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Abstract

Continuous-time systems are usually modelled by difféaémiquations arising from physical laws.
However, the use of these models in practice requires disatien. In this thesis we consider sampled-
data models for linear and nonlinear systems. We study sdrtieeassues involved in the sampling
process, such as treccuracyof the sampled-data models, thetifacts produced by the particular
sampling scheme, and thelationsto the underlying continuous-time system. We review, ectand
present new results, making extensive use of the delta tpevaich allows a clearer connection be-
tween a sampled-data model and the underlying continumessystem.

In the first part of the thesis we consider sampled-data nsddelinear systems. In this case exact
discrete-time representations can be obtained. Theselsndeleend, not only on the continuous-time
system, but also on thetifactsinvolved in the sampling process, namely, the sample ardid®lices.

In particular, these devices play a key role in determinireggsimpling zerosf the discrete-time model.

We consider robustness issues associated with the usecoéteidsime models for continuous-time
system identification from sampled data. We show that, bygrsistricted bandwidtlfrequency domain
maximum likelihood estimation, the identification resudte robust to (possible) under-modelling due
to the sampling process.

Sampled-data models provide a powerful tool also for caowtirs-time optimal control problems,
where the presence of constraints can make the explicitignlimpossible to find. We show how this
solution can bearbitrarily approximatedby an associated sampled-data problem using fast sampling
rates. We also show that there is a natural convergence airbalar structureof the optimal control
problem from discrete- to continuous-time, as the sampripd goes to zero.

In Part Il we consider sampled-data models for nonlineatesys. In this case we can only ob-
tain approximatesampled-data models. These discrete-time models areesamnpl accurate in a well
defined sense. For deterministic systems, an insightfutrebton is that the proposed model con-
tainssampling zero dynamicdMoreover, these correspond to the same dynamics assbeiitethe
asymptotic sampling zeros in the linear case.

The topics and results presented in the thesis are believgieled important insights into the use of
sampled-data models to represent linear and nonlineaincauis-time systems.
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Symbols and Acronyms

. Inner product.
: Distributed ag(for random variables).
: Complex conjugation.

T Matrix (or vector) transpose.
~ : Complex variable associated to th@®perator.
A Sampling period.
6 : Delta operator (forward divided difference).
o(t) : Dirac delta or continuous-time impulse function.
dx[k] : Kronecker delta or discrete-time impulse function.
wu(t) :unitary step function or Heaviside function.
w[k] : Discrete-time unitary step function.
p= 4 : Time-derivative operator.
w @ angular frequency, in [rad/s].
wy : Nyquist frequencywy = <.
ws 1 Sampling frequencyy, = 2T.
A,B,C,D : State-space matrices in continuous-time.
As, Bs,Cys, Ds . State-space matrices in discrete-time usingitoperator.
A, B,,Cq, D, : State-space matrices in discrete-time using the shiftabpie;.

adj : Adjoint of a matrix.
C™ . Space of functions whose firgtderivatives are continuous.

CAR : Continuous-time auto regressive.
CT : Continuous-time.
CTWN : Continuous-time white noise.
DFT : Discrete Fourier transform.
DT : Discrete-time.
DTFT : Discrete-time Fourier transform.
DTWN : Discrete-time white noise.
E{} :Expected value.
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Chapter 1

Introduction

1.1 Sampling and sampled-data models

Models for continuous-time dynamical systems often aniemfthe application of physical laws such
as conservation of mass, momentum, and energy. These niggeally take the form of linear or
nonlinear differential equations, where the parametarsiwed can usually be interpreted in terms of
physical properties of the system. In practice, howeveasahkinds of models are not appropriate to
interact with digital devices. In any situation where digitontrollers have to act on a real system, this
action can be applied (or updated) only at some specific tirstaints. Similarly, if we are interested in
collecting information from signals of a given system, téga can usually only be recorded (and stored)
at specific instants. This constitutes nowadays an unabtgigamradigm: continuous-time systems in-
teract with actuators and sensors that are accessible bdlgaiete-time instants. As a consequence,
thesampling process of continuous-time systems is a key problem botediimation and control pur-
poses (Middleton and Goodwin, 1990; Feuer and Goodwin, 1A86om and Wittenmark, 1997). In
this context, the current thesis considsasnpled-data modeldor linear and nonlinear systems. The
focus is on describing, in discrete-time, the relationdfeépwveen the input signals and the samples of
the continuous-time system outputs. In particular, weystssues such as ttaecuracyof the sampled-
data models, thartifactsproduced by a particular sampling scheme, andetaionsto the underlying
continuous-time system.

The sampling process for a continuous-time system is repted schematically in Figure 1.1. In
this figure we see that there are three basic elements invafvehe sampling process. All of these
elements play a core role in determining the appropriaterelis-time input-output description:

e Thehold device used to generate the continuous-time inp(#} of the system, based on a dis-
crete time sequenag, defined at specific time instantg,

e Thecontinuous-time systemdefined by a set of linear or nonlinear differential equaiavhich
generates the continuous-time outp(t) from the inputu(¢), initial conditions, and/or possible
unmeasured disturbances; and

e Thesampling device which generates an output sequence of samplésom the continuous-

1
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Mo al ™ oo [

Hold Continuous-timg s |
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e u(t) System y(t) P Yk

Figure 1.1: Scheme of the sampling process of a continumesgystem.

time outputy(t), possibly including some form dadnti-aliasingfiltering prior to instantaneous
sampling.

For linear systems, it is possible to obta&ract sampled-data models from the sampling scheme
shown in Figuré 1/1. In particular, given a deterministiotimuous-time system, it is possible to obtain
a discrete-time model which replicates the sequence ofibagmples. In the stochastic case, where the
input of the system is assumed to beamtinuous-time white noiggocess, a sampled-data model can
be obtained such that its output sequence has the same swdangroperties as the continuous-time
output at the sampling instants.

However, obtaining sampled-data models for nonlineaesysts a much more difficult task. In fact,
these models are, in most cases, either unknown or impegdsilmompute because of the inherent dif-
ficulties in solving nonlinear differential equations, bat the deterministic and stochastic frameworks
(Nesic et al, 1999; Kloeden and Platen, 1992). As a consequence, appyoximate discrete-time
models are possible to obtain. In this case, we will typich# interested in sampled-data models that
areaccuratein some well defined sense. The accuracy of these discretediescriptions has proven to
be a key issue when trying to apply results based on such soldethe context of control design, for
example, a controller designed to stabilise an approxisetgled plant model may fail to stabilises the
exact discrete-time model, no matter how small the samplargpdA is chosen (N&i¢ and Teel, 2004).

Sampled-data models for continuous-time systems are lusafantrol, simulation and estimation
of system parameters (system identification). They areadh the required tool needed to fill the gap
between continuous control and the output signals, as sé¢lea sampling instants. Most of the existing
literature regarding discrete-time (and, thus, samplead)da/stems has traditionally expressed these
models in terms of the shift operatgr and the associate&-transform. However, when using this
kind of models is not easy to relate to tberrespondingesults applicable to the continuous-time case.
This is true even when the sampling period is chosen arlytismall. The inter-relationship between
sampled-data models and their underlying continuous-timeterparts is more easily understood in
the unified framework facilitated by use of tHelta operator{Middleton and Goodwin, 1990):

5 _Q;l (1.1)

There is a considerable amount of literature showing thauge of this operator gives conceptual
and numerical advantages over the traditional shift opea{Middleton and Goodwin, 1986; Mid-
dleton and Goodwin, 1990; Goodwat al, 1992; Li and Gevers, 1993; Neuman, 1993; Gevers and
Li, 1993; Mansour, 1993; Premaratne and Jury, 1994; FeugiGoodwin, 1996; Premaratret al,,
2000; Suchomski, 2001; Suchomski, 2002; Lennartsoal., 2004). In particular, sampled-data mod-
elsrewrittenin terms of the delta operator models explicitly include saenpling periodA in such a
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way that, when the sampling rate is increased, the underigimtinuous-time system representation
is recovered. In the same fashion, several discrete- anthcons-time results in control, estimation
and system identification can be understood in the same Wwarkewhen sampled-data models are
expressed in terms of divided differences using](1.1).

Even though the use of delta operator models provideataral connectiorbetween the discrete
and continuous-time domains, one needs to be careful veitlessinherent to the sampling process. The
use of discrete-time models to represent continuous-tysess implies that there igss of informa-
tion. In the time domain, the intersample behaviour of signalsisnown, whereas in the frequency
domain, high frequency signal components will fold backaw frequencies, making them impossible
to distinguish. Thus, for any non-zero sampling periodreheill always be alifferencebetween the
sampled-data model and the underlying continuous-timergit®n. For example, it is well known that
discrete-time models will have, in general, more zeros thamriginal continuous-time systegtrom
et al, 1984; Wahlberg, 1988). These extra zeros, sometimescai®mpling zerosare a result of the
frequency folding effect due to the sampling process. Whergwtelta operator models, these sampling
zeros asymptotically converge to infinity as the samplingogkegoes to zero. However, they play a key
role, for example, when using Least Squares for parametiienan (Larsson and@&lerstbm, 2002).

The problems arising from the sampling process can only kigaed by appropriatassumptions
Among common assumptions we have the use zero-order haltsiapd bandlimited signals (Pintelon
and Schoukens, 2001). On the other hand, the presence ofisgragros (and their asymptotic be-
haviour) is determined by the continuous-time system ivelategree. However, relative degree may
be anill-definedcharacteristic for continuous-time models, easily affddty high frequency modelling
errors, even beyond the sampling frequency. Thus, one te®dscareful when relying on assumptions
that may be inherently non-robust to the effects of sampling

In this thesis we will repeatedly highlight the issues arglagptions related to the use of sampled-
data models. Examples of these issues are:

e Sampled-data characteristics depend not only on the agntsitime system but also on the sam-
pling process itself. Indeed, for linear systems, the digstime poles depend on the continuous-
time poles and the sampling period, but the zeros dependeochtbice of the hold and the sam-
pling devices.

e The effects of samplingrtifacts such as sampling zeros, play an important role in desgribin
accurate sampled-data models, even though they may becsgtigilble as the sampling period
goes to zero. This applies both to linear systems, whereadestime models can be precisely
characterised, and nonlinear systems, studied in Parthigrevthey can only be approximately
described.

e Any sampled-data description is based on some kind of mod&ieotrue system. However,
under-modelling errors will usually arise at high frequiesadue to the presence of unmodelled
poles, zeros, and/or time delays in the continuous-timesy§Goodwiret al,, 2001). This means
that models usually have to be considered withbmadwidth of validityfor the continuous-time
system.
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e For stochastic models, the unknown input is assumed to bédtexrd€d) continuous-time white
noise process. However, this is known to be a mathematictaadtion that does not usually
correspond to physical reality (Jazwinski, 1970). It catydre approximated to some desired
degree of accuracy by conventional stochastic processbsowdad band spectra (Kloeden and
Platen, 1992). This means that stochastic systems needttedied carefully as the non-ideal
nature of the noise corresponds to a form of high frequenayattiag error.

1.2 Problem statement

In the current thesis, we will study sampled-data modeldif@ar and nonlinear systems. We also
explore the use of these models for control and estimatiam.f@us throughout is aimed at answering
the following kind of questions:

e When using sampled-data models to represent a continuoesstistem, what characteristics are
inherent to the underlying continuous-time system and wahata consequence of the sampling
process itself?

e Isitreasonable to assume that, as the sampling rate is®dethe sampled-data model becomes
indistinguishable from the underlying continuous-timstsyn? How does this convergence oc-
cur?

e What issues are important when using a discrete-time modelpi@sent a system that actually
evolves in continuous-time?

e Can known results on sampling for linear systems be extendeter appropriate conditions, to
nonlinear systems?

1.3 Thesis overview

Following this introduction, the contents of the thesis jpresented into six chapters, that have been
organised in two parts: the first part considers linear systend the second part deals with extensions
to the nonlinear case. A final chapter presents a summary @amdusions, and two appendices have
been included with supporting material.

In more detail, Paft/l explores sampled data models for tisgstems. A key point here is that the
resultant discrete-time models are exaet, they are able to exactly replicate the sequence of samples
of the system output, in the deterministic case, or itssta#l properties, for stochastic systems. We
present various extensions of existing results. More iti@mbly, we cast several known results in a
different light, thusopening the dooto the nonlinear case treated in Part Il. A more detailedrijgtsmn
of the various chapters follows.

In Chapterf 2, sampling of deterministic and stochasticdirsystems is reviewed. Here we present
and extend well-known results, in such a way as to introdheebasic building blocks required in
subsequent chapters. Many of the results have been tralfiqpresented in terms of theoperator
and the associateddomain. Here, we rewrite and extend these results using-tigerator and the
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correspondingy-domain variable. In particular, we obtain a novel représtion of the asymptotic
sampling zeros for the linear case. This result will proveyueseful in the nonlinear context studied
later.

In Chapterf 3 we explore thartifacts produced by the sampling process. It is known that the zeros
of the sampled-data model depend on the hold device (forrdatistic models) and the output prefilter
(in the stochastic case). In this chapter, we will show hoeséhdevices can be designed so as to asymp-
totically assign the sampling zeros. The design procedepemds only on the continuous-time system
relative degree. However, high frequency modelling eroans affect the relative degree assumption.
Thus, we introduce the concept lodndwidth of validity within which our design procedure is shown
to be robust.

In a similar fashion, robustness issues in continuous-tiystem identification from sampled-data
are explored in Chapter 4. In particular, we study robustpeeblems that may arise when trying to
estimate continuous-time system parameters using sardptadnodels. We show that some algorithms
commonly used are inherently sensitive to assumptionstdbeunter-sample behaviour of the signals
or to the frequency response of the system beyond the sagnipiquency. On the other hand, we
propose the use of a maximum likelihood estimation in thgifesicy domain over imited bandwidth
of frequencies. We show that this procedure succesfullyesdgs the robustness issues previously
considered, such as sampling zeros in discrete-time madelshe presence of high-frequency under-
modelling in the continuous-time system.

We conclude Part I, in Chapter 5, by exploring how sampled-daodels are utilised in Linear-
Quadratic (LQ) constrained optimal control problems. Tasults are presented: firstly, it is shown that
the solution to the LQ constrained problem, in continuaoeet can be approximated arbitrarily closely
by solving an associated sampled-data LQ constrainedat@rtsblem, using a sufficiently small sam-
pling period. Furthermore, the solution is shown to sattefycontinuous-time constrain{s.e., at all
time instants) by appropriately scaling the discrete-timestraints (at the sampling instants). Secondly,
we revisit the operator factorisation approach to LQ pnotsie We use this approach to formulate an
interesting convergence result: the (finite set of) singuddues of a linear operator, associated with the
sampled-data model, are shown to converge to (a subseteo§jriular values of the continuous-time
system operator. The latter result can be applied, for el@mpsuboptimal control strategies for fast
sampling applications, exploiting the singular structaoféhe system to solve the constrained control
problem.

