ELO102 – S1 2015 – Diagnóstico

El objetivo de esta tarea es revisar conceptos y conocimientos básicos de matemática y física requeridos para la asignatura.

Problema 1.1 (Sistemas de ecuaciones) Considere el siguiente sistemas de ecuaciones

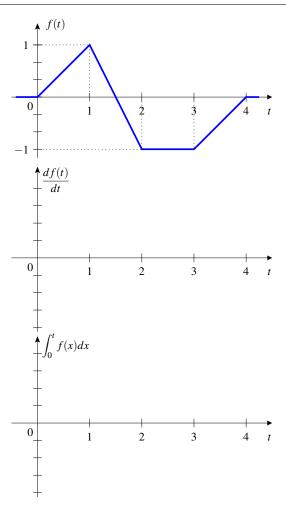
$$\alpha x + \beta y - \gamma z = 0$$
$$\beta x - y = 0$$

en que α , β y γ son constantes conocidas. Determine x e y en función de z, es decir, x = x(z) e y = y(z).

Problema 1.2 (Maximos y mínimos) Considere la función $f(x) = x^3 - 12x$. Determine el valor máximo y el valor mínimo que toma la función cuando $x \in [-1,3]$

Problema 1.3 (Ecuación diferencial de primer orden) Resuelva la ecuación diferencial $\frac{df(t)}{dt} = -3f(t)$ con condición inicial f(0) = 1

Problema 1.4 (Sinusoides) Haga un gráfico lo más preciso posible de $f(t) = 2\cos(2t - \frac{\pi}{4})$.


Problema 1.5 (Números complejos) Sean $z_1 = 3 + j4$ y $z_2 = 1 + j\sqrt{3}$ dos números complejos ($j^2 = -1$). Exprese z_1 y z_2 en su forma polar (o exponencial). Determine $z_1 + z_2$, $z_1 - z_2$, $z_1 \times z_2$, $\frac{z_1}{z_2}$.

Problema 1.6 (Potencia y Energía) Estime el cambio de energía desde el paradero de Av. España hasta la entrada principal del edificio A (Dato: son aproximadamente 130 peldaños) ¿Qué potencia es capaz de desarrollar usted cuando sube la escalera?

Problema 1.7 (Potencia y Energía) Estime cuánto tiempo tarda un microondas de 2000 Watts de potencia en hervir una taza de agua. (Dato: la capacidad calórica del agua es 1 caloría por gramo por ^oC y 1 caloria son aproximadamente 4.2 Joules)

Problema 1.8 (Derivada e integral) .

Para la función f(t) en la parte superior de la figura, haga un gráfico de su derivada $\frac{d f(t)}{dt}$, y de su integral definida $\int_0^t f(x)dx$:

