fig. 1. Components of delay model

XTV illustrates a family of systems that implement a centralized architecture to
accomplish collaboration. In these systems, the time the media capture takes place is not relevant
for synchronization, but the time the virtual observer perceives the scene at the controlling user
site.  From now on, we will use just the word observer rather than virtual observer when no
confusion is possible.  We define:

ci: perception time; when the observer perceives the scene produced or captured by
packet i,
ti: time a timestamp is assigned to a packet i,
ai: arrival time of packet i at the synchronization module in the receiver,
qi: delivery time of packet i to be played out at the receiver, and
pi: time the end user perceives the result of media packet i.
We do not assume clock synchronization between any pair of machines, but we initially

assume that clocks do not drift.  In Section 3, we relax this condition in the case of intra-media
synchronization.  While ci and ti are times reported by the clock at the observer’s machine, ai, qi

and pi are times reported by the clock at the receiver’s machine.  Please notice that ti is not the
timestamp of the ith packet, but just the time at which it is assigned.  The value of the timestamp
is really ci since it is the time the scene was perceived by the observer and, therefore, the inter-
stream synchronization relationship the algorithm must preserve at the receiving sites.

The synchronization module sets the arrival time of a packet when the packet is handed
to it.  Even though it is not shown in Fig. 1, some processing might take place between the
arrival of a packet at a machine and its entry to the synchronization algorithm.  In fact, the more
indetermination moves before synchronization, the better the resulting playout is.  The ith data
unit leaves the equalization module at time pi.  This instant should be such that the playout of the
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data unit reproduces the same time relationships as that perceived by the observer some time ago.
In Fig. 1, we have also defined the following time intervals:

δδδδci = ti - ci timestamping delay of packet i,
δδδδti = ai - ti communication delay of packet i,
ξξξξi = qi - ai equalization delay of packet i, and
δδδδpi = pi - qi, playout delay of packet i.
Because of the lack of real-time support in general purpose operating systems and

communication channels, δδδδci cannot be determined precisely in most of the cases; however, it can
be well estimated most of the times by the application.  For example, δδδδci for an audio packet i of
m samples can be estimated by the time it takes for the audio device to capture m samples at the
sample rate specified by the application.  Although it is not the time the observer heard that
sample since the sound wave propagation and other computer related delays have not been taken
into account, it does capture the major portion of δδδδci.  The communication delay, δδδδti, is unknown
and variable, and it cannot be estimated with only one-way measurements, so our
synchronization algorithm does not rely on it but on preserving differences between scenes while
controlling the equalization delay average.  The equalization delay, ξξξξi, is the only component of
the end-to-end delay touched by the synchronization algorithm in order to recover the temporal
relationship within and across streams at playout time.  Finally, the playout delay, δδδδpi, must be
taken into consideration to accomplish both intra- and inter-stream synchronization since, in
general, the playout delay depends on the packet to be rendered.  In video, for example, a frame
with high spatial or temporal redundancy can be decoded much faster than frames with high
entropy, so ensuring synchronization at equalization delivery time is not enough because the
temporal relation might be destroyed during rendering.  Unfortunately, there is no way to
algorithmically determine the playout delay in the general case.  Assume the destination user
hears the audio coming out of a loudspeaker located somewhere in the room.  Although the
electronic delay of perhaps amplifiers and audio processing equipment might be negligible, the
propagation time of the sound wave in the air might reach tens of milliseconds for normal rooms.
As a result, we rely on playout delay estimates furnished by the application, perhaps from the
user interface, so that synchronization can be accomplished at end user perception. Our
experience indicates that playout delays do not change much from one data unit to another and
cause little problem for intra-stream synchronization, but they vary considerably from one media
to another making it essential for inter-stream synchronization.