Part Il considers sampled-data models for nonlinear systéxrkey departure from the linear case
is that, in the nonlinear case, exact discrete-time modelsigually impossible to obtain. Thus, we
present approximate sampled-data models both for detestiniand stochastic systems.

Chaptef 6 presents an approximate sampled-data model tenmndgistic nonlinear systems. The
model is simple to obtain. We show that it provides a more eteudescription (as a function of
the sampling period and the nonlinear relative degree) dmamodels obtained by simply using Euler
integration. An interesting feature of the proposed maglthat it includes extra zero dynamics. In fact,
thesesampling zero dynamidsrn out to be exactly the same as those that arise (asymgtp}iin the
linear case. This result gives important new insights ihe effect of sampling in nonlinear dynamic
systems. As an illustration, the impact of these nonlineaning zeros on models used for system
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identification is explored.

Sampled-data models for stochastic nonlinear systemdudtied in Chapter [7. We briefly review
the mathematical background of nonlinear stochastic Byst®y using stochastic differential equation.
In particular, we present a sampled-data model based onrizahsolution of stochastic differential
equations.

Finally, Chaptef B presents concluding remarks and sunsemthe topics presented in the thesis.
Some possible future lines of research are also proposed.

We also have included two appendices with supporting neltini the contents in the thesis. Ap-
pendiX A presents some useful results about matrices, whéneAppendix B a brief review of linear
operators in Hilbert spaces is presented.

1.4 Thesis contributions

The main contributions of this thesis are believed to be:

Chapter|2. In this chapter we present results on sampled-data modstsirbg- andj-operator frame-
works. In particular, a novel characterisation of the asigtip sampling zeros in the-domain
(i.e, using thed-operator) is given. This formulation is given in terms ofypmmials in the
variabley which are also shown to satisfy a recursive relationship.

Chapter[3. We analyse the role of sample and hold devices in obtainingkal-data models. Specif-
ically, it is shown that generalised hold functions (GHF) t& designed to assign the asymptotic
location of sampling zeros for deterministic systems. Aldaault is presented, namely, a de-
sign method to design generalised sampling filters (GSFsma the asymptotic sampling zeros
of stochastic linear models. Both procedures are showngerdeonly on the continuous-time
system relative degree.

Chapter/4. We illustrate issues that may arise when trying to identdptmuous-time systems from
sampled data. We propose a maximum likelihood estimationgature in the frequency domain
restricted to a limited bandwidth, and we show that this pdate is robust to sampling effects.

Chapter/5. We present two asymptotic results regarding the use of safgtta models in constrained
linear quadratic optimal control problems. Firstly, we stthat, as the sampling rate increases,
the solution of an associated sampled-data control prollém (possibly) tighter constraints
converges to the original continuous-time problem. In #heosd result, we show that the (finite
set of) singular values of the discrete-time system operainverges to a subset of the (infinite
set of) singular values of the continuous-time system dpgeras the sampling period goes to
zero.

Chapter[6. We present an approximate sampled-data model for nonlaetarministic systems. This
model is shown to have very insightful features: firstlysitiased on a more accurate approxi-
mation than simple Euler integration, and, secondly, ilidessampling zero dynamiasith no
counterpart in continuous time. Moreover, we show thatafsasnpling zero dynamics are exactly
the same as the sampling zeros that arise in the linear case.
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Chapter[7. We present an approximate sampled-data models for nonlgteehastic systems. This
discrete-time model is based on numerical solution of sietth differential equations. We show
that the accuracy of the obtained model can be precisehactaised. We also unveil connections
to the linear case.
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2005.

e Conference papers:
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Chapter 2

The sampling process for linear
systems

2.1 Overview

In this chapter we review and extend known results on sarndéa models for linear systems. We
consider both the deterministic and the stochastic casest bfahe existing discrete-time literature is
based on the use of the shift operajoHere we recast these results using the delta opetatdhis is
particularly useful in the sampled-data framework, sisiaodels explicitly include the sampling period
A. Indeed, the results presented here can be considered keythailding blocks for the chapters that
follow.

In this first part of the Thesis we consider only the case @dirsystems. For this case it is possible
to obtainexact sampled-data models. For deterministic systems, we obtaanete-time models that
exactly describe the relationship between an input seguep@and the sampled outpyt, = y(kA)
(Section 2.2). In the case of stochastic systems, we obtsamaled-data model such that its output se-
quencey;, has the same second order properties as does the contitimeusdtputy(¢) at the sampling
instants (Section 2.4).

Ml ™ oo i

Continuous-time

Hold >
e ult) System o(t)

> Sample —
Yk

Figure 2.1: Sampling process

We consider the general sampling scheme represented ireR2glL In this figure, we can distin-
guish three basic elements:

e Thehold device used to generate the continuous-time inpi} of the system based on a discrete
time sequence,, defined at specific time instants.

11
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e Thecontinuous-time system defined by a set of differential equations evolving in contius-
time. Here we restrict our attention to the linear case. Ttuaswill describe the system generi-
cally as:

y(t) = G(p)u(t) + H(p)o(t) (2.1)

wherep = % is the time-derivative operator, and:

— G(p) is the deterministic part of a continuous-time system, Whakes into account the
effect of the deterministic input(¢); and

— H(p) is the stochastic part of the systemrmise modelwhich describes the part of the
output that does not depend on the inp(t). This includes the effect of disturbances and
noise, represented asntinuous-time white noiggrocesso(t) filtered through the system
H(p) (We will give a more mathematically rigorous treatmentdpate

e Thesampling device which gives an output sequence of samplgs,This can be obtained taking
samples of)(¢) either instantaneously or after some form of anti-aliagiltering.

We will assume that the input updates and the output samplgselm at the same time instants
which are integer multiples of a uniform sampling periagi.e., ¢, = kA.

We will focus our attention to single-input single-outp@&I$0) systems. Nevertheless, several
of the results are expressed using state-space modelsharsd,they can be readily extended to the
multivariable case.

In the following sections we consider the sampling processléterministic and stochastic systems.
For the linear case, considered in this first part of the fhélsé superposition principle holds. Thus, this
apparent separate treatment is well justified. It reflecddht that the effects of the deterministic and
the stochastic part of (2.1) can be considered indenpelydergach other.

2.2 Sampling of deterministic linear systems

In this section we consider the sampling process for theraniéstic part of the systen (2.1)e., we
are interested in a discrete-time description of the m@fatiip between the known input sequenge
and the samples of the outpyj,. Stochastic systems are considered later in Section 2.4g6 2b.

A strictly proper SISO linear time-invariant system can éeresented in state-space form as:

&(t) = Ax(t) + Bu(t) (2.2)
y(t) = Ca(t) (2.3)
where the system state vectori@) € R", and the matrices até € R**" andB,CT € R".
Lemma 2.1 This system can also be represented as:
Y(s) = G(s)U(s) (2.4)

whereU (s) andY (s) Laplace transforms ofi(¢) andy(¢), respectively, and the systeransfer func-
tion is:
G(s)=C(sI, — A)~'B (2.5)
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wherel,, € R"*" is the identity matrix.

The transfer function (2.5) can be represented as a quatigraynomials:

G(s) = (2.6)

The roots off'(s) and E(s) are thezerosand thepolesof the system, respectively. If ih (2.2)—(2.3)
the pair(A, B) is completely controllable an@C, A) is completely observable then the state-space
model is aninimal realization (Kwakernaak and Sivan, 1972). This implies that there arzemo/pole
cancellations in (2/6), and, thus, the numerator and dematari polynomials are given by:

F(s) = Cadj(sl, — A)B (2.7)
E(s) = det(sI, — A) (2.8)

The numeratof (2.7) can also be expressed as:

F(s) =det

ls[n A -B 2.9

0

(See equation (A.16) in Appendix A.)

2.2.1 The hold device

In Figurel 2.1 there is a hold device which generates a contigiime input to the systemy(t), from
a sequence of values,, defined at specific time instants = kA. The most commonly used hold
devices are:

Zero-Order Hold (ZOH) , which simply keeps its output constant between samplistaitsj.e.,:

u(t) = ug i EA<t< (k+1)A (2.10)

First-Order Hold (FOH) , which does a lineagextrapolationusing the current and the previous ele-
ments of the input sequendes.,:
u(?) :uw%(t—km CEA<t<(k+1)A (2.11)
There are, indeed, other and more general options for thied®lice, such as, for example, Frac-
tional Order Holds (FROH) (Blachuta, 2001) and Generalidett! Functions (see Chaptef 3). Any
of these can be uniquely characterised by tivapulse responsi(¢), defined as the continuous-time
output (of the hold device) obtained whep is the Kronecker delta function. Figure 2.2 shows the

impulse responserresponding to the ZOH, FOH, and a more general hold fon¢teuer and Good-
win, 1996).
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Y ~+

Y
Y ~+

(a) Zero-Order Hold (b) First-Order Hold (c) Generalised Hold

Figure 2.2: Impulse response of some hold devices.

2.2.2 The sampled-data model

There are different ways to obtain the sampled data modeésponding to the sampling scheme in
Figure[2.1. The model can be derived directly from the tranifnction [(2.6) or from the state space
model [(2.2)-1(2.3). The following result allows us to obtaistate-space representation of the sampled-
data model when the continuous-time system input is gezetreging a ZOH.

Lemma 2.2 If the input of the continuous-time systé2n2)-(2.3)is generated from the input sequence
ug using a ZOH, then a state-space representation of the fagudampled-data model is given by:

gy = Tpy1 = Agxy, + Bguy, (2.12)
yr = Cay, (2.13)

where the sampled outputdgg = y(kA), and the matrices are:
A
A, =B B, = / e Bdn (2.14)
0

Proof. The state evolution starting at= ¢, = kA is given by (Kwakernaak and Sivan, 1972;
Astrom and Wittenmark, 1997):

kAT
z(kA 4+ 7) = eV (kA) + / eARATT=1) By (n)dn (2.15)
kA

Replacingr = A, and noticing thatu(n) = uy, whenkA < n < kA + A, we obtain[(2.12).
Equation[(2.1B) is obtained directly from the instantarse@lation|[(2.3).
0
The discrete-time transfer function representation ofghmpled-data system can be readily ob-
tained from Lemma 2.2 as:
G,(2) = C(zI, — A) " 'B, (2.16)

The last expression is equivalent to the pulse transfetifumobtained directly from the continuous-
time transfer function, as stated in the following lemma
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Lemma 2.3 The sampled-data transfer functi@16)can be obtained using the inverse Laplace trans-
form of the continuous-time step response, computing-tlensform, and dividing it by th&€-transform
of a discrete-time step:

Gq(z)(lzl)Z{ﬁl{@} m} (2.17)
t=k

B B 1 Y+joo esA G(S)

—(1-2 1)%/7#00 T s (2.18)

whereA is the sampling period ang € R is such that all poles of7(s)/s have real part less than.
Furthermore, if the integration path if2.18)is closed by a semicircle to the right, we obtain:

1. o= G((log z 4 2mjt)/A)
_ o 1
Gylz)=(1—2 )Z;OC Tog 2 7 210 (2.19)
Proof. See, for examplédstrom and Wittenmark (1997).
([l

Expression[(2.19), when considered in the frequency domegitacingz = e/“2, illustrates the
well-known aliasing effect: the frequency response of timled-data system is obtained by folding
of the continuous-time frequency resporise,

. 1 & 2 2
Gofe?2) = + 3" Hzonm (jw +j££) G (jw —|—j£€> (2.20)

l=—o00
whereH 70 (s) is the Laplace transform of the ZOH impulse response in Ei@u2(a)i.e.,

1—es8

Hzou(s) = — (2.21)

Equation|(2.20) can be also derived from (2.16) using thie-stpace matrices ih (2.14) (Feuer and
Goodwin, 1996, Lemma 4.6.1).

The sampled-data model for a given continuous-time systepentds on the choice of the hold
device. As a way of illustration, the following lemma estabés the sampled-data model obtained
when, insted of the ZOH considered above, the continueuns-thput is generated by a First Order
Hold.

Lemma 2.4 If the continuous-time plant input is generated using a FGHg2.11) the corresponding
sampled-data model can be represented in the followingstpace form

zev| _ A Byl o | Byl (2.22)
U, 0 0 U1 1
X
Yk = [C 0} l g 1 (2.23)
Uk—1

A A
_ _AA 1_ N\ ag 2 _ n An
Ag=e B, = /0 (2 A) e B dn B, /o (A 1) e B dn (2.24)
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The discrete-time transfer function can be obtained baimfthe state-space representation as:

—1
_ A, By Bj
or from the continuous-time transfer functi6(s), i.e.,
_ 1 [ (1+As)
Gy(2)=(1—2"12z2 {c ! {TSQG(S) (2.26)
Proof. See, for example, Hagiwagd al. (1993).
O

Sampled-data models obtained using a more general kindldfdevice, such as the generalised
hold with impulse response as shawn 2.2(c), will be disaligs€hapter 3. In fact, we will see that it is
possible to arbitrarily assign the discrete-tisanplingzeros by designing the generalised hold device.

2.2.3 Poles and Zeros

We next consider the relation between the poles and zerdseaampled-data modél (2.16) and the
poles and zeros of the continuous-time system (2.5).
The discrete-time modeél (2.16) can be rewritten as a quobigpolynomials as

Fy(z2)
G = 2.27
where:
Fy(2) = Cadj(21, — A,)B, = det [ZI" — A _fq (2.28)
E,(z) = det(zl, — Ay) (2.29)

where the second equality in (2:128) is a consequende of {An1Bppendix A.

The relationship between the poles of the pulse transfetitum(2.27) and the underlying continuous-
time system can be established from equation (2.14). Ind&ed is an eigenvalue ofl (i.e., a pole
of G(s)), thene*2 is an eigenvalue ofl, = ¢#2, and, thus, a pole of,(z) (Astrom and Witten-
mark, 1997).

On the other hand, the relation between the zeros in dis@atkin continuous-time is much more
involved as we can see in the numerator polynotfijgk). Moreover, the discrete-time transfer function
(2.27) will generically have relative degréeindependent of the relative degree of the continuous-time
system. Thus fact, extra zeros appear in the sampled-datal with no continuous-time counterpart.
These, so calledampling zeros can be asymptotically characterised as we will study irtiSe@.3.

