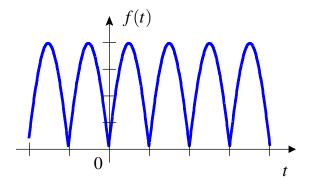
Primer Certamen – ELO102 – 1S 2013 Soluciones

Problema 1.1 (10 puntos) La figura muestra una señal sinusoidal **rectificada**: $f(t) = |A \operatorname{sen}(\omega t)|$. Determine el período, el valor medio y el valor efectivo (o RMS) de f(t)



Solución

■ **Período**: La sinusoide antes de ser rectificada tiene período $\frac{2\pi}{\omega}$. Como se puede observar de la figura, al ser rectificada el período se reduce a la mitad, es decir,

$$T = \frac{\pi}{\omega}$$

■ Valor medio: Basta calcularlo, usando la definición, en un periodo de la señal:

$$\bar{f} = \frac{1}{T} \int_0^T f(t)dt$$

$$= \frac{\omega}{\pi} \int_0^{\pi/\omega} A \operatorname{sen}(\omega t) dt = \frac{A\omega}{\pi} \left[\frac{-\cos(\omega t)}{\omega} \right]_0^{\pi/\omega} = \frac{2A}{\pi}$$

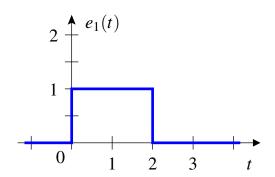
■ Valor efectivo: De acuerdo a la definición

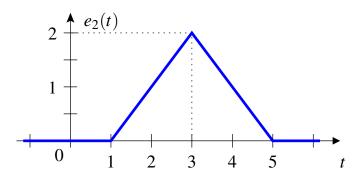
$$f_{RMS} = \sqrt{\frac{1}{T} \int_0^T f^2(t) dt}$$

Es posible apreciar que la integral a calcular es exactamente la misma que en el caso de una señal sinusoidal (sin rectificar). Por lo tanto, el valor efectivo es el mismo, es decir,

$$f_{RMS} = \frac{A}{\sqrt{2}}$$

Problema 1.2 (10 puntos) Un sistema lineal e invariante en el tiempo tiene una respuesta $r(t) = r_1(t)$ (conocida) cuando las condiciones iniciales son cero y la excitación es la señal $e_1(t)$ en la figura izquierda. Determine cuál es la respuesta del sistema cuando las condiciones iniciales son cero y la excitación es la señal $e_2(t)$ en la figura derecha.





Solución

En primer lugar notamos que la señal de la derecha se puede describir en términos de escalones unitarios:

$$e_1(t) = \mu(t) - \mu(t-2)$$

Por tanto su integral la definimos como la excitación auxiliar siguiente

$$e_3(t) = \int_{-\infty}^t e_1(\tau)d\tau = \operatorname{rampa}(t) - \operatorname{rampa}(t-2)$$

Por su parte la señal de la izquierda también puede escribirse con funciones rampa

$$e_2(t) = \text{rampa}(t-1) - 2\text{rampa}(t-3) + \text{rampa}(t-5) = e_3(t-1) - e_3(t-3)$$

Si el sistema es lineal, entonces la respuesta a las combinaciones lineales de excitaciones corresponde a la combinación lineal de las respuestas individuales.

Además, si el sistema es invariante en el tiempo, la respuesta a una excitación desplazada es el desplazamiento de la respuesta a la excitación original, manteniendo la misma condición inicial (cero en este caso).

Finalmente, linealidad e invariancia en el tiempo, garantizan que la respuesta a la integral de una excitación corresponde a la integral de la respuesta a la excitación original.

Por tanto,

$$r_2(t) = T\langle 0, e_2(t) \rangle = T\langle 0, e_3(t-1) - e_3(t-3) \rangle = r_3(t-1) - r_3(t-3)$$

en que $r_3(t)$ es la respuesta a la excitación auxiliar $e_3(t)$, es decir,

$$r_3(t) = T\langle 0, e_3(t) \rangle = T\langle 0, \int_{-\infty}^t e_1(\tau) d\tau \rangle = \int_{-\infty}^t T\langle 0, e_1(\tau) \rangle d\tau = \int_{-\infty}^t r_1(\tau) d\tau$$

Finalmente,

$$r_2(t) = \int_{-\infty}^{t-1} r_1(\tau) d\tau - \int_{-\infty}^{t-3} r_1(\tau) d\tau = \int_{t-3}^{t-1} r_1(\tau) d\tau$$

Problema 1.3 (10 puntos) En un diodo, la característica corriente voltaje se puede modelar por la ecuación

$$i(t) = T\langle v(t)\rangle = I_s(e^{v(t)/V_{th}} - 1)$$

en que $I_s > 0$ y $V_{th} > 0$ son parámetros dados. Determine si el diodo es una componente lineal o no lineal.

Solución

El diodo es una componente no lineal. Basta comprobar que no se cumple superposición:

$$T\langle v_1(t) + v_2(t) \rangle = I_s(e^{(v_1(t) + v_2(t))/V_{th}} - 1)$$

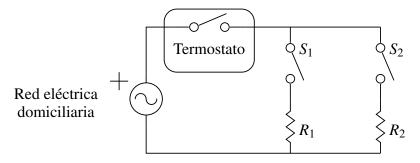
$$\neq I_s(e^{v_1(t)/V_{th}} - 1) + I_s(e^{v_2(t)/V_{th}} - 1) = T\langle v_1(t) \rangle + T\langle v_2(t) \rangle$$

o que no cumple homogeneidad:

$$T\langle \alpha v(t)\rangle = I_s(e^{\alpha v(t)/V_{th}} - 1)$$

$$\neq \alpha I_s(e^{v(t)/V_{th}} - 1) = \alpha T\langle v(t)\rangle$$

Problema 1.4 (10 puntos) Una estufa eléctrica se puede modelar como la red de la figura. El fabricante indica que la potencia de la estufa es 750, 1250 o 2000 [W] cuando se cierra el interruptor S_1 , el S_2 o ambos, respectivamente. Determine el valor de las resistencias R_1 y R_2 .