2.2 Synchronization Condition

Based on the above time and delay model, we can now state the condition for preserving
temporal relationship of a user multimedia presence to a receiving end user.  We say that two
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concurrent or sequential events, i and j, are played out synchronously if and only if for two
systems with fixed clock offset:

jiji ppcc −=− (1)
While the two events belong to the same stream in intra-stream synchronization, they

pertain to different streams in inter-stream synchronization.  A stream is played out fully
synchronized if (1) holds for any pair of events.  In addition to synchronicity, total end-to-end
delay and buffer space are other two important measures.  The former impacts directly on the
reachable level of interactivity, and the latter defines a performance index of algorithms. By
making the end-to-end delay “big enough”, it is possible to achieve synchronization for any pair
of events at the price of buffer capacity.  This has been the principle behind algorithms that
accommodate a fixed delay for all packets [10].  By reducing the buffering capacity, we reach a
point where some packets arrive late and cannot be scheduled for playout while holding (1) with
their predecessor events.

An interesting property of equation (1) is that it does not depend on synchronized clocks.
The left and right sides represent the time between the two events as perceived by the virtual
observer and a receiving end user respectively.  As we have assumed that the two clocks might
only be offset by a constant amount and progress at the same rate, each difference is independent
of the clock offset and the network delay.

Theorem 1: The synchronization condition ( jiji ppcc −=− , ∀  events i and j), is

equivalent to ∆+= ii cp  where ∆ is a constant3.

Proof.
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3 Relaxing the Synchronization Condition
A number of adaptive algorithms that change the end-to-end delay as network conditions vary
have been proposed (e.g. [11], [4], [15], and [14]).  Obviously, this cannot be done without
relaxing the synchronization condition stated in Section 2.2.  At this point, it is important to take
into consideration the characteristics and the semantic of the multimedia streams to evaluate the
impact of such adaptation.

                                                
3 We call this constant virtual delay.
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Changes in the phase in which multimedia streams are played out have different impact
depending on the media.  In teleconferences, audio is characterized by having periods of audio
activity or talkspurts followed by periods of audio inactivity during which no audio packet are
generated.  In order to faithfully reconstruct speech at a receiving site, all the packets of a
talkspurt should be played out preserving the same time relationship at the generation time.
Even though this is nothing but our synchronization condition that in principle applies to all data
units, this condition is not that critical during periods of silence.  Silence periods can be slightly
shortened or prolonged with no major impact on the audio quality perceived by the end users.
On the other hand, silence periods in music -if any- have different semantic: their time
relationship should be treated the same as active periods.  Thus, for audio streams we propose
adjustments in the virtual delay during silence periods or after some timeout to account for
continuous audio streams.  Another important point on computer-played audio that differs from
other media is that audio applications only partially control the playout, as opposed to fully
controlled media playout such as video.  Due to its high frequency (up to 44 KHz for CD
quality), audio sample playout is actually done by hardware, so applications cannot increase the
rate at which packets are submitted to the audio device without increasing the device delay
latency.

Compared to audio stream, video streams present different playout semantic.  The end-to-
end delay can be adjusted by inserting artificial gaps or reducing inter-frame playout time
anywhere.  Packet discards can also be used to reduce delay but since it might have side effect,
we leave the developers to determine the policy to be utilized.  Video compression techniques
create inter-frame dependencies in order to remove temporal redundancy; thus, the elimination of
some video data may trigger a reduction of quality for a number of code-related frames.

In addition to video and audio streams, multimedia applications transport non-continuous
data events whose synchronization also enhances the overall session quality.  These include data
streams generated by tele-pointers, and whiteboards.  Compared to audio and video, the
synchronization condition can be relaxed further since it is much more difficult for the receiving
user to detect lack of synchronism.  On the other hand, we cannot neglect the time relationship
completely because data events convey an important component for users’ awareness4 and inter-
media semantic information needs to be presented in a coherent fashion. For example, tele-
pointer and audio relationship is established when the presenter relies on the tele-pointer to
complete an idea only partially expressed verbally. Finally, in contrast to ephemeral audio and
video states, most non-continuous media states form part of a user’s view for longer time; thus,
data unit discarding must be avoided in order to reach a more accurate view.
                                                
4 In this context, awareness is the ability to know or infer what the others are doing.
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4 Policies for Delay Adjustment and Late Packet
We consider three late packet policies to be chosen by developers: Late Packet Discard,
Resynchronization, and Late Delivery.  The first policy basically updates internal statistics and
dumps the packet.  Resynchronization is an increase in the virtual delay to make a packet meet
the delivery time with minimum equalization delay.  Late Delivery just hands late packets for
playing out with minimum equalization delay regardless of any loss of synchronization they
might cause.

