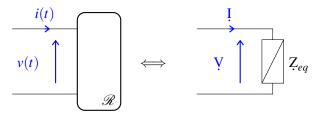
ELO102 – Teoría de Redes I – S1 2019

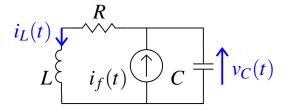
Ayudantía #11: Análisis en estado estacionario de redes sometidas a excitaciones sinusoidales (*fasores*)

Problema 11.1 Calcule (si es posible) la transformada fasorial y represéntela en el plano complejo para las siguientes señales:

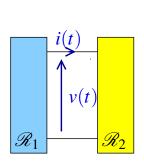
$$f_1(t) = 50\cos(20t + \pi/4)$$

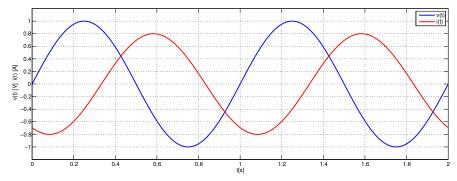

$$f_2(t) = 4\cos(20t - \pi/3) - 7\sin(20t - \pi/6)$$

$$f_3(t) = 8\cos(20t + \pi/3) + 3\sin(10t + \pi/5)$$

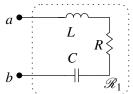

Problema 11.2 Suponiendo $\omega = 15$ [rad/s], calcule las señales correspondientes a cada una de las siguientes transformadas fasoriales:

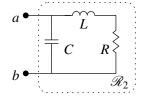
$$F_1 = 8 \angle \frac{\pi}{5}$$
 $F_2 = (-5+j)(4+j2)$ $F_3 = 8 \angle \frac{\pi}{4} - 8 \angle \frac{\pi}{6}$ $F_4 = \frac{1+j}{3-j4}$

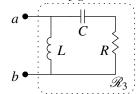

Problema 11.3 En la figura, la red \mathcal{R} es estable y se encuentra en estado estacionario. Se sabe que $v(t) = A\sin(\omega t)$ y que, a dicha frecuencia, $I = \sqrt{3} + j$. Determine la corriente i(t) y la impedancia equivalente Z_{ea} .

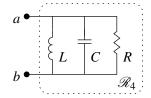


Problema 11.4 En la red de la figura, $R = 1[k\Omega]$, L = 1[H], $C = 1[\mu F]$ e $i_f(t) = \cos(\omega t)$. Determine para que valor de la frecuencia ω la amplitud del voltaje en la fuente en estado estacionario es máxima.

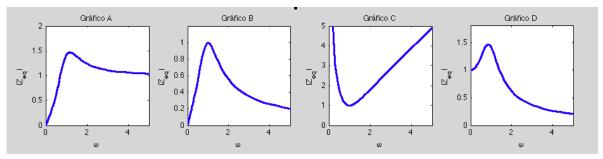


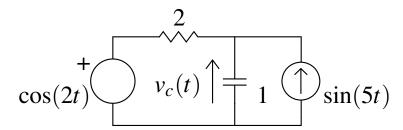

Problema 11.5 La figura derecha muestra el voltaje y la corriente en la interconexión de las redes. Determine la impedancia equivalente asociada a la red \mathcal{R}_2 y la potencia promedio entregada por \mathcal{R}_1

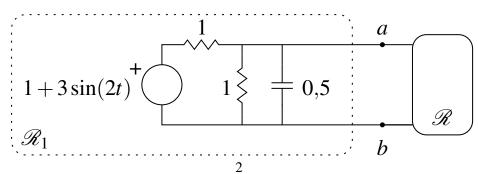


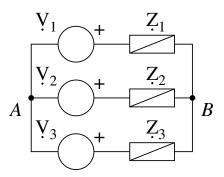


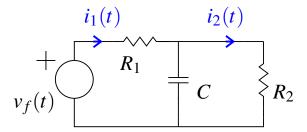
Problema 11.6 Para cada una de las redes que se muestran en la figura:

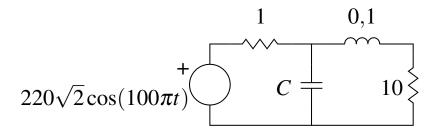





- (a) Determine la impedancia equivalente desde los terminales a b.
- (b) Determine cuál de los gráficos del módulo de la impedancia equivalente en función de la frecuencia ω le puede corresponder. Fundamente claramente su respuesta, pero note que **no** es necesario obtener el valor de las componentes.


Problema 11.7 En la red de la figura, determine la potencia instantánea entregada por cada una de las fuentes en estado estacionario.


Problema 11.8 En la red de la figura, determine el equivalente Thévenin en estado estacionario de la red \mathcal{R}_1 desde los terminales a - b.


Problema 11.9 En la red de la figura, mediante el método de voltaje de nodos y sin usar equivalencias, determine el voltaje V_{BA} . ¿Qué sucede cuando $V_1 = V \angle 0$, $V_2 = V \angle \frac{2\pi}{3}$, $V_3 = V \angle \frac{-2\pi}{3}$ y $Z_1 = Z_2 = Z_3$?

Problema 11.10 En la red de la figura, $v_f(t) = A\cos(\omega t)$. Determine la potencia compleja aparente, la potencia activa y la potencia reactiva entregada por la fuente de tensión.

Problema 11.11 En el circuito de la figura, determine qué valor tiene que tener C para maximizar el factor de potencia de la red, desde el punto de vista de la fuente.