Similar relations between discrete- and continuous-timlegpand zeros can be established when
using non-ZOH input. For example, if we consider the samyplaizh model obtained in Lemra 2.4 for
the FOH case, we see that the discrete-time poles are givérelsigenvalues of* (as in the ZOH
case) plus one pole at the origin= 0. On the other hand, the discrete-time zeros will be genlgrica
different that the ones obtained when using a ZOH.
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2.2.4 Delta operator models

Most of the results and textbooks concerning discrete-systems usually describe the models us-
ing the shift operatog and and the associatetttransform, as in Lemma 2.2 (Jury, 1958; Frankdin
al., 1990;Astrom and Wittenmark, 1997). The relation between a sampléalfdadel and the under-
lying continuous-time system can be better expressed bydbef the delta operator (Middleton and
Goodwin, 1990; Premaratne and Jury, 1994; Feuer and Gopd@@6; Lennartsoet al,, 2004), both

in the (discrete) time and complex variable domain:

_q—1 _z—1
0="F — T=3 (2.30)

The use of the-operator corresponds to a reparameterisation of sang@tdmodels that allows
one to explicitly include the sampling period in the diserime description.

Remark 2.5 The operators defined in(2.30)is also called (forward) divided difference or (forward)
Euler operator. However, itis important to distinguishween the exact sampled-data models expressed
in terms of this operator (obtained in the same way as exdfttgherator models), and those models
obtained by simple Euler integration. The latter are onlypapimate discrete-time descriptions of the
underlying continuous-time system, where time derivatingre been replaced by divided differences.

The following lemma presents tldeoperator model corresponding to the sampled-data déiserip
obtained in Lemma 2.2.

Lemma 2.6 The discrete-time mod&.12)-(2.13)in Lemma 2.2 can be rewritten using the delta oper-
ator as:

dxy = Asxy, + Bsug (2.31)
yr = Cxay, (2.32)
where:
eAd T, B,
As = x Bs = ~ (2.33)

Proof. The expressions follow directly using Lemma2.2 and the d&finof the delta operator:

6l’k = xk+1A_ Tk = Aq; In{I}k + %Ul@ (234)

O

Remark 2.7 One advantage of using the delta operator model in Lemmaéx6rhes apparent when
considering the case of fast sampling rates. Specificalyha sampling period go to zero, the matrices
of the shift operator model in Lemma R.2 do not have a relatiith their continuous-time counterpart.
In fact, from(2.14), we have that:

Ag=eM =T, + AN+ ... 2207, (2.35)

A
B, = / A" Bdn 220 (2.36)
0
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On the other hand, the matrices used in the delta operatoet{@B1)converge to their continuous-
time counterpart (Middleton and Goodwin, 1990):

AN
AF%:AjL%AM... A0 4 (2.37)
1 A A A—0
By = | "By 220 p (2.38)
0

O

Many results in linear system theory can be understood inifiedrframework by the use of the
o-operator. As in the previous remark, the continuous-tiameacan be readily obtained as the limiting
discrete-time case, when the sampling period tends to Xwoeover, the use of the delta operator has
been shown to also provide numerical advantages for coripuigd purposes (Goodwiet al., 1992).

Lemmd 2.6 provides a state-space sampled-data model ia tétimes-operator. As a consequence,
we have that thé-operator transfer function, expressed using the assotcizamplex variabley in

(2.30), is given by:

Gs(v) = g‘;(&; (2.39)

where:
F3(7) = Cadj(yL, — A5)Bs = det l“" A o (2.40)
Es(y) = det(vI, — As) (2.41)

The convergence results in (2.37)—(2.38) imply that:

lim F5(v) = F(y) ,  lim E5(y) = E(y) ,and, thus, lim Gs(v) = G(7) (2.42)

In this thesis we will typically express sampled-data medgling the delta operator format since it
allows one to maintain a strong connection with the undegyiontinuous-time system. However, shift
operator models will also be used, where appropriate, retithgresent results traditionally expressed in
this framework, or for the sake of simplicity.

2.3 Asymptotic sampling zeros

As we have already seen in Section 2.2, the poles of a sandpledmodel can be readily charac-
terised in terms of the sampling perial, and the continuous-time system poles. However, the oelati
between the zeros from discrete- to continuous-time is nnouate involved. Furthermore, the discrete-
time model will have, in general, relative degreewhich implies the presence of extra zeros with no
continuous-time counterpart. These are usually calleddngpling zerosf the discrete-time model.

In this section, we review results concerning the asymptmhaviour of the zeros in sampled-data
models, as the sampling period goes to zero. These reslitta fine seminal work by&strt')m et al.
(1984), where the asymptotic location of timerinsic and samplingzeros was first described, for the
ZOH case, using shift operator models.

The next result characterises the sampled-data model lf@rshimpling zeros) corresponding to an
n-th order integrator in terms of very specific polynomials.
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Lemma 2.8 (Astrbm et al, 1984, Lemma 1) For a sampling peridx] the pulse transfer function cor-
responding to thex-th order integratorG(s) = s~ ™, is given by:

A" Bu(z)
Gql2) = —+ RN (2.43)
where:

Bo(z) = 072" b2 DT (2.44)

k

+1
pr — _1\k—£ yn n ]

F=2 (-1 (k_£> (2.45)

(=1
O

Remark 2.9 The polynomials defined in (2./44)—(2.45) correspond, ity tache Euler-Fbbenius poly-
nomials (also calledeciprocal polynomialsand are known to satisfy several propertiesiffténsson,
1982; Welleret al, 2001):

1. Their coefficients can be computed recursively:
by =0 =1 ;Vn > 1 (2.46)
=k 4 (n =k + 1)b ] k=2,...,n—1 (2.47)
2. Their roots are always negative real numbers.

3. From the symmetry of the coefficient§2m5) i.e, b} = b, _,, it follows that, if B,,(z20) = 0,
thenB,, (2, ') = 0.

4. They satisfy an interlacing property, namely, every wfdhe polynomialB,,;1(z) lays between
every two adjacent roots d@#,,(z), forn > 2.

5. The following recursive relation holds:
Bni1(2) = 2(1 = 2)B,/(2) + (nz + 1)Bu(2) ;Yn>1 (2.48)

B,

whereB,’ = &2

We next list the first of these polynomials:

Bi(z) =1 (2.49)
By(z)=z+1 (2.50)
Bs(z) =22 +424+1=(24+2+V3)(z+2—V3) (2.51)
By(2) = 2% + 1122+ 1124+ 1= (2 + 1) (2 + 5 + 2v6) (2 + 5 — 2V6) (2.52)

These polynomials will also play a role in the characteidsadf the asymptotic zeros of the sampled
output spectrum. In particular, in the stochastic caseidensd in Sectionh 2]5, the following result will
be used.
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Lemma 2.10 The polynomials defined in Lemma 2.8 satisfy the followinmggn:

oo

1 z2Bp_1(2)
= >2 2.53
2 Tot ey - ile—1p "7 259

Proof. As shown by Wahlberg (1988), this result follows from Lemm& &nd expression (2.19).
O

Remark 2.11 Throughout the current Thesis, we will see that sampled-daidels fom-th order inte-
grator play a very important role in obtaining asymptotistdts. Indeed, as the sampling rate increases,
a system of relative degreg behavess ann-th order integrator. This will be a recurrent and insighitfu
interpretation for deterministic and stochastic systebugh in the linear and nonlinear frameworks.

As stated at the beginning of this chapter, our aim here i®nlytto review the existing literature
regarding sampling of linear systems, but to also extendvkn@sults by using thé-operator. In
particular, the next result constitutes one small but nogetribution in this thesis, which recasts Lemma
[2.8 in the delta operator framework. This alternative foatian will prove to be particularly useful
when considering sampled-data models for nonlinear systei@hapter 6.

Lemma 2.12 Given a sampling period\, the exact sampled-data model corresponding tortka
order integratorG(s) = s~™, n > 1, when using a ZOH input, is given by:

n A
Gif) = 2220 (2.54)
where the polynomial,, (A~) is given by:
pn(Ay) = det M, (2.55)
and where the matrid/, is defined by:
R
-y 1 (ﬁ,z)! (%71)!
M’ﬂ, = : '.. '._ : : (256)
—y 1 %
0 —y 1

Proof. Then-th order integrato€(s) = s~ can be represented in the state-space form (2.2)—(2.3),
where the matrices take the specific form:

0 0

_ Infl — —

A= B = C—[l 0 --- 0 (2.57)
0 0
ofo -~ o0 1

The equivalent sampled-data systém (2.31)—(2.32) carilydzsl obtained on noting that, by the
Cayley-Hamilton theorem (Horn and Johnson, 1990), anyirmadtsatisfies its own characteristic equa-
tion,.e, A™ = 0. As a consequence, the corresponding exponential magexAppendix A) is readily
obtained:

e =T+ AN+ + AT A (2.58)
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Substituting into(2.33), we obtain:
A A"2 ] N
21 (n—1)! TQ
An73 AT
eAA 7 0 0 1 (n—2)! A (n—1)!
A[S = = . Bg = / €AndnB = (259)
A : 0 R
0 0 1 2
0 0 0 | 1 |

Note that substituting these matrices into (2.31) and apglthe delta transform (Middleton and
Goodwin, 1990), with initial conditions equal to zero, weaih the following set of equations:

A

An72

Anfl T

X1 L5 ot ar | [ X2
n—3 n—2
X2 0 1 (%72)! (%71)! X3
Rk : : : (2.60)
’YXn—l 0 ... 0 % Xn
L 7 X, | 0 0 1 LU |
This set of algebraic equations can be solved in terms of itiestiate X () = Y (v):
7Y X1 1 % %!_l Xs
0 0 —y 1 Az
n—1)! :
=1 .=, R (2.61)
: X,
0 0 0 — 1 U

M,
Next, usingCramer’s Rule(Strang, 1988), we can solve the system for the ifip(sf) in terms of
Y(v):

det N
= 2.62
det M, ( )
wherel,, is defined as il (2.61) (see also (2.56)), and:
[ A A"? ]
L5 (n—T1 7Y
- 1 (%4_2)1 0
N=|: : : (2.63)
0o ... —v 1 0
0o ... —y 0

From (2.62), using definition (2.55), and computing the dateant of the matrixV, for example,
along the last column, we obtain the inverse sampled-datasytransfer function:

n (A7)

)=o) = G = g =

pn(A7Y) U()

(2.64)

O

Remark 2.13 The above result, though formally equivalent to the knowft dbmain expressions in
Lemma 2.8, describes the results in, what we believe to beyel florm which differs from the usual
format given in the literature (Middleton and Goodwin, 19%@uer and Goodwin, 1996). This will
prove useful later especially in relation to nonlinear gyss.
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Remark 2.14 The polynomialg,,(Av) in Lemma 2.12, when rewritten in terms of theariable using
(2.30), correspond to the Euler-Bbenius polynomials. In fact, the following relation halds

(A e =pa(z—1) = B:L(!Z) (2.65)

The role of these polynomials in describing pulse transfacfion zeros for linear systems was first
described byAstromet al.(1984).

The first of the Euler-Fibenius polynomials in the-domain (corresponding to those in (2.49)-
(2.51), on page 19) are given by:

1

p1(A7Y)
p2(A7)
pa(Ay) = 1+ Ay + 497

(2.66)
(2.67)

(2.68)
Remark 2.15 Note that, in the;-domain, the Euler-Rsbenius polynomials are function of the argument

A~. This means that their roots, in the complex plane of thealdeiv, all go to infinity asA goes to
zero.

1+%7

An immediate consequence of Lemma 2.12 is a recursiveaaléti the polynomial®,, (Av). We
first present the following preliminary result.

Lemma 2.16 For any integern > 1, consider the matrix\/,, defined in(2.56) and (2.61) Then we
have:

v YPr—1(A7)
1 0 - 1 ’72pn—2(A7)
(M,) =AY ; (2.69)
0 n

o~
Proof. The left hand side of equation (2)69) corresponds to solsisiem/[(2.61) by inverting the

matrix M,,, and omitting the output variabl€(~). Thus, in the same way that we solved (2.61) for

U (~) in the proof of Lemma 2.12, we can use Cramer’s Rule (Stra®88)Lto solve for every stat&,,
{=2,...,n. This leads to:

det Ng_l
Xp=—F— =2, 2.7
£ “det M, 1£=2,...,m (2.70)
whereN,_; is the matrix obtained by replacing tiié — 1)-th column of,, by the vector on the left
of equation[(2.61). Thus:

£—3 £—1
1 ... A A

An—l e
-1 | 7 7 nl

A272 An72

- 0 1 (n—1)!

0 1
: - A A"
Ny = : - = |0 a1 (n—r52)! (2.71)

An—l

0 0 0 1 (n—f+1)!

n—~L0—1

0] — A(n—l)!

L0 0o (o] o 1]
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Then, computing the determinant along {lie- 1)-th column, we have that:

det Ny, =~ (—1)%(det P)(det M,,_¢11) (2.72)
where: -
AT
-y 1 @—3)1
0o .o :
P= = detP = (—n)"2 (2.73)
. —y 1
0 0 —y

and, from definition/ (2.55)~(2.56):

det Mn—é-‘rl = pn—€+1(A7) (274)

Substituting/(2.73) and (2.74) in (2.72), we obtain:
det No—1 =~"""pn_r1(A7) (2.75)

It then follows that the solution of (2.61) is:

X2 Y _Vpnfl(A’Y) |
X3 0 1 ’yzpn—2(ArY)
=) | Y = : Y 2.76
=T Y= as | (276)
Xn 0 Y p1(A9)
LU | 10 L
which is equivalent to equation (2.69).
O

Using the above result, we next present a second novel reduitth establishes a recursive relation
between the Euler-Bbenious polynomials in the-domain. Note that this recursion, together with
(2.48) for thez-domain formulation, may be helpful to compute the polyrairobefficients.

Lemma 2.17 The polynomialg,, (A~) defined by2.55)(2.56)satisfy the recursion:

po(Av) =1 (2.77)
n A £—1
pa(d) =3 B0 (a) nz1 279)
=1 ’
and:
iimopn(Afy) =1 iVne{1,2,...} (2.79)

Proof. From the definition of matrix\Z,, in (2.56), we have that:

A Anfl
1|4 . Aar

M, = (2.80)
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The determinant of this matrix can be readily computed, gipiroperties of block matrices (see
AppendixX A):

det M, = det M,y x det [ 1— |4 . AT\ (M,_1)"" | (2.81)

0
Using definition[(2.55) and the preliminary result in Lemma&& we have that:

¥ Pn—2(A%)
Pn(AY) = pa_i(Ay) | 1+ [% A;ﬂ o N (2.82)
Pr-1(A7) {472 p, (An)
,yn—l
The recursive relation in (2.78) corresponds exactly t8Zp.
Finally, (2.79) readily follows from the recursion (2178 noting that:
Jim p,(Ay) = lim py1 (A7) =... = lim pi(Ay) =1 (2.83)
]

We next consider the case of a general SISO linear contintimgssystem. Again, we are interested
in the corresponding discrete-time model when a ZOH inpapislied. The relationship between the
continuous-time poles and those of the discrete-time mecdelbe easily determined. However, the
relationship between the zeros in the continuous and déstiree domains is much more involved. We
consider the asymptotic case as the sampling rate increases

Lemma 2.18 (Astrbm etal, 1984, Theorem 1) L&¥(s) be a rational function:

F(s) (s—z1)(s—22) - (s —2zm)
G(s) = =K 2.84
O =86 = =) (5= pn) (289
and G,(z) the corresponding pulse transfer function. Assume that n,i.e., G(s) strictly proper.
Then as the sampling perial goes td), m zeros 0iG,(z) go tol ase*?, and the remaining. —m — 1

zeros ofG,(z) go to the zeros of the polynomiBl,_,,,(z) defined in Lemmla 2.8¢.,

Az — 1) By (2)

o —m)lz— 1" (2.85)

O

The above result was expressed in terms of the shift opeiécan also reexpress the result in the
delta operator framework as in the following lemma.

Lemma 2.19 Consider a SISO linear continuous-time system describedebtransfer functiorf2.84)
Given a sampling period\, the discrete-time sampled-data model correspondingitosystem, for a
ZOH input, is given by:
F,
Gs(y) = £210) (2.86)




2.4. Sampling of stochastic linear systems 25

and, as the sampling periafl goes to zero:
Fs (’Y) - F(’Y)pnfm(A'Y) (2.87)

Es(v)=]] (7 - %) — B(v) (2.88)
=1

Proof. See any of the references (Middleton and Goodwin, 1990; @ Goodwin, 1996).
([l

The results presented above consider the case when thewmmitime system input is generated by
a ZOH. Similar results can be obtained when a different helda is utilised. In particular, in Chapter
[3 we will see that the zeros (and thus, the asymptotic sampénos) of the discrete-time model depend
on the particular choice of the hold. As an illustration, wegent the following result that characterises
the sampling zeros obtained when the continuous-time itgoihie system is generated using a FOH, in
terms of polynomials closely related to the Euledenius polynomials defined in Lemma2.8.

Lemma 2.20 (Hagiwaraet al, 1993, Theorem 2) Considéi(s) a strictly proper transfer function as
in (2.84) When using a FOH to generate the continuous-time inputnd.i.1) the pulse transfer
function(2.26)has, in generalp zeros. Moreover, as the sampling periddgoes to0:

AX0 KAnim(z — 1)an7m(Z)

Gal2) (- m 1 Diz(z— 1" (2.89)
where the sampling zero polynomials,(z), are given by:
Ce(2) = Bea(2) + (£ + 1)(z — 1)By(2) (2.90)
([
2.4 Sampling of stochastic linear systems
In this section we consider the sampling of stochastic lisgatems described as:
y(t) = H(p)i(1) (2.91)

whereo(t) is a continuous-time white nois@put process. This kind of models typically describe
situations where the input of a system cannot be measuresiwtkinown. They are sometimes also
called, genericallynoise models

We will show how a sampled-data model can be obtained ffo8ijZhat isexact in the sense
that the second order propertie®( spectrum) of its output sequence are the same as the se®rd 0
properties of the output of the continuous-time systemestmpling instants.

We first review the relationship between the spectrum of dilcoous-time process and the asso-
ciated discrete-time spectrum of the sequence of samplesnait briefly discuss the difficulties that
may arise when dealing with a white noise process in contistione. Then we show how sampled-
data models can be obtained for the system (2.91). Finablycharacterise the asymptotic sampling
zeros that appear in the sampled spectrum, in a similar vayaté did for the deterministic case in the
previous section.



26 The sampling process for linear systems

2.4.1 Spectrum of a sampled process

Let us consider a stationary continuous-time stochasticgesy(t), with zero mean and covariance
function:
ry(1) = E{y(t + 7)y(t)} (2.92)
The associated spectral densityspectrum, of this process is given by the Fourier transform of the
covariance function (2.92).e.,

Oy (w) =F{ry(r)} = /_OC ry(T)ej“”dT ; w € (—00,00) (2.93)

If we instantaneously sample the continuous-time signah sampling periodA\, we obtain the
sequencey, = y(kA). The covariance of this sequene€|/], is equal to the continuous-time signal
covarianceat the sampling instants

ryll) = Blyerey} = E{y(kA +LA) y(kA)} = 1, (€A) (2.94)

The power spectral density of the sampled signal is giverhbyDtiscrete-Time Fourier Transform
(DTFT) of the covariance function, namely:

hw) =AY rikle Rt s we [F,F] (2.95)
k=—o00
Remark 2.21 Note that we have used the DTFT as defined in Feuer and Good@#6), which in-
cludes the sampling period as a scaling factor. As a consequence, the DTFT defined thiscoa:
verges to the continuous-time Fourier transform as the damgperiod A goes to zero.

Remark 2.22 The continuous and discrete-time spectral densitie€.B3)and (2.95)respectively, are
real functions of the frequency. However, to make the connections to the deterministic apparent,
we will sometimes express the continuous-time spectruemrimstof the complex variables= jw, i.e,

Oy (w) = ¢, (jw) = @y(s)|8=jw (CT spectrum) (2.96)
and the discrete-time spectrums in terms ef e/“2 or y =, = ej“:*, for shift and delta operator
models, respectivelyg.,

d jwA 5
D (w) = @Y (%) = 0 (1) (2.97)
where:
DU (e?R) = B4 (2)|.__jua (¢-domain DT spectrum) (2.98)
D () = @g(y)\vzwi,l (6-domain DT spectrum) (2.99)

The following lemma relates the spectrum of the sampledessrpito the spectrum of the original
continuous-time process.

Lemma 2.23 Let us consider a stochastic procegg), with spectrum given b§2.93) together with
its sequence of samplegs = y(kA), with discrete-time spectrum given {8.95) Then the following
relationship holds:

oo

I(w)= Y D, (w+ ) (2.100)

f=—00
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Proof. The discrete-time spectrum (2.95) can be rewritten in tevftise inverse (continuous-time)
Fourier transform of the covariance function:

oo o oo 1 0o . iy
@Z(w) =A Z 1y (kA)e IR = A Z {%/ D, (n)elMF A dp| e~ IwkA (2.101)
k=—oc0 —o0

k=—oc0
A [~ S Li(n-w)kA
= o, | > e dn (2.102)
- k=—oc

The sum of complex exponentials can be rewritten as an iefsnitm of Dirac impulses spread every
QK’T (Feuer and Goodwin, 1996; Oppenheim and Schafer, 1989),

oo o0

S edrmks 2n S 6 (n—w—220) (2.103)

k=—o00 {=—o00

Using (2.103) in[(2.102), the result is obtained:

(I)Z("‘)) = /jo @, (n) Z §(n—w—2l)dn= Z /00 ®,(n)s (n—w—2TL)dny (2.104)

l=—0 b=—oc0l —X®

B, (w+ 50
O
Equation|(2.100) reflects the well-known consequence o§dmepling process: the aliasing effect.
For deterministic systems, an analogue result was obtamn@i20). In the stochastic case considered
here, the discrete-time spectrum is obtained by foldindp figquency components of the continuous-
time spectrum.

2.4.2 Continuous-time white noise

The inputo(t) to the systen (2.91) is modelled as zero meduite noiseprocess in continuous-time.
This means that it is a stochastic process that satisfieslioe/ing two conditions:

1. E{o(t)} =0, for all t; and
2. ©(t) is independent of(s), i.e, E{0(t)v(s)} = 0, forall t # s.

However, if we look for a stochastic process with continupaths that satisfies the previous two
conditions, this happens to be equal to zero in the mean sqeasej.e., E{o(t)?} = 0, for all ¢
(Astrom, 1970). This points to the source of some difficulties sithe process(t) does not exist in a
meaningful sense. Indeed, equation (21109) (below) shamtlehlly be written as a stochastic differential
equation (Dksendal, 2003):

dr = Axdt + Bdv (2.105)

wheredv are independent increments, Gaussian distributed, of @pso(¢). This corresponds to a
Wienerprocess that satisfies the following properties (Kallianf@80):

1. It has zero meane., E{v(t)} =0, forall¢;

2. Its increments are independein,, E{(v(t1) — v(t2))(v(s1) — v(s2))} = 0, forall t; > t2 >
s$1 > 82 > 0;and
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3. For everys andt, s < t, v(t) — v(s) has a Gaussian distribution with zero mean and variance
E{(v(t) — v(s))*} = o3|t — 5|

This process is not differentiable everywhere. Howeveavgidefine theontinuous-time white noise
procesCTWN) v(¢) formally as its derivative, then the first two conditions«n) correspond to the
previous conditions required for the process). Note also that the third condition above implies that

CTWN will have infinite variance:
E{dvdv} = E{(v(t +dt) —v(t))*} = o2dt = E{v’} =0 (2.106)

Remark 2.24 Indeed, a continuous-time white noise process is a matheahaistraction and does
not physically exist (Jazwinski, 1970), but it can be apprated to any desired degree of accuracy by
conventional stochastic processes with broad band spéktmeden and Platen, 1992).

Equation [(2.106) suggests that one may consigeas theincremental variance of the Wiener
process(t). Moreover, we can think af(t) as ageneralisecprocess, introducing a Dirac delta function
to define its covariance structure:

ro(t — s) = E{o(t)0(s)} = 026(t — ) (2.107)

In the frequency domaim;? corresponds, in fact, to th@ower spectral densityof (¢) (Feuer and

(&

Goodwin, 1996), which is constant for all frequencies:

D, (w) = / ro(T)e ITdr = o Yw € (—o00,0) (2.108)

— 00

2.4.3 A stochastic sampled-data model

In the sequel we will assume that the the progg#$ in (2.91) does not contain any unfiltered white
noise components. In practice, this can be guaranteed hysthef an anti-aliasing filter. As a conse-
guence, we assume that(p) in (2.91) is a strictly proper transfer function that can bpresented in
state space form as:

dfif) = Az(t) + Bi(t) (2.109)
y(t) = Cx(1) (2.110)

where the system state vectorig) € R™, the matrices aré € R"*" andB,CT € R, and the input
0(t) is a CTWN process with (constant) spectral density

In the previous subsection we briefly discussed the charistits required for the CTWN input to
the stochastic model (2.91). We have seen that a rigoroasent of the state-space model (2.109)—
(2.110) requires that one represents the system as a (sévciipstic differential equation (SDE). How-
ever, for linear systems we will obtain the same results ifpnaceed formally considering the system
as simply driven by the CTWN input (see also Remark 7.4 on pagg 1

The following result gives us the sampled-data model whesiciering instantaneous sampling of
the output/(2.110).
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Lemma 2.25 Consider the stochastic system defined in state-space(f®o®9)-(2.110) where the in-
putv(t) is a CTWN process with (constant) spectral densftyWhen the outpuj(t) is instantaneously
sampled, with sampling periafi, an equivalent discrete-time model is given by:

oxy = As xp + v (2.111)
yr = Cg, (2.112)

whered; = & (e*? — I,,), and the sequence, is a discrete-time white noise (DTWN) process, with
zero mean and covariance structure given by:

E{vgvl'} = Qs W (2.113)
where: N
Qs = % / eAMBBT A 1y (2.114)
0

Proof. The proof (when using shift operator models) can be foundefample, in (8derstdm,
2002). Arguing as in (2.15), we have that:
kA+A AN T
Ty = ePxy + /kA eAFAA= Bo(mydy = dxy, = T"xk + v (2.115)
where the noise sequence is:
1 kA+A

= eARATA= By () dn (2.116)
A Jea

Vg

The covariance ofy, is now given by:

1 EA+A AFA T
E{kaT}:pE /k . eARATA=) By (n)dn /m eAUATA=E) B (&) de

(2.117)

1 kKA+A  AA+A -
== / / eARATA=M B BLip(n)o(€)} BT e UATA8dedn  (2.118)
A kA LA ——
a28(n—¢)
The double integral above is non-zero only whes: ¢ andn = £. Thus, we obtain:
02 kEA+A -
E{vgvl} = A5 / eARA+TA=N) BRT AT (RATA=) gy 5 [k — (] (2.119)
kA
Upon changing variables in the integral, the above exprassan be shown to be equivalent to

(2.113)4(2.114).
O

Remark 2.26 Matrix €2 is in fact the (constant) spectral density of the noise vegtpas can be seen
applying discrete-time Fourier transform (@.113)

Sk [k — o Oklk] _;
fd{m —KA[ ]} =AY Q —KA[ leioka —g,  Lwe % %] (2.120)
k=—o00
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Remark 2.27 Note that the previous result allows us to recover the catirs-time stochastic descrip-
tion (2.109) as the sampling periock goes to zero. In particular, the covarian¢2.113)corresponds
(in continuous-time) to the covariance of the vector predgs(¢) in (2.109) as it can be readily seen
on noting that:

lim Qs = 02 BBT = Q, (2.121)
A—0
iiino LOklk — 0] = 0(ty, — te) (2.122)

Given continuous-time system, Lemma 2.25 provides a sataéa model expressed in terms of
the j-operator. A corresponding shift operator model can rgdm#lobtained rewriting (2.111) as:

qTE = Tpp1 = Agxp + Up (2.123)

wheredv,, = v, A and, as befored, = 1 + AsA. Note that, for this model, the covariance structure of
the noise sequence is given by:

E{op o] } = A?E{vgvf } = AQs 5[k — €] = Q, 5 [k — £ (2.124)
where we have defined, = Q5 A.

Remark 2.28 As noticed by Farrell and Livstone (1996), the matflx in (2.124)can be computed
solving the discrete-time Lyapunov equation (see Appéeidix

Q=P — A PA] (2.125)
or, equivalently, in thé-domain:
Qs = AsP 4+ PAY + AA;PAT (2.126)

whereP satisfies the continuous-time Lyapunov equatidn+ PA” + Q. = 0, for stable systems, or
AP + PAT — Q. = 0, for anti-stable systems. For Lemma 2.25 we have, in padicQ, = c2BB7T.

The sampled-data modél (2.111)—(2.112) is driven by a vestite noise process,. The co-
variance of this process is determined by the mdijxn (2.114), which will generically béull rank
(Soderstom, 2002). We will go further and describe the sampled poges= y(kA) as the output
of a sampled-data model driven byseglescalar noise source. This can be achieved by, first, obtain-
ing the discrete-time spectrum of the sampled sequgpncand then performingpectral factorisation
(Anderson and Moore, 1979).

The output spectrum of the sampled-data model is given ifoll@ving result.

Lemma 2.29 The output spectrur@;j(w) of the sampled-data mod@.111)(2.112)can be obtained
as:
D) (V) = C(Yodn — As) ' Qs (V51 — A7) ' CT (2.127)

wherey,, = x(e/** — 1) and * denote complex conjugation. Usitf3.123) this spectrum can be
equivalently obtained as:

DI(eIR) = AC(e72 ], — Ag) Qe 721, — AT)1CT (2.128)
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Proof. The resultin the delta domain readily follows consideriad {1)—(2.112). These equations
define a discrete-time linear system with a vector inguand outputy,. The output spectrum is then
given by (Middleton and Goodwin, 1990):

P (w) = Hy (1) 0 (w) Hs (75)" (2.129)
whereHs(v,) = C(y.1, — As)~1, and the spectrum of the input noisedi§(w) = Qs (see Remark
2.26). Equation (2.128) follows from the relations = ej“’z‘l,A(; = A‘IA_I, andQs = %.

O

Remark 2.30 The previous lemma allows us to obtain an expression for if@eate-time spectrum of
the sequence of output samples. Additionally, this spectan be used to obtain a stochastic sampled-
data model by utilising spectral factorisation.

Next we present examples showing how stochastic sampledraadels can be obtained utilising
the previous results.

Example 2.31 Let us consider the first order continuous-time auto-regjres(CAR) system:

dl;—(t“ — agy(t) = boo(t) (2130)

whereay < 0 ando(t) is a CTWN process of unitary spectral density, 02 = 1. A suitable state-
space model can readily be obtained as:

dﬁt) = aoz(t) + bod(t) (2.131)
y(t) = z(t) (2.132)

A sampled-data model for this system is readily obtained:

A

qr = "%z + Uy oxy = (%) T + Uk (2.133)

Yk = Tk Y = Tk (2.134)
where,, andv;, are DTWN processes with varianfg and %, respectively. Note that these variances

are not very useful when considering the sampling petlotending to zero. If we compute them, for
example, using Remdrk 2]28, we can see that they are badgdsca

Q, = AQ; = RN A0, (2.135)
2a0A _ 1 .
% = bgu A0 (2.136)

2(10A2

On the other hand, as noticed in Remark 2.27, ¢pectral density2; converges naturally to its
continuous-time counterpart:

b2 (2.137)

O
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In the previous example, a stochastic sampled-data modebbtined for first order systems in
terms of a single scalar noise source. For higher order mgsteemma 2.25 gives a sampled-data
model in terms of a vector inpuf,. However, as described above, we can obtaiacqnvalentsampled-
data model, with a single scalar noise source as input, \gpegtral factorisation. The output of this
system has the same second order statisteesthe same discrete-time spectrum (2.128), as the original
sampled-data model.

In the following example, we illustrate how a sampled-datadel can be obtained for a second
order system by spectral factorisation of the sampled aspectrum.

Example 2.32 Consider the second order continuous-time auto-regre§MR) system:

2
: gt( 2w dﬂi’” + aoy(t) = 0(t) (2.138)

wherev(t) is CTWN process of unitary spectral density, o2 = 1.

A state-space model is given by:

de(t) [0 1 0] .
= lao al] ZORSNEO (2.139)
yt)=[1 0] (2.140)

For this system, even though is possible to compute thesmoreling sampled-data mod@l111)-
(2.112)and the spectral density of the noige114) the expressions are more involved than for the first
order case in Example 2.31. Moreover, the sampled-data hudateined would depend on two noise
sources.

Using (2.128) and after some long calculations, we see that the disdigte-output spectrum has

the form: )
B0 = K s "“(’3;)*( e :Afgl) T (2.141)
where); and \, are the continuous-time system poles, and:
by = (A — Ao) [e(’\1+)‘2)A()\Qe’\1A — ety eMA Age)‘QA} (2.142)
by = [(/\1 + o) (e2MA — P28y (N — Ag)(e2MFTAA 1)} (2.143)
bo = b2 (2.144)
= (2.145)

K =
2202 (A1 — X2)2(M + A2)

If we perform spectral factorisation on the sampled speut{?.141)we can obtain a sampled-data
model in terms of only one noise source,,

@Z(z) = Hq(z)Hq(zfl) (2.146)

where:
VK (c12 + ¢p)

(z — eMB)(z — eM2R)

The expression for the numerator coefficients (and, thugheobnly sampling zero) of the latter

(2.147)

Hy(z) =

discrete-time model are involved. However, it is possiblelitain an asymptotic characterisation of
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this sampled-data model as the sampling period goes to reesimilar fashion as was done for the
deterministic case. We will revisit this model in Exanmip@92n Sectiof 2.5.
(Il

Lemmal 2.25 allows us to obtain a sampled-data model for dastic system when its output is
instantaneously sampled. However, if the outpi) contains a white noise component this approach
becomes impractical because the resulting sequence oflesiimgs infinite variancedétrom, 1970;
Feuer and Goodwin, 1996p8erstom, 2002). To overcome this difficulty, the output of the systhas
to be prefiltered before sampling. In particular, the foilogvresult presents the sampled-data model
when we use aimtegrating filter (also called averaging filter) before sampling.

Lemma 2.33 Consider the stochastic system:

d"‘;ff) — Au(t) + Bi(t) (2.148)
y(t) = Ca(t) + i(t) (2.149)

whereo(t) andw(t) are CTWN processes such that:

. . T
E{ W)} [1_’(5))1 } — Q.6 — 5) (2.150)

w(t)
whereQ). > 0. If the output of the system is sampled using the integrdiitey:

Uk = y(kA) = A y(r)dr (2.151)
EA—A

then the following sampled-data model is obtained:

dx = As Tp + vy, (2.152)
Urk+1 = Crrayg + wy (2.153)
where:
et ] 1 A A
Ag=—7p— =~ " 2.154
=g Cr=gCf ety (2.154)

and the DTWN sequences(m152)(2.153)have the following covariance structure:

T
Qs X —
pd ||| Lo | e dxlk=4 (2.155)
W | | we Z? Ty A
Qs S5l 1 /A .
S / A BOBTeA Ndy (2.156)
Eg F(s_ Ay
where: )
_ A 0 _ B 0
_ B= (2.157)
C 0] 0 1
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Proof. The proof is based on the key observation that, ifrergamethe output of the system as
y(t) = =1 then, substituting in (2.151), we obtain:

) 1 [FATA dz(7) 2(kA 4+ A) — z(kA)
Yk+1 = — dr =
A kA dT A

=0z (2.158)
If we rewrite the continuous-time systeim (2.148)—(2.148)ng the matrices in (2.157), as:
d |x(t) _ i x(t)
dt | 2(t) z(t)
we can then apply the result in Lemma 2.25. More details ofptteaf can be found in (Feuer and
Goodwin, 1996, Lemma 6.4.1).

: (t))] (2.159)

O

Remark 2.34 The discrete-time mod¢2.152)(2.153)can also be expressed, in terms of the shift op-
erator ¢, as:

Tpt1 = Aq T + Uk (2.160)
Ur+1 = Crrxy + wy, (2.161)

whereA, = I, + A;A, U, = v A, and:

T
U U Q, X
TR Ol N A I S ] I P (2.162)
wy | |we Eq q
where: .
Qq = AQ[; ] Zq = 25 ; Fq == ng (2163)

We can now obtain the discrete-time spectrum corresponditige sampled output of the integrating
filter scheme. This is similar in spirit to Lemrma 2]29 for thetantaneous sampling case.

Lemma 2.35 The output spectrum of the sampled-data m@@dl52)-(2.153)is given by:

Qs Xs
ST Ty

(’Y:;In - Ag)ilc}wF

D)) = |Crr (ol — A5) 7" 1] 1

(2.164)

wherey,, = %(eﬂUA — 1) and where* denotes complex conjugation. Equivalently, if the shiérafor
model(2.160)(2.161)is utilised, then the output spectrum can be expressed as:

Qq Eq
> T,

(e7IwA T, — Az)_leF

) (2.165)

(I)%(ej“’A) = A CIF(eijIn_Aq)—l 1} [

Proof. The proof follows the same lines as that of Lemima 2.29. Eqnat{2.152)+(2.153) define
a discrete-time linear system with vector inputsandw;, and outputy,. The output spectrum is then
given by (Middleton and Goodwin, 1990):

®f(w) = Hs ()

o (w) qI>Zw(w)] (T 2.166
@) e |0 o
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where:
Crr(YoI, — As)~t
Hy(y) = | 170t = 40 (2.167)
and the spectrum of the input noise are obtained ffom (2,185)
ol ol Qs %
U(w) vw (w) — 6 6 (2.168)
(@5, (W) @ (w) %5 T
Equation|(2.165) follows from the relations, = ejwzfl, As = AqA’l, and the matrix relations in
(2.163).
(I

In Lemmas 2.20 and 2.35 we have given expressions for theubsfectrum corresponding to
discrete-time models when sampling instantaneously arehwising an integrating pre-filter, respec-
tively. Sampled-data models can be obtained from thesdrsg®cperforming spectral factorisation (as
in Exampld 2.32). The following classic result shows hove gpectral factorisation can be performed
by using Kalman filtering, in order to obtain amovations model The single noise source that appears
as input to this model is known as the innovations sequence.

Lemma 2.36 Consider a state-space discrete-time model a2ii60){(2.161) Then the following
innovations modeis equivalent, in the sense that the outputs of the two matiele the same second
order properties:

Zp+1 = Agzi + Kgey, (2.169)
Uk+1 = Crrzi + ey (2.170)
wheree,, is a discrete-time white noise sequence with covarianceixnat
E{e}} =T, + CrrPCTy (2.171)
The Kalman gaink, is given by:
K, = (A,PClz + %) (T, + CrpPCH )} (2.172)
whereP is the state covariance matrix given by the discrete-tingelalaic Riccati equation:
AgPAY — P — K (Uy+ CrpPClp) K] + Q4 =0 (2.173)

Proof. See, for example, (Anderson and Moore, 1979).

2.5 Asymptotic sampling zeros of the output spectrum

In the previous section we have seen that the output speatfuime sampled-data model contains
sampling zerosvhich have no counterpart in the underlying continuousetsgstem. Similar to the
deterministic case, these zeros can be asymptoticallacteised.

The following two results appear in (Wahlberg, 1988). Thhgracterise the asymptotic sampling
zeros of the output spectrum in the case of instantaneouglisanand when using an integrating pre-
filter.
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Lemma 2.37 (Wahlberg, 1988, Theorem 3.1) Consider the instantaneanngpkng of the continuous-
time proces$2.91) We then have that:

A—0

Pl(w) = 0y (w) (2.174)

uniformly ins, on compact subsets. Moreover, tet;, ¢ = 1,...,m be the2m zeros of®,(s), and
+p;,i=1,...,nits2n poles. Then:

e 2m zeros ofd](z) will converge tol ase*=i2;
e The remainin@(n —m) — 1 will converge to the zeros ef3,(,,_,,)—1(2) asA goes to zero; and
e The2n poles ofd¢(z) equale®ri2, and will hence go td as A goes to zero.

Proof. The proof follows from the fact that, for large|, the continuous-time spectrudn, (s) can
be approximated by &(n — m)-th order integrator. Then the sampled data spectrum catbtaéned
from the infinite sum (2.100). Using Lemma 210, we then haeg t

= 1 ZB?(nfm)fl(z)
- 2.17
2 oz 1 2R~ @ m) - Di(z — I (2179)
The remaining details of the proof can be found in (Wahlb&g}38) a

Lemma 2.38 (Wahlberg, 1988, Theorem 3.2) Consider the averaging sagpf the continuous-time
procesq2.91) Then the results of Lemiha 2.37 essentially apply savettaemaining2(n — m) zeros
of ®¢(z) will converge to the zeros d¥,(,,_.,)(z) as A goes to zero.

Proof. See (Wahlberg, 1988).
O

Example 2.39 Consider again the second order CAR system in Example 2t82discrete-time spec-
trum (2.141)was obtained for the case of instantaneous sampling of thgubu(t). Exact expressions
for the sampling zeros of this spectrum are quite involveolweler, performing a Taylor series expan-
sion of the numerator we have that:
A4

Kz(baz? + b1z 4 by) = ?z(z2 +4z+1) +0(A%) (2.176)
which, asymptotically ad goes to zero, is consistent with Lemima 2.37, notingbhat) = 22 +42+1
as in(2.51)

The asymptotic sampled spectrum can be obtained as:

0 A (z+4+271)
®y(2) = 6 (z— eMB)(z — r2B) (1 — Mid) (1 — eAah)
B A* (z4+2—3) (z714+2—-/3)
TRV oA T e ey BT
Then, the spectrum can be written®®(z) = H,(z)H,(2~"), where:
Hyz) = & (42 V3) (2.178)

T3 VB (r - eMB)(z - A
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The corresponding-operator model can be obtained by changing variable 1 +~A. This yields
the following discrete-time model:

1
1+ 3_\/§A7

=) - =)

which clearly converges to the underlying continuous-taysten(2.138) as the sampling period goes
to zero.

Hy(7) = (2.179)

O

2.6 Summary

In this chapter we have reviewed the fundamental concepterlying the analysis of sampled-data
models for continuous-time linear systems. Known resudieetbeen summarised and extensions using
the §-operator have been presented.

For deterministic systems, we have presented a sampladatadel which exactly describes the
samples of the system continuous-time output. Also a ckeniaation of the poles and the zeros of
the discrete-time model has been given. Well-known resegiarding the presence and convergence of
sampling zerobave been reviewed and extended. In particular, we havemetstwo novel results: the
characterisation of thasymptotic sampling zemolynomials in Lemm@a 2.12, and the recursive relation
for these polynomials, in Lemma 2.17. The given formulatmactually an alternative way of writing
(in thed domain) the usual characterisation in terms of the Euléb&nius polynomials. The alternative
form will prove to be a key enabling result in the nonlineasearesented in Chapter 6.

Corresponding results have also been given for stochastierns. Our analysis has concentrated on
the sampled output spectrum, which contains also sampéngsz These zeros can be asymptotically
characterised as the sampling period goes to zero. Sardptadnodels for this kind of systems can
be obtained by spectral factorisation of this discretestimutput spectrum. As a consequence, these
models areexactin the sense that the output has the same second order jgsgedvariance) as does
the continuous-time system outpttthe sampling instants
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Chapter 3

Generalised sample and hold devices

3.1 Overview

In the previous chapter we have shown that sampled-datalsmadedetermined, not only by the un-
derlying continuous-time system, but also by the samplioggss itself. The poles of the sampled-data
model depend only on the continuous-time poles and the sagnperiod. However, the zeros also de-
pend on thartifacts of the sampling process, namely, how the continuous-tirpatirs generated and
how the output samples are obtained. In fact, for detertgrsgstem, different models arise when using
a zero- or afirst-order hold to generate the continuous-imet (Sectioh 2.2). In a similar fashion, dif-
ferent stochastic sampled-data models are obtained wifferedit filters are used before instantaneous
sampling (Section 2]4).

In this chapter we study the effect of the sample and holdcgsvin a more general setting. In
particular, we describe any hold or sampling device binifgulse respons@euer and Goodwin, 1996).
In this framework, ZOH and FOH are particular cases of, siedajeneralised hold functiong GHF).
Similarly, instantaneous sampling and averaging (or natixgg) sampling can be included as particular
cases ofjeneralised sampling filter GSF).

For deterministic systems, it is well-known that, given atimuous-time system and a sampling
periodA, the GHF can be used to shift the zeros of the correspondmglsd-data model (Kabamba,
1987). However, the use of the GHF can give misleading resulien essential characteristics of the
continuous-time system, such as non-minimum phase (NMiueur, arartificially removedZhang
and Zhang, 1994; Feuer and Goodwin, 1994). The discrete-sieguences in this case may differ
significantly from the underlying continuous-time signafsaking the sampled-data model not a good
description of the continuous-time system. Here we propobkeld design that deals only with the
effects of sampling in the discrete-time model. We thus $dauhe, so calledsampling zeros

For the stochastic case, a dual result holds. It is well kntwat the discrete-time description
of the system depends on the prefilter used prior to samplitgiafitaneously) the system output
(Wahlberg, 1988). Indeed, we have shown in Sedtion 2.5 tlifsreht sampled-data models, with
different asymptoticampling zerosarise when the output samples are obtained using (or rugusn
integrating filter before instantaneous sampling.

39
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Other duality results between sample and hold devices haxéopisly been highlighted. For ex-
ample, in (Feuer and Goodwin, 1996), an optimal sampled-ciantrol problem, using a ZOH input, is
shown to be dual to an optimal state estimation problem, wisarg an integrating filter on the system
output.

In this chapter, we consider the use of generalised holdsamgpling filters to deal with sampling
zerosonly. We begin, in Sectioh 31.2, by reviewing the use of GHF in tha@ang process of determin-
istic systems. Then, in Section 3.3, we present a GHF desapegdure that places tlsampling zeros
asymptotically at the origin, as the sampling period tend=etro. Sectioh 3.4 presents the GSF and ex-
plores its role in the sampling process for stochastic ayst& hen, in Sectidn 3.5, we show how a GSF
can be designed to assign the sampling zeros of the outpcirgpe and, thus, of the corresponding
stochastic sampled-data model, to the origin as the sagfspegquency increases.

The design procedures presented in this chapter are indepeaf the particular system, both for
the deterministic and stochastic cases, depending onlii@sytstem relative degree. Furthermore, the
results obtained are asymptotic, as the sampling period tgoeero. In Section 3.6, we explore the
robustness of these design procedures to, both, non-zamlisg periods and high frequency errors in
the continuous-time system model.

3.2 Generalised hold functions

In this section we study the role of the hold device in obtagnsampled-data models for deterministic
systems. Here we consider a more general settling than ipt&h2, where only zero- and first-order
holds were studied.

A linear hold device can be completely characterised bynitsulse responsé:,(t) (Feuer and
Goodwin, 1996). This function is the continuous-time siggenerated by the hold device when its
(discrete-time) input is a Kronecker delta function:

1 k=0
up = 0 [k] = = u(t) = hgy(t) (3.1)
0 k#0

Figure 3.2 schematically represents a GHF and its imputgeorese. Zero- and first-order holds can
be understood as particular cases of GHFs. Indeed, theilsmpesponses are shown in Figure 2.2 on
page 14.

Note that, given an input sequengg the continuous-time signal generated by the hold is giyen b

u(t) = Y hglt — kA)ux (3.2)
k=—oc0
Assumption 3.1 For the sake of simplicity, we will restrict our analysis twetclass of GHFs whose
impulse response has support on one sampling intereal,(t) = 0, for all ¢ ¢ [0, A).

The previous assumption excludes from our analysis, fomgk, the FOH in Figure 2.2(b). How-
ever, the next result shows that the class of GHFs consideredprovides enoudhreedonto arbitrarily
assign the zeros of the sampled-data model.
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A Sk [k} A hg (t>
¢ wy, u(t)
——>| GHF —»
ol oooot
-1 0 1 2 3 4 0 A 2A

Figure 3.1: Schematic representation of a generalisedfboldion (GHF).

Lemma 3.2 Consider the continuous-time state-space m¢@lé)—(2.3). If we use a GHF with impulse
responsey, (t) to generate the inpui(t), then the equivalent discrete-time model is given by:

qrp = Tpy1 = Agxp + By ug (3.3)
yr = Cag (3.4)
where4, = 42, and:
A
B, = / AT B (r)dr (3.5)
0

Proof. The proof follows similar lines as in (Feuer and Goodwin,@Q%or 6 models. Specifically,
from equation|(2.15), we have that:

kEA+A

Tpe1 = e Pay +/ eARAFA=) By (n)dn (3.6)
kA

Assumption 3.1 allows one to simplify the continuous-timplit [3.2). Within a single sampling
period, we can write:

u(t) = hy(t —kA)up ;KA <t <kA+A 3.7)
Thus, we obtain:
EA+A EA+A
/ ABB+A=) By (1) — / CARMA= B (1 — kA)dn | up (3.8)
kA kA

where, changing variables or simply considering- 0, the last integral is shown to be equalltg in
3.5).
(Il
Note that the previous results coincide with Lemimd 2.2 oredafy when we restrict to the ZOH
case, as expected. The impulse response of the ZOH appdagsiie 2.2(a) and is defined by:

1 ;t€]0,A) (3.9)
0

hg(t) = hzou(t) = {
0 ;t¢[0,4)

Corollary 3.3 The zeros of the discrete-time systn8)-(3.4) are given by the solutions of the equa-
tion:
Cadj(zl, — A))By = 0 (3.10)

whereadj(-) denotes the adjoint matrix.
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Proof. This resultis a direct consequence of expressing the stetee model (3.3)—(3.4) in transfer

function form:
Cadj(zI, — Aq)B,

det(zI,, — Ay) (3.11)

Gy(2) = C(2l, — Ag)™'By =
O

Remark 3.4 In this chapter we are interested in designing a hold furcoch that the asymptotic
sampling zeros are arbitrarily assigned. In (Feuer and Good 1996) it is shown that (generically)
the controllability of the pai A, B) is enough to arbitrarily assign the roots ¢8.10)

Remark 3.5 Lemma 3.2 highlights the fact that sampled-data model dtersstics depend both on the
continuous-time system and the sampling process itseléelth, equatio3.11)shows that the poles of
the system depends only dy = ¢4, but the zeros are functions &, and, thus, of the GHF impulse
responsei, (t).

Our focus in this chapter is to propose design methods thaw @ine to assign the sampled-data
model zeros in (3.10), by choosing an appropriate hold @éeviiowards this goal, we note that a simpler
expression can be obtained for the matHx in (3.5) if we consider a GHF defined by the piecewise
constant impulse response, shown in Figure 3.2:

g 0<t< %
A 2A
g2 xS tE<F
hg(t) = fn(t) =14 (3.12)
gy sEEE << A
A hg(t)
g1
g2
A
T

gN

<)
z> 1
Yy

=5
=l

Figure 3.2: Impulse response of a piecewise constant GHF.

Substituting[(3.12) in (3.5), we obtain an expressionBgin terms of theveightsg,, ¢ = 1,..., N.
These coefficients will be used later, in Section 3.3, asgigsarameters to assign the sampling zeros.
We note that the matri®,, is linearly parameterised:

N 7N
N

B, = ; 9e [, a eAA-TBdr (3.13)
= N

Lemma 3.2 provides a state-space sampled-data modelgondiag to a continuous-time system,
also expressed in state-space form. However, the sampladrdodel can also be obtained directly
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from the continuous-time transfer functidi(s). Specifically, the discrete-time transfer function can
be obtained by computing th&-transform of the response of the combined GHF and contisiiowe
system, when the hold input is a Kronecker delta functionis Tihe of reasoning leads us to:

Gol(z) = Z{LTH{Hy(s)G()},_n} (3.14)

whereG(s) is the transfer function of the continuous-time system, Hids) is the Laplace transform
of the GHF impulse responsg (). This expression coincides with the result in Chapter 2ttferZOH
case. In fact, if we replac#,(s) by the ZOHtransfer function(2.21), then((3.14) can be rewritten as
in expression (2.17).

3.3 Asymptotic sampling zeros for generalised holds

In this section, we investigate the asymptotic samplingze¢hat arise in sampled-data models when
the continuous-time input is generated by a GHF. For siripliwe will consider a piecewise constant
GHF with impulse response as in Figlre|3.2.

We first introduce the following preliminary result:

Lemma 3.6 Using the polynomials defined in (2144)—(2.45), and defidp@:) = 2, we have:

- p.—k __ ZBP(Z) .
> kPz = G Vp >0 (3.15)
k=1
Proof. We use induction. We first note that for= 0, the result is straightforward. Fer= 1, we
have that:
=, _ d 2B1(z)
kz b =Z{k}=—2—Z2{1} = % 3.16
;z =22 == (3.16)
Assuming that{ (3.15) holds for, we next prove that it also holds fpri- 1. We see that:
= _ d 2 [2(1 = 2)By'(2) + (pz + 1) By(2)]
p+1, —k _ p+11 Py p P
];k =2 W) = e 2 () G (3.17)

The result then follows from the recursion (2.48) satisfigdHe polynomialsB,,(z):
2(1-2)By'(2) + (p2 + 1) By(2) = Bpt1(2) (3.18)

forallp > 0.
(Il
Using the previous result, we next extend Lemma 2.8 to the Ga4E. In particular, we characterise
the sampling zeros of the sampled-data model of-mnder integrator, when the input is generated by a
piecewise constant GHF.

Lemma 3.7 Consider then-th order integratorG(s) = s~". If the continuous-time input(t) is
generated by a piecewise constant GHF, defined g@8.ih2) with n different subintervals, then the
corresponding discrete-time transfer function is given by

n n—1
Gy(2) = nl(fw > 2By(2)(z— )" Chy, (3.19)

p=0
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where the polynomial®, (=) are defined in (2.44)~(2.45), and:

Cnn= (1) (%)n_pégz (6= 1) — 7] (3.20)

p

Proof. The sampled-data model will be obtained from equation (3.\ve first need to obtain the
Laplace transform of the impulse response of the GHF (3TI23.latter is a piecewise constant function
defined inn subintervals. Thus, we obtain:

de[ ( - & ”A) u(t—%)} (3.21)
5) = Z 9eFni(s) (3.22)
(=1

wherey(-) is the unitary step function, and:

1 —1
Foe(s) = B (efs([ T 675%) i 0=1,...,n (3.23)

We are interested in the impulse response of the combinethoonis-time model:

)= geH(s) (3.24)
=1
The inverse Laplace transform of each element in the sumezatdily be computed as:
6_8(271)A _ e_sg
Hy(s) = G(8)Fne(s) = ) (3.25)
S
t— LA — t— LA
he(t):( D )Mt_(f DAY (t-4 )ut—@ (3.26)
n! n n! n

We will consider this signal at the sampling instahi§k] = hy(kA). Note thath,[0] = 0 and, for
k > 1, we can use thbinomial theorento obtain:

_Ar nzl kp( ) (‘_)n_p (¢ — )P — g7P] (3.27)

The Z-transform of this signal is then given by:
H(2) = At nz_:l ) (2L o [(6 — 1P — E"*?’] i kP2 =k (3.28)
n! P n
p=0 k=1
Hence, applying the result in Lemma 3.6, we have:

RO e ] e

Finally, the result is obtained by substituting (3.29) ithte linear combination obtained from (3.24):

Gy(2) = Z{LTH{G(5)Fu(s)},_pn} = Z{dehz } = Zngz(Z) (3.30)
=1
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Remark 3.8 Note that[(3.19) establishes that the sampled-data modah efth order integrator has
its n poles atz = 2 = 1 (as expected). The discrete-time model alsoshas1 sampling zerosIn
fact, the numerator of the corresponding sampled-data incattebe rewritten as a polynomial of order
n—1,ie,

AP n—1
— p

We next consider a more general system. We extend TheoregoR.page 24 to the case when a
piecewise constant GHF is used to generate its input.

Theorem 3.9 Let G(s) be a rational function as in (2.84), with relative degree= n — m. LetG,(z)
be the corresponding sampled transfer function obtainéuus piecewise constant GHF witrstages.