In addition to late packet disciplines, we propose two policies for virtual delay reduction:
Early Delivery and Packet Discard.  Early Delivery policy reduces the virtual delay in at most
the time remaining for the oldest packet to be delivered. It works by reducing the scheduled time
of the oldest packet in the queue.  Packet Discard removes packets from the queue and
reschedules the remaining oldest in order to accommodate a given change in virtual delay.  For
enlarging virtual delays we propose Gap Insertion.

5 Adaptive Algorithm for Intra-stream Synchronization
The main objective of the intra-stream synchronization algorithm is to play out each packet at a
fixed virtual delay and, at the same time, to maintain the equalization delay “reasonably” low.
We aim for a delay such that the rate of late packets is below a given parameter.  The total
number of packets and the number of late packets are two monotonically increasing functions for
which we estimate and compare their rate of change using a linear filter.  Let L(n) be the
accumulated number of late packets after a total of n arrivals.  The proportion of late packets is
the instantaneous rate of change of L(n):

n
Ll

∂
∂= , Which can be estimated by: ))(1( 11 −− −−+= iiii LLll αα (2)

Where 11 <<− α  and 




=− − otherwise         0
late is ipacket  if          1

1ii LL

By comparing li against a threshold, we know whether to increase or decrease virtual
delay.  As mentioned before, the virtual delay is the result of sender and network related delays
plus equalization and playout delays.  Since playout delays cannot be determined in the general
case, hereafter we assume that the playout delay is constant (δp) for all data units pertaining to a
stream, and that it only varies from media to media.  Let the equalized delay, denoted by d, be
the total delay between the virtual observer’s perception and delivery times.

5.1 Basic Synchronization Algorithm

The basic synchronization algorithm gives good performance even in presence of clock drifting
and stabilizes in less than 5 seconds for normal audio streams. These two requirements came out
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of our observation of audio and video streams on the Internet and the need for short time to reach
steady state in interactive applications.  The objective of this algorithm is to compute an
equalized delay for all packets such that a given percentage of packets arriving late.

The algorithm listed in Fig. 2 uses two schemes to compute the equalized delay. In the
steady state, it uses a first order linear filter to estimate both the arrival delay average that
follows clock drifting and an offset that adjusts the equalized delay in an amount proportional to
the difference between the late packet rate estimated by (2) and a given value. The parameter α
determines how fast the algorithm responds to changes in the rate of late packets, β controls how
fast the delay average is followed, and the other parameter, κ, controls how fast the equalized
delay is adjusted to reach the given fraction of allowed late packets.

Initial condition:
    00 ca −=µ ;  5.0=il ;  0=σ ;  phase = FIRST;  0=ν ;
On packet arrival:
     timeperception sobserver' =ic ;
     time;localcurrent  =ia
    iii can −= ;
    if (phase == FIRST)
        )2/(1 νν −= ;
         if ( ii dn > ) /* Late packet */
              ( ) ;10.1 νν −+= ii ll
         else
              ;ii ll ν=
         ( ) inνµνµ −+= 1 ;
         ( ) µνσνσ −−+= in1 ;
         σµ 3+=id ;
          if ( βναν >∨> )
              µε −= id ;
               phase = SECOND;
    else
          if ( ii dn > ) /* Late packet */
                ( ) ;10.1 αα −+= ii ll
          else
                ;ii ll α=
          ( ) inβµβµ −+= 1 ;
          ( )RateLatePacketli −+= κεε ;
          εµ +=id ;

Fig. 2. Algorithm 1: Equalized delay estimate for a given late packet rate.