Solución

La potencia media disipada por una resistencia sometida a un voltaje sinusoidal se puede obtener directamente a partir del valor efectivo de éste. Es decir,

$$\bar{p} = \frac{(v_{RMS})^2}{R}$$

Cuando sólo se cierra S_1 , el valor de la resistencia R_1 se puede obtener directamente a partir de esta ecuación (no circula corriente por R_2):

$$\bar{p}_1 = \frac{(v_{RMS})^2}{R_1} \quad \Rightarrow \quad R_1 = \frac{(v_{RMS})^2}{\bar{p}_1} = \frac{220^2}{750}$$

Cuando sólo se cierra S_2 , el valor de la resistencia R_2 se puede obtener de manera similar (no circula corriente por R_1):

$$\bar{p}_2 = \frac{(v_{RMS})^2}{R_2} \quad \Rightarrow \quad R_2 = \frac{(v_{RMS})^2}{\bar{p}_2} = \frac{220^2}{1250}$$

Note que, cuando se cierran ambos interruptores, la potencia total disipada es la suma de la potencia absorbida por R_1 y por R_2 , es decir,

$$\bar{p} = \bar{p}_1 + \bar{p}_2 = 750 + 1250 = 2000$$

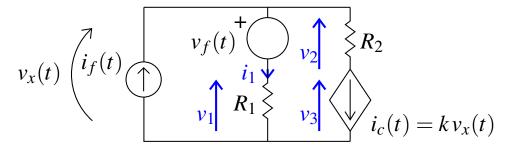
Por tanto, no hay información adicional importante en ese dato.

Problema 1.5 (10 puntos) En la red de la figura, los datos son $v_f(t)$, $i_f(t)$, R_1 , R_2 y k. Plantee un sistema de ecuaciones consistente que permita analizar la red.

$$v_x(t)$$
 $i_f(t)$
 $r_f(t)$
 R_1
 $i_c(t) = k v_x(t)$

Solución

En primer lugar, definimos variables adicionales como en la figura



Por **LCK**:

$$i_f = i_1 + i_c$$

Por **LVK**:

$$v_x = v_f + v_1$$
$$v_x = v_2 + v_3$$

Por III Postulado (ecuaciones no usadas aún):

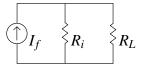
$$v_1 = R_1 i_1$$

$$v_2 = R_2 i_c$$

$$i_c = k v_x$$

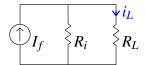
Con eso se obtienen 6 ecuaciones para las 6 incógnitas: i_1 , i_c , v_x , v_1 , v_2 y v_3 .

Problema 1.6 (10 puntos) En la red de la figura la fuente de corriente es constante. Los datos son I_f y R_i . Determine R_L tal que la potencia absorbida por esta resistencia sea máxima.



Solución

El circuito es un divisor de corrientes, por tanto



$$i_L = \frac{\frac{1}{R_L}}{\frac{1}{R_L} + \frac{1}{R_i}} I_f = \frac{R_i}{R_i + R_L} I_f$$

La potencia disipada por la resistencia R_L es, por lo tanto,

$$p = R_L(i_L)^2 = \frac{(R_i I_f)^2 R_L}{(R_i + R_L)^2}$$

Para encontrar el máximo de la potencia (en función de R_L) derivamos e igualamos a cero:

$$\frac{d p}{R_L} = (R_i I_f)^2 \frac{(R_i + R_L)^2 - R_L 2(R_i + R_L)}{(R_i + R_L)^4}$$
$$= (R_i I_f)^2 \frac{(R_i + R_L)(R_i - R_L)}{(R_i + R_L)^4} = 0$$

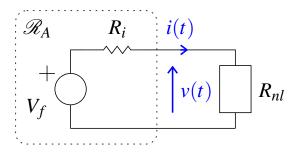
cuya solución es

$$R_L = R_i$$

Este valor corresponde a un máximo pues, por ejemplo, se logra potencia disipada cero cuando R_L tiende a infinito o a cero.

Problema 1.7 (10 puntos) En la red de la figura, la fuente de voltaje es $V_f = 6[V]$ y $R_i = 1[\Omega]$. Determine la corriente i(t) si la resistencia no-lineal R_{nl} satisface

$$v(t) = \begin{cases} \frac{1}{3}i^{2}(t) & ; i(t) \ge 0\\ -\frac{1}{3}i^{2}(t) & ; i(t) \le 0 \end{cases}$$



Solución

Haciendo LVK se obtiene que

$$v(t) = V_f - R_i i(t) = 6 - i(t)$$

Por su parte, la resistencia no lineal establece que, para corrientes positivas

$$v(t) = \frac{1}{3}i^2(t)$$

Igualando se obtiene una ecuación de 2do grado a resolver:

$$6 - i = \frac{1}{3}i^{2}$$

$$\Rightarrow 0 = i^{2} + 3i - 18$$

$$0 = (i - 3)(i + 6)$$

Por ende, se obtiene la solución:

$$i(t) = 3$$

Para corrientes negativas, se llega a que no hay solución (real):

$$6 - i = -\frac{1}{3}i^{2}$$

$$\Rightarrow 0 = i^{2} - 3i + 18$$

$$\Rightarrow i(t) \in \mathbb{C}$$