Assumen < n (or, equivalently;: > 0). Then, as the sampling perial goes to0, m zeros of
G,(2) gotol ase~, and the remaining — 1 zeros ofG,,(z) (the sampling zergsgo to the roots of
the polynomial:

r—1 r—1
Z 2B, (2)(z — 1) P10, , = Z apz? (3.32)
p=0 p=0

Proof. The proof of this result is similar to the proof of Theorem&ithat can be found ina(strt')m
et al, 1984). First we obtain the Laplace transform of the piesewionstant GHF with subintervals.
Proceeding as in the proof of Lemmal3.7, we have that:

—1A

Hy(s) = %Zgz (675T - 678%) (3.33)
(=1

Using the definition of the Laplace an@-transform (and their inverse transforms, respectively),
equation[(3.14) can be rewritten as:

0 y+joo y+joo 0
1 S — 1 S -
Gy(z) = Z 3 / G(s)Hy(s)e?Fds 2% = 3 / G(s)Hy(s) (Ze kA2 k) ds
k=0

Y—joo y—joo k=1
Y+joo
_ 1 / G(s)H (s)i ds (3.34)
- 27j IV —esh '
Y—joo

wherey is such thati(s)/s has all its poles to the left dt{s} = ~. If we substitute the system transfer
function (2.84) and the GHF (3.33), then the following exgsien is obtained by changing variables in
the integral, usingv = sA:

A+joo _(—Dw _tw
ey g (e )
d

= % wr+1(z_ew)
YA—joo

iH—I}O ATTGy(2) w (3.35)

It is readily shown that this expression corresponds tca@pyG'(s) by anr-th order integrator in
(3.14). Thus, we finally obtain:

m T—1

KY)'_l2B, — 1), _
lim LG (z) = 2p=0? r!((zz)(—zl)r ) P [:'Z — 371 Zoapzp (3.36)
=

A—0 AT
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O

Based on the previous results, we next present a proceddesign a GHF such that tlsampling

zerosof the discrete-time model are asymptotically assignedhéodrigin, as the sampling peria
goes ta.

Theorem 3.10 The coefficientgy, £ = 1, ..., r of the GHF in|(3.33) can be chosen in such a way that
the sampling zeros of the discrete-time madel (3.32) cgevasymptotically ta = 0.

Proof. To assign the sampling zeros to the origin, it follows fron8@3 that the following condition
must hold:
ap=0 ,Vp=0,...,r—2 (3.37)

This is equivalent to having — 1 linear equations in the coefficient$. ,, and thus for the weights
ge. Moreover, the GHF must satisfy an extra condition to ensuaitary gain at zero frequendye.,

1 T
=N ge=1 (3.38)
" =1

Equations[(3.37) and (3.38) defimeconditions on the coefficientg, ¢ = 1,...,r, which are
(generically) linearly independent providéd, B) is controllable (see Remalrk 3.4).
0

Remark 3.11 A key observation is that the GHF obtained by solving (3.@/$8) does not depend on
the particular continuous-time system. Theorem 3.9 esghad the sampling zeros, and, thus, the GHF
design procedure, depend only on the system relative déggeealso Remark 2.11 on page 20).

Remark 3.12 In Theoreni3.10 we have chosen to assign the asymptotic sampling zethe brigin.
This implies that, by a continuity argument, there exists.a> 0 such that, for every sampling period
A < A, all the sampling zeros are stablieg., they lieinsidethe unit circle in the complex plane
Indeed, forA. small enough, all the sampling zeros will be inside a cirdleagliusr. <« 1.

Theorem 3.10 assigns the asymptotic sampling zeros to thia 0o ensure that the sampled-data
model is minimum phase. However, a different set of cond&ican be imposed on the weighting
coefficients if one wants to assign the sampling zeros to &mrdocation in the complex plane.

The following example illustrates the GHF design procediggcribed above for a particular system.

Example 3.13 Consider the third order system:

1

=T

(3.39)

By Theorem 2.18, if we use a ZOH to generate the input, thetiieasampling period\ tends to
zero, the associated sampled-data transfer function isrgby:

~ A3 732 2
Gol2) A0 (2 +3.732)(z + 0.268)

(ZOH) (z—1)3 (3.40)

Note that the resulting discrete-time model has a non-miniphase (NMP) zero, even though the
continuous-time system has no finite zeros.
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On the other hand, using (3.82), (3/37), and (3.38), we olda&HF given by the impulse response:

29/2 ;0<t< g
he(t) =417 ;4 << 2A (3.41)
A
11/2 ;22 <t<A

Note that this assigns the limiting sampling zeros asyryatiby to the origin,i.e., the combined
hold and plant discrete-time model is, Asgoes ta0:

Gq(2)

A0

A3 22

(GHF)

Zero Location
| ]
N [

|
w

-4

10

107
Sampling Period A

(a) Zero Order Hold

(z—-1)°

0.25

0.2

0.15

0.1

Zero Magnitude

0.05

h=0-

-0

10

(b) Generalised Hold

107
Sampling Period A

(3.42)

Figure 3.3: Sampling zeros versus sampling period in Exel@d3.

Figure3.3(a) shows the sampling zeros as a functioi dér the ZOH-case. Figure 3.3(b) shows
the magnitude of the (complex) sampling zeros obtained WieGHF (3.41)is used. We see that the
zeros are very close to their asymptotic values if the usuealof thumbis employedi.e., if the sampling
frequency is chosen one decade above the fastest syste(hgiien and Wittenmark, 1997).

Furthermore, Figure 3.4 shows the zero and pole locatiomgie sampled version of the system
using the fixed GHR3.41), for sampling periods from to 10~*. Note that all of the resulting discrete-
time models are minimum phase.

([

The proposed sampling strategy avoids the presence ofal@stmpling zeros due to the discretisa-
tion process. It therefore gives a better correspondertgeeka continuous- and discrete-time models.
The sampling strategy has several potential applicatidfe. example, it allows one to straightfor-
wardly apply discrete-time control methods, such as moefelrence adaptive control (Goodwin and
Sin, 1984;Astrom, 1995) or Internal Model Control (Goodwat al, 2001), where the presence of
NMP zeros would impose additional performance limitatiolmsLiang et al. (2003), the same goal is
achieved by using fractional-order holds in a multivargatdbntext.

The following example illustrates a possible applicatiéthe proposed GHF sampling strategy.
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Figure 3.4: Zero ('0") and pole ('x’) locations for differesampling periodg\ for GHF in Example
3.13

Example 3.14 In this example we compare control loop performance for fstesn in Example 3.13,
using a ZOH and the GHF iB.41) We use an internal model controller based on the Youla param
terisation (Goodwiret al, 2001). This control strategy is schematically represéneFigure/3.5. The
parameterQ)(z) is designed as aapproximate inversef the plant model. To ensure stability the pa-
rameterQ(z) is restricted to be stable. Thus, one needs to be carefutlanginverting NMP zeros of
plant.

ldo(t)
+ ulk] | Hold |u(t)| C-T R0
TE’C‘?:» Q) "| Device "| System _J:
A
D-T Jlk] +y

Model _=T

Figure 3.5: Control loop using Youla parameterisation (Bgke 3.14).

We consider a sampling periadl = 0.1[s]. From (3.5), the discrete-time poles ar@ > = ¢~ 0! =
0.9048. The (sampled) zeros depend on the hold used to generatertipwous-time input. Equations
(3.40) and/(3.42) define the zeros for ZOH and GHF cases, otispéy. Based on this, we compare the
performance of two control loops, one using ZOH and the cilet:

(1+0.268)(z — 0.9048)3

= 3.43
Qz0n(2) = 7=0.9048)3 (> 7 0.268) 2 (3.43)
and the other using the GHF defined by (3.41) and the controlle
—0.9048)3
Qanr() = - ) (3.44)

(1—0.9048)323

Figure[3.6 shows the control signalt) and system outpuf(¢) obtained for a unitary step output
disturbanced,(t) = —pu(t). The magnitude of the control signalt) is large because the controller
we have chosen tries to achieve near perfect output dishadeejection. We can see that, even though
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Figure 3.6: Simulation results for Example 3.14.

the response using the GHF gives overshoot, the settlirggiiremaller than for the ZOH case. Indeed,
the discretenominaltransfer function of the control loop for the GHF case is siynp !, whereas for
the ZOH case it i9.211z~! + 0.78922. These discrete responses can be seen in Figure 3.6 at the
sampling instants. If we consider the inter-sample respptiss is also improved by the use of the GHF.
The integral of the outpuj(t) squared is reduced frof 1088 to 0.0557, when the ZOH and) zo 1 (2)
are replaced by the GHF (3.41) artd 77 (2).

O

3.4 Generalised sampling filters

In the previous section we have seen how the input hold deande designed to assign the asymptotic
sampling zeros of a deterministic system. A dual resultifdd stochastic systems, namely, the zeros
of the sampled output spectrum (and, thus, of the correspgrs@mpled-data model) can be assigned
by choosing the generalised anti-aliasing filter used gadnstantaneous sampling.

In this section we analyse the effect of the anti-aliasirtgrfibn the resultant stochastic sampled-data
model. Later, in Section 3.5, we present a filter design mloms such that theampling zerosf the
sampled output spectrum are asymptotically assigned tortgia.

We assume a sampling scheme as shown in Figure 3.7, wheresealiged anti-aliasing filter is
used prior to sampling the system output. This filter is chaa®a generalised sampling filter (GSF),
defined by its impulse response,(¢). Similar to Assumptioh 3.1 for the GHF case in Section 3.2,
we will consider the class of sampling functions that havepsut on the interval0, A). The output
sequence is obtained by sampling instantaneously the tooitthe filter:

kA
g = y(kA) = /kA-A y(T)hg (kA —7)dT (3.45)
A
—»| H(p) » GSF ———»
o(t) y(t) yt)

Figure 3.7: Sampling scheme using a Generalised Filter.

Remark 3.15 The definition of a GSF as i(8.45) can be understood as a generalisation of the, so
called,integrating filter/(2.15[L) This is also callegveraging filteyand its impulse response is given by
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(Feuer and Goodwin, 1996):

1/A ;0<t<A
hge(t) = (3.46)
0 i A>0

Note also that instantaneous sampling can be included mftamework by considering, () =

5(t) in (3.45)

The following result allows one to obtain a discrete-timeation of the sampling scheme in

Figure 3.7.

Lemma 3.16 Consider the sampling scheme in Figure 3.7, where the cootis-time systetfl (p) can
be expressed in state-space form agdri09)2.110) and the GSF has an impulse respoiigét).
Then the corresponding discrete-time model is given by:

oxy = Asxy, + v (3.47)
Y1 = Cyxp + wy, (3.48)
wherej = %1 denotes the delta operator. The matrice$3n47)~(3.48)are given by:

edd T

As = A

A
Cy = / hy(T)CeM AT dr (3.49)
0

andv, andw; are white noise sequences such that:

T
Qs X -
pd (v Lo | e oxlk=4 (3.50)
Wi, Wy Zg F5 A

whered i represents the Kronecker delta function, and where:

Qs 5| o 02 /A -
=z M, (c)M,(0)" do 3.51
lEEFJ A [ Ma@)My(0) (3.51)

¢4’ B
M, = o 3.52
9(0') A/ hg(g)CeA("_g)Bdf ( )
0

Proof. The proof follows the same lines as Lemma 2.33 in (Feuer anod®m, 1996). We
first note that((3.47) can readily be obtained as for equdfiaill) in Lemma 2.25. Furthermore, the
noise inputyy, is given by [(2.116). Equation (3.48) can be obtained on gotivat, on the interval
[kA, kA 4+ A), the system output can be expressed as:

t
y(t) = CeAt R g (kA) + O A" Bo(n)dn (3.53)
kA

Thus, the samples of the filter output can be written as:
kEA+A
Pkl = / hg(EA + A —1)y(r)dr
kA

kA+A
= [ / ho(kA + A — 7)CeAT™RR) dr | 2 + wy, (3.54)
k

A
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Changing variables in the integral inside the brackets, btainC,, as in (3.49). The noise termy,
is given by:

EA+A T
wy, = / hy(kA+A —1)C [ AT~ Bo(n) dndr (3.55)
kA kA

We can use Fubini’s theorem (Apostol, 1974) to change therarfiintegration in the last integral,
and then, using the expression fqrin (2.116), we obtain:

Uk
Wk

Equations|(3.50)~(3.52) are obtained from this last exgioesby proceeding as in the proof of
Lemmd 2.25. Indeed, the matiiks in (3.51) is the same as in equation (2.114).

1 kA+A

T A Jia

eA(kA+A—7]) B

v(n) dr 3.56
A SRR kA A - ey (T 99

O

Remark 3.17 The discrete-time mod¢B.47)~+(3.48) can equivalently be rewritten, using the shift op-
eratorq, as:

qTi = Tpt1 = Aq.rk- + U (357)
Y1 = Cgl‘;c + wg (358)

whereA, = I + AA; = A2 and the input noise sequenceiis= Avy. As a consequence:

T
0] U Q, X
TR Ol A I S Il I P (3.59)
Wy Wy Eq q
where: .
Q=A0s; ; Y,=%5 ; Iy= ZF5 (3.60)
O

Even though Lemmia 3.16 provides a sampled-data model faystem in Figure 3.7, this discrete-
time description depends on two noise sequences as inpusfollowing lemma allows us to express
71 as the output of a system with a single white noise inpeit,the discrete-time model is expressed in
innovations form(Anderson and Moore, 1979).

Lemma 3.18 The state-space mod@.57)(3.58)is equivalent to the followin@novations modein
the sense that their outputs share the same second ordegpieg

241 = quk -+ quk (361)
Y1 = Cyzr + ex; (3.62)

wheree;, is a white noise sequence with covariance matrix
E{e}} =T+ CyPCy (3.63)
The Kalman gair¥, is given by:

Kq = (A,PCL +5,)(Tq + CoPCH™! (3.64)
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and P is the state covariance matrix given by the discrete-tingelataic Riccati equation:
AgPAY — P — K (Dy + CoPCIK] + Q5 =0 (3.65)
O

Using the innovations form in Lemma 3/18, we can describeséigience of output samplgs by
the model:
Uk+1 = Hy(q)ex (3.66)
where:
Hy(z) = Cy(z, — Ay) 'K, +1 (3.67)
and wherez;, is a DTWN with variance (3.63).

Remark 3.19 Equation(3.67)clearly shows that the discrete-time poles depend only pand, hence,
only on the continuous-time system matfixand the sampling periodh. However, the zeros of the
model are seen to depend 6f) and K, and, thus, on the GSF impulse respohgé).

Given a GSF, Lemmas 3.16 and 3.18 provide a systematic walgtafning a sampled-data model
for the system in Figure 3.7. In particular, the zeroglgf z) in (3.67) depend on the choice of the GSF.
Indeed, the filter impulse responsg(t) determines the matric&s, and ;. However, to obtairk,
we need to solve the algebraic Riccati equation (3.65). Timesway that:,(¢) appears in this matrix
equation makes this approach difficult for design purpostence, we explore a more direct method
below based on spectral factorisation ideas. In fact, wetssehe role of the impulse responsg(t)
in the output spectrum can be described more easily if onielatioe form described in Lemma 3.18.