The initial seconds of a participant multimedia presence are of special interest in
interactive applications with multiple users.  We think that algorithm’s stabilization times of
more than 10 seconds are not acceptable for interactive sessions, especially for those with
potential short time interventions such as distance learning systems.  Thus, rather than using
fixed weights during the initial stabilization phase, we increase the weight of the history as it
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effectively conveys more information.  The second phase is reached when the history weight
reaches the values we have designed for the steady state; i.e. α or β.

During the first phase we use the packet delay mean and variation values, µ+3σ, as
equalized delay estimate, and no feedback is employed because in such a short time (around 5
seconds) there is not enough data points to accurately compute the rate of late packets. Yet, we
estimate li during this phase in order to have a good initial condition for the second phase.  The
values we use for α, 0.996, and β, 0.998, leads to a first phase of 250 data points long, equivalent
to 10 seconds for Trace 1, as shown in Fig. 6; nonetheless, a reasonable equalized delay value is
reached within one second.

So far, we have left out the computations upon packet delivery. In other words, it has
been stated what to do when a new packet arrives and is buffered for later delivery; however
nothing has been said on what is to be done when the packet is taken out of the equalization
buffer for playout.  While the former processing is applicable to any media stream, the latter is
media dependent.  Moreover, differences in media semantics suggest that the equalized time
computed by our algorithms so far can only be used as a reference, and the actual virtual delay
can only be adjusted taking into consideration the semantic of each media.

5.2 Audio Intra-stream Synchronization

The options for reducing audio virtual delay are silence period reduction and packet discard.  On
the other hand, the insertion of additional time during silence periods is a simple mechanism for
increasing virtual delay.  Thus, detection of discontinuities in audio streams due to silence
periods is crucial for delay adjustments. Our technique is based on inter-packet generation time,
which must be known by the application.

Packet discard is the only option in face of no audio pauses. For example, One of our
traces from NASA (see Table 1) combines speech with continuous background music, so the
narrator’s pauses did not create gaps in the audio stream.  However, packet discard might be
defeated by loss repair schemes that rebuild lost packets [7].  Thus, receivers must disable packet
discard when using any repair mechanism or vice-versa.  Fig. 3 is the generic algorithm we
propose for packet delivery to the application or the player.  For convenience, rather than
computing virtual delay directly, the algorithm determines the Delivery Delay, which is the delay
from the observer’s perception time to the time the packet leaves the synchronization module.
Depending on how far we are from the target delay, defined as lag, the algorithm applies a policy
for either reducing or increasing the delivery delay.  Finally once the delivery delay has been
updated, it can be determined whether the packet is late and a late packet policy is applied, or the
delivery is delayed.
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In order to account for strictly continuous audio streams, i.e. with no pauses, we propose
a hybrid policy for downward delay adjustment that uses Early Delivery in presence of pauses
and Packet Discard after reaching a timeout with no pauses.  Likewise, when assuming that
packets arrive in order, a late packet should not be discarded since it will be the only one in the
queue. Hereby, we propose resynchronization as late packet policy and rely on downward delay
adjustment once the delay peak is over.

Initial condition: deliveryDelay = equalizedDelay;
On delivering:
    ci = equalizationQueue.oldestPacket().observerTimestamp();
    targetDelay = equalizedDelay;
    lag = deliveryDelay – targetDelay;
    if (lag > 0)
          Downward Delay Adjustment Policy(EqualizationQueue, lag, deliveryDelay, ci);
    else
          Upward Delay Adjustment Policy(lag, deliveryDelay);
    rwt = ci + deliveryDelay – current_local_time(); /*rwt: remaining waiting time */
    if ( rwt < 0 )
          Late Packet Policy (deliveryDelay,EqualizationQueue); /* late packet /
    else
          sleep(rwt);
    return(equalizationQueue.dequeueOldestPacket());

