
A Semantic-based Middleware for
Multimedia Collaborative Applications

Agustín J. González
Advisor: Dr. Hussein Abdel-Wahab

Doctoral Dissertation Defense
Old Dominion University

February 2000

2

Outline

Introduction
Middleware

Objectives
Extension of operating systems network services
Stream synchronization
Floor control framework
Protocol for dynamic image transmission

Experimental results
Conclusions

Questions

3

Introduction
• Large-scale Multimedia Applications

* Desktop computer performance increase
* Internet growth in bandwidth and # of hosts

• A challenging class of applications
* Processing power & bandwidth
* Scalability
* Heterogeneity (Ethernet/modem, WinNT/Solaris, MPEG/H263)
* Timely data delivery

• Traditional services
* Network layer: UDP & TCP (real time was not a concern)
* Operating systems: Abstractions are not adequate for multimedia.

» Example: Real time is not well supported.

• Gap between multimedia requirements and system
services

more

more

more Outline

4

Multimedia Resource Requirements

Bandwidth

Processing

Quality ↑

Q1
Q2

Q3

CPU performance

5

Source: Dr. David Patterson University of Virginia Distinguished Lecture Series,
May 19,1998. http://www.cs.berkeley.edu/~pattrsn/talks/Stanford.pdf

Processor Performance Increase

3

Processor Performance Increase

µProc
60%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

C P U

19
82

P
er

fo
rm

an
ce

Time

Effect on MM

6

Multimedia Resource Requirements

Bandwidth

Processing

Multimedia
Requirements

Quality ↑

Q1
Q2

Q3

Bandwidth

7

Multimedia Resource Requirements

Bandwidth

Processing

Multimedia
Requirements

Quality ↑

Q1
Q2

Q3

High processing + high bandwidth + Others
Introduction

8

Internet Growth

56 M

Introduction

9

Traditional requirements
Trad. Services

Trad. Application

Gap between system services and application
requirements

Developers need to fill this gap by implementing
common services for multimedia applications.

Real-time
Scalability
Heterogeneity

Multimedia applications

Middleware

outline

10

Objective
 “Our main objective is to investigate and propose

heterogeneous, scalable, reliable, flexible, and
reusable solutions and enhancements to common
needs in developing multimedia collaborative
applications.”

Needs we addressed:

* Extension of network services

* Media synchronization

* Floor control

* Data sharing Outline

11

Extension of Network Services

• New services
* Asynchronous data reception
* Quality of service monitoring
* Transmission traffic rate control

• New convenient facilities
* Unified Multicast/Unicast API
* Efficient buffer management for Application Data

Unit more

more

more

more

more

Outline

12

Asynchronous data reception

Network packet arrivals

packet

Thread watching

packet
“application function”

Ext. Net. Srvs

Event-driven model

13

Quality of services monitoring

Traffic monitoring

packet packet
“application function”

3,67 Bps
7
8
9

2,15 Bps
7
8
9

packet packet
“application function”

Ext. Net. Srvs

ti-3 ti

si

Time

Packet Size

ti-1ti-2 t

Window k=3

ki

i

kij
j

k tt

s
tSTTR

−

+−=

−
=

∑
1)(

14

Transmission traffic rate control

Ext. Net. Srvs

ti-2 ti-1

si

Time

Packet Size

t`
i ti

Send() call Actual Tx time

packet

i

2,15 Bps
7
8
9

packet
“application function”

Traffic Limit
2,200 Bps

i-1

15

Unified Multicast/Unicast API

• Datagram transmission
* A send to a machine or a multicast group does not make a difference.

• Datagram reception
* if the given IP address is a multicast, join group.
* if address is not multicast, do not bind (I’m client).

{ } 
















port,
addressUnicast
addressMulticast

Ext. Net. Srvs

16

Efficient buffer management for Application
Data Unit

A B

AH BH

Tx Rx

BA

BHAH

* Goal: to prevent payload movements in memory
* Sender modules create an output buffer that can hold

following “headers” and “tails” .
* Receiver module needs to allocate worst case buffer size.

Ext. Net. Srvs

17

Stream Synchronization
• Problem: processing times and network delays are not

deterministic.
• The objective of synchronization is to faithfully

reconstruct the temporal relationship between events
(“pieces of data”).

• Main characteristics of our solution:
* It depends on one-way messages only

» No need of feedback

* It only requires sender’s and receivers’ clock rates to be constant.
» These clocks might be off.
» These clocks might even have different rates of change.
» No need of globally synchronized clocks

* It supports policies to handle late packets and delay adjustments.

Details

18

Stream Synchronization (details)

• Time model
• Intra-stream synchronization
• Inter-stream synchronization
• Clock skew estimation and removal

more

more

more

more

Outline

19

Time Model
Virtual Observer

Network

Original Phenomenon

Capture

Timestamping
Equalization

Buffer

Remote view

Playout

ti a i
c i q i p i

Virtual Observer’s
machine time

Receiver
time

Absolute time
δci ξi δpiδ ti

Transmission
Path

Sync

20

∆Φci

∆Φpi

∆Φai

Receiver

Sender

ti-1 ti

ai-1 ai

cici-1

qi-1

qi

pi-1 pi

Perception

Timestamping

Arrival

Equalization

Playout

δci-1

δpi-1

Intra-stream Synchronization (model)
“Seen” by virtual observer

“Seen” by receiver

ctecp ii +=
Synchronization condition:

Virtual delay

cte

Solution

Tradeoff:
% late packets

Total delay

Adaptive compromise

21

Intra-stream Synchronization (solution)
Adjust “virtual delay” to achieve a given % of late packets

()








−+= − otherwise 0
arrival latefor 1

*11 αα ii ll

NASA MBone 1% late packets

sync

more

Slow start
1 min !

