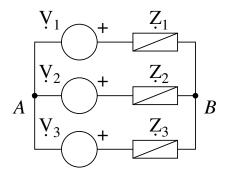

## ELO102 – Teoría de Redes I – S1 2014 Ayudantía #16: Semana del 14 al 18 de julio

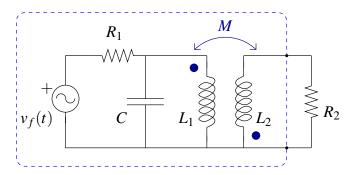
**Problema 16.1** En la figura, la red  $\mathcal{R}$  es estable, se encuentra en estado estacionario y su impedancia equivalente es  $Z_{eq}$ . Se sabe que  $v(t) = A\sin(\omega t)$  y que  $I = \sqrt{3} + j$ .

- Determine la impedancia equivalente Z<sub>eq</sub>
- *Determine* i(t).




**Problema 16.2** En la red de la figura, determine el equivalente Thévenin y el equivalente Norton en estado estacionario de la red  $\mathcal{R}_1$  desde los terminales a - b.




## **Problema 16.3** En la red de la figura,

- 1. Mediante el método de voltaje de nodos y sin usar equivalencias, determine el voltaje en el nodo B considerando el nodo A como referencia, es decir, el voltaje  $V_{BA}$ .
- 2. ¿Qué sucede cuando  $V_1 = V \angle 0$ ,  $V_2 = V \angle \frac{2\pi}{3}$ ,  $V_3 = V \angle \frac{-2\pi}{3}$  y  $Z_1 = Z_2 = Z_3$ ?
- 3. ¿Qué condición deben satisfacer, en general,  $\{V_1, V_2, V_3, Z_1, Z_2, Z_3\}$  para que  $V_{BA}=0$ ?



## **Problema 16.4** *En la red de la figura,* $v_f(t) = \sin(\omega t)$ .

- Mediante el método de voltaje de nodos o de corrientes de malla, determine un sistema de ecuaciones en el dominio de la transformada fasorial que permita analizar la red.
- lacktriangle Determine el equivalente Thévenin (a la frecuencia de interés) desde los terminales de la resistencia  $R_2$ .
- Determine la impedancia equivalente vista por la fuente de voltaje (a la frecuencia de interés).