Fig. 3. Generic algorithm for packet delivery

5.3 Video intra-stream synchronization

Video packetization characteristics and playout semantic demand special treatment in intra-
stream synchronization.  Unlike audio, multiple video packets may be necessary to carry a single
frame.  As a result, there might be sequences of adjacent video packets with the same timestamp
reflecting that all of them belong to the same frame.  In terms of the synchronization condition,
packets with same the timestamp should be played out simultaneously; nonetheless, they do not
normally arrive together, and their arrival times might span hundreds of milliseconds when
senders employ some kind of rate control scheme.  We observe, though, that these video bursts
correlate well with changes in scenes, such as a camera switch or slide flip, that do not require as
strict synchronization as lip synchronization. Thereby, we define a subsequence of video packets
of order k to be the sequence of video packets that contains the first k fragments of any frame,
and we use the order of the subsequence of video packets as a QoS parameter that controls the
synchronization granularity.

We propose Late Delivery policy for late packet, and Early Delivery and Gap Insertion
for downward and upward delay adjustments, respectively.  These considerations leads to the on
delivery section of the video intra-stream synchronization algorithm presented in Fig. 4.



13

On delivering:
    ci = equalizationQueue.oldestPacket().observerTimestamp();
    targetDelay = equalizedDelay;
    deliveryDelay = targetDelay;
    rwt = ci + deliveryDelay – current_local_time(); /*rwt: remaining waiting time */
    if ( rwt > 0)   sleep(rwt);
    return(equalizationQueue.dequeueOldestPacket());

Fig. 4. On delivering section of video synchronization algorithm

5.4 Non-continuous Media Intra-stream Synchronization

In this context non-continuous streams are sequence of data units which are time-dependent but
occur aperiodically.  It includes tele-pointer, shared whiteboard, slide show, and shared tool in
general.  The architecture and design of these components and their data unit semantic are
relevant for synchronization. For example, when the application relies on a reliable transport
layer, packet discarding is not an option.  Even though there is no clear pattern for
synchronization of non-continuous streams, we believe our framework still applies.  The
statistics can be collected and delay estimated with no or slight modifications to Algorithm 1.
Then, our generic algorithm for packet delivery of Fig. 3 can achieve synchronous packet
delivery by tailoring it with delay adjustments and late packet policies according to the data units
semantic.

6 Inter-stream Synchronization Algorithm
Inter-stream synchronization restores the temporal relationship among multiple related media
streams.  We assume that receiving sites can relate media timestamps and transform them to time
values measured on a common clock of that sender.  Inter-media synchronization is achieved
then by rendering all streams with a common virtual delay.  We define multimedia virtual delay
to be the common delay used to render all packets regardless of their original media.  Its value is
the maximum virtual delay among the streams that compose a multimedia presence.  Unlike
intra-media synchronization, inter-media synchronization requires some exchange of information
among the intra-stream synchronization modules.  We propose a centralized object that computes
and maintains the multimedia virtual delay.

Initially, each synchronization module registers itself with the centralized coordinator in
order to allocate the resources for an additional stream.  Every synchronization module posts its
equalized delay5 and follows the multimedia virtual delay as target delay6.  The inter-media
synchronization accuracy of this algorithm depends on how well each media can approach to the

                                                
5 The playout delay, δp, needs to be added to reflect the expected playout time.
6 The playout delay, δp, is now subtracted to compute the delivery delay.
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multimedia virtual delay.  Fig. 5 lists in italic the extensions to the Generic Algorithm, shown in
Fig. 3, to achieve inter-stream synchronization.

Initial condition:
    deliveryDelay = equalizedDelay;
    inter_syncID =interSyncCoordinator.subscribe();
On delivering:
    ci = equalizationQueue.oldestPacket().observerTimestamp();
    bet =  equalizedDelay + δp;
    targetDelay = interSyncCoordinator.GetMultimediaVirtualDelay(inter_syncID, bet);
    targetDelay -= δp;
    lag = deliveryDelay – targetDelay;
    /* It continues as in Fig. 3 */
On exiting:
    interSyncCoordinator.unsubscribe(inter_syncID);

Fig. 5. Inter-media synchronization algorithm

7 Stream Synchronization Results
In this section, we present the results of the intra- and inter-stream synchronization algorithms
for audio and video using the traces of Table 1. All the traces presented in this work were
collected from the Internet using rtpdump version 1.12 [13], which can be used to capture the
header information of RTP packets.

