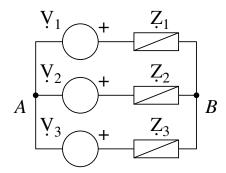

ELO102 – Teoría de Redes I – S1 2016 Ayudantías #15: Semana del 28 de junio al 1 de julio

Problema 15.1 En la figura, la red \mathcal{R} es estable, se encuentra en estado estacionario y su impedancia equivalente es Z_{eq} . Se sabe que $v(t) = A\sin(\omega t)$ y que $\underline{I} = \sqrt{3} + j$. Determine la impedancia equivalente Z_{eq} y determine la corriente i(t).



Problema 15.2 En la red de la figura, determine el equivalente Thévenin en estado estacionario de la red \mathcal{R}_1 desde los terminales a - b.

Problema 15.3 En la red de la figura,

- Mediante el método de voltaje de nodos y sin usar equivalencias, determine el voltaje en el nodo B considerando el nodo A como referencia, es decir, el voltaje V_{BA} .
- ¿Qué sucede cuando $\dot{V}_1 = V \angle 0$, $\dot{V}_2 = V \angle \frac{2\pi}{3}$, $\dot{V}_3 = V \angle \frac{-2\pi}{3}$ y $\dot{Z}_1 = \dot{Z}_2 = \ddot{Z}_3$?
- ¿Qué condición deben satisfacer, en general, $\{V_1, V_2, V_3, Z_1, Z_2, Z_3\}$ para que $V_{BA}=0$?