Estimator for % of late packets:

22

Fast start refinement

Less than 5 s ! sync

23

Inter-stream Synchronization

Global synchronization model v/s Differentiated synchronization model

Synchronizes streams
coming from one virtual
observer

Actual network delay Global Sync Model Differentiated

Synchronizes streams
coming from anywhere
with worst case delay

Solution

24

Inter-stream Synchronization (solution)

Audio
Sync

Data
Sync

Video
SyncInter-stream

coordinatorVirtual delay

Max. virtual delay

sync

25

Clock skew estimation and removal

Goal: Remove differences in clock frequencies

Correction

The algorithm adjusts a straight line as new packets arrive

sync

Before After

26

Active Resource

Everywhere Resource

Inactive resourceNode (participant)

Localized Resource

“Audio” “Shared tool”

Lightweight Framework for Floor Control

• Problem: How to manage exclusive resources in large-scale multimedia
applications?

• We recognize two cases:

ResourceUserUser Resource Communication Channel

1:
1

:








n
n

Solution

27

Floor Control (Solution)

* We propose two protocols for floor control, one per
architecture.

* Features: lightweight, scalable, robust

(1) Request
(2) Granted

(2) Taken

(1) Request

(3) Granted

Preemptive

Coordinator Floor holder Participant

(1) Request
(2) Release

(4) Granted
(3) Taken
 or
 Released

TCP connection
Heartbeat

Delayed
preemptive

* The coordinator is stationary for localized resources.
* The coordinator migrates with floor for everywhere resources

Localized res.

28

Architecture for localized resources

Requester Control

Requester

RequesterListener

Coordinator

Request
Released

HolderRefresh
Taken
Granted
Release

Granted
Release

Request
Released

Withdrew

Granted
Taken
Release

NewHolder
getResourceInfo

Object implementing interface x
Object related with floor architecture
Main floor architecture objects
Optional Object

x

*

NewHolderListener
*

ResourceInfo *

ResourceUserListener
*

1-1 reliable remote invocation
1-N unreliable remote invocation
Local invocation

Monitor/LogListener
*

log

Monitor/LogListener
*

log

HeartbeatHeartbeat

Policy

RequestNoti
WithdrawalNoti
HolderTimeout
SelectNextHolder

Everywhere res.

Outline

29

Architecture for everywhere resources

Requester Control

Requester

RequesterListener

Request
Released

HolderRefresh
Taken
Granted
Release

Granted
Release

Request
Withdrew

Granted

getResourceInfo

ResourceListener
*

1-1 Temporary connection for reliable remote invocation
1-N unreliable remote invocation
Local invocation

Monitor/LogListener
*

log

Monitor/LogListener
*

log

Heartbeat

RequestNoti
WithdrawalNoti
HolderTimeout
SelectNextHolder

Coordinator

Policy

Activate
Request
Withdrew
Released

Granted
Taken
Release

Coordinator

Other Objects
(Same Architecture as above)

To all Requesters

Before Granted

After Granted

Heartbeat

Outline

30

Protocol for Dynamic Image
Transmission

• Problem: In addition to audio and video, multimedia
sessions needs a component to convey the main idea of
discussion.

• Traditional solutions:
* Use video (size limitation & high bandwidth)
* Shared tools: XTV, co-browsers, VNC,.. (do not scale well)

• Our solution:
* Video-like protocol tuned to send dynamic images

Solution

31

Protocol for Dynamic Image Transmission

• Sender:
* Temporal redundancy removal

» Sample image at regular period
» Divide image in tiles
» Process only changed tiles

* Spatial redundancy removal
» compress and send changed tiles

• Receiver:
» Receive data unit
» Decompress tile
» Update tile in image

Losses?

32

Overcoming losses

• Each tile is retransmitted after a random time
• This also accommodates late comers

Performance Study
* How to select a tile compression technique? (JPEG, GIF, PNG?)
* Is there a “best” tile size? What does it depend on?
* How often to sample the image?
* How can two tiles be compared efficiently?
* Maximum data transmission rate? What does it depend on?

Outline

33

Implementation and Experimental
Results

• Implementation:
* Network support implemented
* Synchronization: implemented and used with real RTP data in off-line

analysis
* Floor control: partially implemented for localized resources
* Image protocol implemented

• Putting everything together: Odust
* A prototypical sharing tool built on top of the middleware.

 It uses:
* Network support, floor control, dynamic image protocol, other

application specific modules.
Odust

34

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

Odust Description

Architecture

35

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

Odust Description: Cecilia’s view

Architecture

UNIX

36

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

Odust Description: Rodrigo’s view

Architecture

WinNT

37

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

Odust Description: Eduardo’s view

Architecture

WinNT

38

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

Odust Description: Agustín’s view

Architecture

UNIX

39

Odust Architecture

Capture and
Dynamic Compound

Image Protocol
Sender

Dynamic Compound
Image Protocol

Receiver and Display

Event
Injector Event

Capture

Token
Manager

Token
Client

Application A

WinNT

Native
Library

Application A Receiver

Sharing Tool Receiver

Application A Sender

Sharing Tool Sender

Application
B’s View

Application
A’s View

JDesktop

Java VM

Mx Dx

Temporary TCPMulticast Method Invocation

c

a

d

e

g

b

f

h

i

j

k
l

mn

Outline

40

Conclusion
• We observed the convenience of a middleware

Traditional requirements
Trad. Services

Trad. Application

Real-time
Scalability
Heterogeneity

Multimedia applications

Middleware

• Future work
* Add more components
* Continue implementation
* Try new ideas (see thesis)

• It offers:
* Multimedia network services
* Synchronization
* Floor control
* Dynamic image transmission

Outline