Trace # Sender Media Pack size ODU Time Date Duration # Hops
1
2
3
4

NASA HQ
NASA HQ

UC Berkeley
UC Berkeley

Audio
Video
Audio
Video

20 ms
N/A

40 ms
N/A

08:30pm
08:30pm
04:05pm
04:05pm

09/30/99
09/30/99
10/06/99
10/06/99

600 sec
600 sec

4664 sec
4664 sec

7
7

11
11

Table 1: RTP Traces

Each trace entry generated by rtpdump includes the packet local arrival time as given by
the UNIX call gettimeofday(), the sender’s timestamp, and the packet’s sequence number.  We
developed a tool to translate the first two to a common time unit as expected by our algorithms,
and to redefine local zero time to be such that the resulting arrival times are positive values in the
order of the inter-arrival variations.  As the new point for local zero time is arbitrary, absolute
delays shown in our graphs do not convey significant information.  Sender timestamps were
converted by multiplying them by their standard clock frequency -defined by RFC of the Internet
Engineering Task Force (IETF)- and defining sender’s zero time to be the first received
timestamp.
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7.1 Intra-stream Synchronization Results

For audio stream synchronization we used the Equalized Delay computed with Algorithm 1,
shown in Fig. 2, in conjunction with the audio intra-media synchronization algorithm of Section
5.2.  Similarly, for video we used both Algorithm 1 -with a variant to extract the subsequence of
order 2- and the video intra-media synchronization algorithm of Fig. 4.  Table 2 shows the
parameter we used in all the results presented in this section.

Audio Video
Parameter Value Parameter Value

α
β
κ

LatePacketRate
gapTimeout

0.996
0.998

0.5
0.01

20 (s)

α
β
κ

LatePacketRate
k-order

0.996
0.998

0.5
0.01

2

Table 2. Audio and Video inter-media synchronization parameters

Fig. 6a shows that the Delivery Delay quickly reaches a delay for which most of the
packets can be played out synchronously. Then, around 4.5 minutes, longer delayed packets
make this value grow and remain high due to the lack of silence periods.  The Delivery Delay
downward adjustment timeout did not make a difference because the audio lag was slightly less
than the inter-packet time (20 ms).
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Fig. 6. Audio intra-media synchronization result

Fig. 6b shows another case of intra-audio synchronization. Here the packet delay varies
much more; as a result, the Delivery Delay resynchronizes every time a late packet comes and
lowers during silence periods.  The algorithm naturally adapts to the significant clock drift.

Fig. 7 shows the normalized frequency for the size of the audio equalization queue right
after a packet is delivered.  As Trace 1 varies less than Trace 3, the Trace 1 queue keeps less
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audio packets in average.  In Trace 3 the queue holds up to 5 audio packets which means an extra
200 (ms) delay in order to achieve intra-audio synchronization. Fig. 8 and Fig. 9 show analogous
results for video intra-stream synchronization.
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Fig. 7. Equalization queue sizes for Trace 1 (left side) and Trace 3 (right side)
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Fig. 8. Video intra-media synchronization

Fig. 9 illustrates the effect of sender rate control on synchronization buffering.  In Late
Delivery discipline, late packets are delivered immediately so the queue only depend on the
packets arriving in time.  Sender transmission rate control in Trace 2 inserts an approximate 30-
millisecond pause between fragments; as a result, fragments of order higher than 2 are likely to
arrive late and, therefore, are not buffered.  On the other hand, in Trace 4 more fragments arrive
before the Equalized Delay and must wait in the queue; therefore, we observe higher variation in
the queue size.
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Fig. 9. Equalization queue sizes for Trace 2 (left side) and Trace 4 (right side)

7.2 Inter-stream Synchronization Results

We evaluated inter-media synchronization with two pairs of related traces of video and audio.
Inter-media synchronization inherit from intra-stream synchronization the capability for
overcoming sender-receiver clock drifting; however, it additionally requires that all incoming
streams’ timestamps are taken from no drifting clocks.  We removed any drift between the media
to be synchronized by using a slightly different timestamp clock frequency when converting
timestamp to milliseconds.
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Fig. 10. Audio and video inter-media synchronization result

As depicted in Fig. 10, the larger sum of equalized delay and playout delay drives the
synchronization.  Trace 1 lacks of silence periods, so its delivery delay adjusts towards the video
stream delay only when the timeout goes off.  After that, audio and video remain within 15-
millisecond skew.  On the other hand, The numerous periods of silence of Trace 3 allow audio to
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follow Trace 4 very closely, as illustrated in Fig. 10b.  In this case the skew does not exceed 10
ms most of the time.

Finally, in both cases video buffer behavior did not change compared to intra-stream
synchronization, and audio queue size moved up to 6 packets.

8 Related Work
Intra-stream synchronization has been addressed in a number of studies in the context of audio
applications or video applications.  Stone and Jeffay [14] propose a delay jitter management
policy called queue monitoring, which defines threshold values for each possible length of the
equalization queue.  The threshold value for queue length n specified the duration in packet time
after which the display latency7 can be reduced without increasing the frequency of late packets.
The main advantage of this approach is its simplicity once the thresholds have been determined;
unfortunately in practice they depend on delay statistics that need to be estimated before hand.
Other approaches measure the delay statistics on-line and dynamically adapt the delivery delay
to reach a good tradeoff between queue delay and late arrival rate.  Ramjee et al. [9] estimate the
delay average, µ, and deviation, σ, values and then set the delivery delay to be µ+4σ.  This
scheme is also simple and automatically adapts to changes in the first- and second-order statistics
of the delay; however, it works only for audio streams since the behavior of video fragments
which have packet with same timestamp is not well captured.  Moon et al. [6] collect data in a
10,000-packet sliding window, synthesize the delay probability density function, and set the
delivery delay to a given percentile.  Our scheme for determining the equalized delay basically
tries the same goal with fewer resources.  As opposed to Moon et al., Xie et al. [15] compute the
probabilities for only three regions in the vicinity, ω, of their estimated delivery delay, ∆. They
count the packets arriving before ∆, between ∆ and ∆+ ω, and after ∆+ω.  Packets arriving in the
last region are considered late and are discarded.  Thus, the condition for changing ∆ is based on
the number of packets falling within each of these regions during a window of around 800
packets.  For audio, all these studies propose delivery delay changes only during silence periods.

To the best of our knowledge, inter-stream synchronization has been tackled with
synchronized clock only.  While Escobar et al. [5] and Rothermel and Helbig [11] assume this
condition pre-exists in the systems, Agarwal and Son [2] and Ramanthan and Ragan [8] estimate
the clock differences by means of probe messages.

9 Conclusions
In this paper, we developed a framework that includes a synchronization model for intra- and
inter-stream synchronization for interactive applications over the Internet.  The stream

                                                
7 Here display latency is the total time from acquisition at the sender to display at the receiver.
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synchronization algorithms are immune to sender-receiver clock drifts of the order of 10-4;
nevertheless, inter-stream synchronization requires any drift between media be removed before
synchronization.  The model for intra-stream synchronization includes delays sometimes
neglected though important for fine-grained synchronization, such as sound wave air
propagation, which might reach tens of milliseconds in normal rooms. A number of delay
management policies were introduced to adapt the queue delay at receiving sites and to deal with
late packet arrivals.  These policies were used to tailor a generic intra-stream synchronization
algorithm for audio and video.  Algorithms for other data streams such as for tele-pointer or
shared tools can also be derived from it.  A per-sender inter-stream synchronization approach
was introduced – called differentiated synchronization model- that does not required globally
synchronized clock yet preserves the essential temporal relationships one expects in multi-site
multimedia applications. Finally the evaluation of the framework with real data collected from
the Internet shows good adaptation to network delay variations and audio-video skew within
audio inter-packet time.
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