Lemma 3.20 Given the discrete-time mod.57)-(3.59), the discrete-time output spectrum is given
by:
(2711, — AD)~tcr

, (3.68)

q — Qq Zq
(z) = A [Cy(aL, — A" 1] [zg Fq]

Proof. This result follows from the modédl (3.57)—(3.58). The outgpectrum of this model can be
obtained in the same way as in the proof of Lemima2.35, forrtteyrating filter case.
0

Remark 3.21 The result in Lemmla 3.20 is closely related to Lernmal3.1&g¢hat the output spec-
trum of the innovations mod¢3.61)3.62)is given by:

DY (z) = Hy(2)H,y(2~ 1)@ (3.69)

where the spectral factotl,(z) is given by(3.67) and ®¢ is the (constant) spectral density of the
innovations sequence.

The previous remark shows that one can directly obtain éhatiic sampled-data model, with a
scalar noise source as input, by spectral factorisatiohefpectrum (3.68). In the next section, we
follow this approach to assign the stochastic samplingszef@g(z) (and, thus, of the spectral factor
H,(z)) by choosing an appropriate GSF. Specifically, the functigft) will be expressed as a linear
combination of more elemental functions, in such a way asplsy the expressions fot’,, ,, and
I, in Lemmad 3.16.
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3.5 Generalised filters to assign the asymptotic sampling zeros

In this section we turn to the problem of designing a GSF shahthe sampling zeros of the discrete-
time spectrun (3.68) converge, as the sampling period gaesrb, to specific locations in the complex
plane. In particular, we are interested in assigning theréoorigin, or, equivalently, to obtain an
output spectrum with no stochastic sampling zeros.

The choice of the GSF to assign the sampling zeros is not aniglaus, we restrict ourselves, to a
class of filters whose impulse response satisfies the falipwéstriction.

Assumption 3.22 Given a system of relative degreeve consider a GSF such that its impulse response
can be parametrised as:

hy(t) = (3.70)

x(ho+ 20— hedde(t)) ;te(0,A)
0 .
where the weighting coefficients, ..., h, € R. The basis functiong,(¢) in (3.70) (to be specified
later) are required to satisfy the following condition:

A
/ oe(t)dt =0 (3.71)
0
]

Note that we have introduced the scaling fadtoA in (3.70) to resemble thaveragingidea of the
integrating filter[(2.151). In fact, the averaging filter @sponds to the choide, = 1 andh, = 0, for
¢ =1...r. We see next that the condition (3|71) simplifies some of &ieutations required to obtain
the output spectrum (3.68).

Remark 3.23 Note that Assumption 3.22 guarantees that, once the furstid?) in (3.70)have been
chosen, then the+1 coefficientd, . . . , h, provide enougliegrees of freedome assign the: sampling
zeros and the noise variance, if required.

The design procedure presented in this section is basedeokethlimiting argument discussed
earlier in Remark 2.11, namely, for fast sampling rates, system of relative degree behavesat
high frequencies as if it were arorder integrator. This interpretation has proven to bekiae in
contemporary results regarding asymptotic behaviourmofdiag zeros,é\strbm etal, 1984; Wahlberg,
1988).

We will use this idea in the following subsections. We firshsider the case of first and second
order integrators and show how different GSF’s can be desligmassign the corresponding asymptotic
sampling zeros. We then show that similar asymptotic samgpteros are obtained when using the
resultant GSF on a more general system, having relativeedé@nd?2, respectively.

The examples that follow are aimed at illustrating the gahprinciple,i.e., for a stochastic sys-
tem of relative degree, a GSF can be designed based onsthk order integrator case (see also Re-

mark 2.11 on page 20).
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3.5.1 First order integrator

We begin by considering the first order integrafétp) = p~!. The matrices of the corresponding
state space representatipn (2.109)—(2.110) are, in thés tae scalard = 0, andB = C = 1. In the
sampled-data model (3.57), this implies thigt= 1 for anysampling period\.

Example 3.24 (Integrating filter) This is one of the filters considered in (Wahlberg, 1988), rethe
asymptotic results are obtained for fast sampling rates iftippulse response, in this case, is defined in
(3.46) For this choice we have:

A

AN
2

Q Xy

Cy=1 and
DIFAN W

] (3.72)

B> ol

Substituting int(3.68) yields the asymptotic result in Theorem 2.38, namely:

CA? (244427

4 e S
RS T 3 e (3.73)
A sampled-data model can be readily obtained by spectrabfesation, as in(3.69)
A (z4+2-V3)
H = 3.74
q(z) 3 B \/g (Z _ 1) ( )
O

Example 3.25 (Piecewise constant GSFJhis GSF has the same kind of impulse response as the gen-
eralised hold functions considered in Section 3.3. Hereydwer, we parameterisig (¢) in a slightly
different way:

L(ho+h) ;0<t< 5
0 ;¢ [0,A)
wherehg, h1 € R. For this GSF choice, we obtain:
Q, 2 A 2 (hg+ in
Cy=ho  and = LA ;(5“1)12 (3.76)
Zq Fq 3 (ho + Zhl) 3 (hO + Zhohl + Zhl)

which, on substituting int¢3.68), gives:

(3.77)

If we now choose, for example, = 1 andh; = /2, we obtain a sampled spectrum with zeros,
or, equivalently, a stable spectral factor with zeros at dinigjin:

Pl(z2) = —————~ = Hyz)= (3.78)

O
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Example 3.26 (Sinusoidal GSF)Another simple GSF impulse response which satisfies Asgumpt
3.22 is given hy:

hg (t) =

{g (ho + hamsin (258)) ;0 <t<A 579
0

;t¢ [OvA)

wherehg, h1 € R, and the constant is introduced as a scaling factor. For this choice we have:

Cy=ho  and S A 3 (ho+ ) (3.80)
! ST Tyl |5 (ho+hi) 5 (h3+ 3hohy + 203)
Upon substituting int@3.68), this gives:
2 4 -1 2 2 -9 —1
21(2) 2 A% (z44+27Y) 9nEA? (¢-2+271) (3.81)

TSI D11 4 3l (z-1)(z -1

If we now choose, for exampley, = 1 andh; = 2/3, we again obtain a sampled spectrum (and
a stable spectral factor) as ifB.78) As required, this discrete-time model has sampling zetdbea
origin.
O

The GSF’s obtained in Examples 3.25 and 3.26 were designedsign the stochastic sampling
zeros of a first order integrator to the origin. However, BSF can also be used, for fast sampling
rates, onany system of relative degreeto obtain sampling zerogear the origin. We illustrate this
principle by the following example.

Example 3.27 Consider the continuous-time system:

1

H(p) = m (3.82)

We fix the sampling period to ks = 0.1, which corresponds to a sampling frequency around one
decade above the model bandwidth. If we use the piecewiseo@8ifed in Example 3.25, we obtain
the following stable spectral factor of the output spectrum

~0.287(z —2.489-107%)

Hy(z) 02 (3.83)
Similarly, if we use thsinusoidalGSF described in Examgle 3.26, we obtain:
0.287(z — 6.590 - 107°)
H = .84
q(z) (Z . 670'2) (3 8 )
Note that, as expected, for both cases the sampling zeroyihese to the origin.
([l

3.5.2 Second order integrator

We next consider the GSF design problem for the second antiEgrator. This is a prelude to dealing
with general systems of relative degrze The expressions that allow one to obtain the sampled-data
model and, thus, to identify the stochastic sampling zeaios more involved in this case than for the
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first order integrator. However, the design procedure presly outlined can be readily adapted as we

show below.
Thus, consider the second order integraitip) = 1/p?. The state space representation (2.109)—

(2.110) is then given by the matrices:

0 1 0
A= B= C= [1 o] (3.85)
00 1
For any sampling period, the discrete-time system matrix is given by:
1 A
A, = 3.86
P (3.86)
Example 3.28 (Integrating filter) This filter is defined if3.46) In this case we have that:
A% AZ A8
Qq Eq A32 2 A82
c,=[1 3] . 1 — | & a2 (3.87)
q q : A°
which, upon substituting int(8.68) gives:
A* (2% + 262 + 66 + 26271 + 272)
1) = dLF(2) = =
Qi(2) = @57 (2) o oD To1) (3.88)

The obtained spectrum is, again, consistent with the asytmpesult in Theorem 2.38 on pagel36
(see also (Wahlberg, 1988, Theorem 3.2)).

O
Example 3.29 (Piecewise constant GSR)Ve consider a GSF defined by the impulse response:
%(ho—l—hl—th) ;0<t< %
x(ho+hi—hy) ;2 <t<$
hg(t) = q £(ho —h1+ha) ;5 <t< 38 (3.89)
L(ho—h1 —he) ;382 <t<A
0 ;12 0,4)
wherehg, h1, ho € R. For this choice we have:
Cy=lho 2(ho+Lhi+ ihg)} (3.90)
Computing the noise spectru@.59)and substituting ir{3.68), we obtain:
®(z) = Rg®LF (2) + hi®L(2) + h3®2(2) + hiha®3(2) (3.92)

where ®1F(z) is the spectrun(3.88) obtained in Example 3.28, an@l! (z) (¢ = 1,2,3) are other
particular spectra that do not depend on the GSF parameters.
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To assign the spectrum zeros to the origin, we solve for tlightieg parameters, in (3.91) We
see that any of the following choices:

hO =1 hl = F9.891 h2 = +23.782 (3.92)
or h0=1 hl = F4.691 h2 = 4+5.382 (3.93)
lead us to a sampled spectrum with no zer@s,
At K
Pl(z) = =— .94
5(2) = 4 CE S (3.94)
(]
Example 3.30 (Sinusoidal GSF)Here we restrict the GSF impulse response to the form:
L (ho + hymsin (25t) + homsin (47t ;te[0,A
hg(t) A( 0 1 (A ) 2 (A )) [ ) (3.95)
0 ;1 210,4)
wherehg, h1, ho € R. For this choice we have:
Cq = {ho % (ho +h1+ %hz)] (3.96)

Computing the noise spectrui@.59)and substituting int¢3.68), gives:

Dd(2) = h{®LF (2) + W0} (2) + h302(2) + hiha®}(2) (3.97)
where ®]F(z) is the spectrun{3.88) obtained in Example 3.28, anl;(z) (¢ = 1,2,3) are other

spectra that do not depend on the GSF parameligrsSolving for these parameters to assign the zeros
to the origin, we see that any of the following choices:

or  hy=1 hy = £1.902 ho = F1.804 (3.99)
lead to a sampled spectrum with no zerios,
A* K
®l(2) = = 3.100
G I P § Y P g (3.100)

O

The GSF's described above allow us to assign the stochastiplsg zeros of general linear models

closeto the origin, when usindast sampling rates. The following example illustrates the usthe
GSF's obtained in Examples 3.29 and 3.30 for a general systeatative degre@.

Example 3.31 Consider the following second order stochastic system:

2
H(p) = IS (3.101)
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We first use the piecewise GSF obtained in Examplég 3.29. ticpkar, in (3.89)we chooséiy = 1,
h1 = 4.691, andhy = —5.382. For a sampling period\ = 0.1, we obtain the following stable spectral
factor:

5.269-1072(2 — 21)(z — 2}
Hy(z) = (z—e—o-(l)(z—c)e(—0~2) )

(3.102)

wherez; = —0.014 + 50.081, and where" denotes complex conjugation.
We also use theinusoidalGSF obtained in Example 3.30. The sampling period is fixed t0 0.01.
In (3.95)we chooséiy = 1, hy = 1.902, andh, = —1.804. The sampled-data model is then given by:

~0.22-107(z — z1) (2 — 22)

Hy(2) = (z — e 0-01)(z — ¢=0.02) (3.103)

wherez; = —1.0435- 1073 andz; = —1.0439 - 1073.
Note that, as in Example 3.27, both GSF’s assign the sampkngs very close to the origin, as
expected.
O

3.6 Robustness Issues

The design procedures that we have presented in the preséatisns are aimed at assigning taen-
pling zerosof discrete-time models for deterministic and stochastitesns. The GHF and GSF depend
on the continuous-time relative degree of the given sysiaoreover, the proposed methods are asymp-
totic and assign the zeros to the desired locat®g, (the originz = 0) when the sampling period goes
to zero.

In practice, one cannot sample a system infinitely fast. @nother hand, the concept of relative
degree is not robustly defined for continuous-time systesimge it can be affected, for example, by
high frequency unmodelled poles and/or zeros. As a conseguea/hen usingery fast sampling rates
the nominal model of the continuous-time system may not Ipecgguiate. Moreover, for the stochastic
system case, continuous-time white noise is a mathematistaction. In practice, it will correspond
to a process with broad-band spectrum. This inherentlyieaglome form of high-frequency modelling
error (see Remark 2.24 on page 28). These issues may raises @bout the practical use of the methods
presented here.

We address these concerns by proposing that the generhbtdsl (GHF) and sampling function
(GSF) be utilised in conjunction with bandwidth of validityfor the model relative degree. If the
sampling period is chosen to be fast relative to the nomiakdg(say 10 times, as per the usudé of
thumb but slow relative to possible unmodelled poles (say 10gintieen one can heuristically expect
that the GHF or GSF design to perform roughly as expected.h®wther hand, if very fast sampling
rates are used, then one can expect the relative degreditaéned and then the GHF or GSF design
may fail to perform as desired.

These ideas are illustrated and confirmed by the followiragrgXes.
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Figure 3.8: Magnitudes of the sampling zeros in Example:¥&2 pole ats = —102.

Example 3.32 (Deterministic systems with GHF’s)Consider again the system in Example 3.13, but
including now arunmodelledast pole,.e.,

1
G0) = Gr P00+ 1) (3.104)

For the ZOH-case, Theorém 2]18 predicts that the asymptatitpling zeros aré—3.732, —0.268},
based on amominal modebf relative degre&, and{—9.899, —1, —0.101} for thetrue modebf relative
degreed. Indeed, we can see in Figure 3.8(a) that,aglecreases, the sampling zeros first approach
those corresponding to theominalmodel (of relative degreg), but then move to those corresponding
thetrue model (of relative degre). For this case, we see that the nominal discrete-time m@ié0)
is basically reached for a sampling peridsdl =~ 0.2 but is not valid forA < 0.1.

Similarly, we can see in Figufe 3.8(b) that the zeros obtaiwéh the fixed GHF (3.41) areloseto
the origin for A > 0.1. However, when the sampling period is reduced further theadelled pole at
s = —10?% in (3.104) becomes significant and the zeros clearly depam the desired values.

In Figure3.9, we see even more clearly the effect obdredwidth of validityfor the nominal model
when the unmodelled fast pole is assumed to be-at—102. On the other hand, the plots in Figure
[3.10 correspond to an unmodelled polesat —10, where we can see that the GHF (3.41) is not able
to assign the zeros near the origin, because the model|(8.38) for design) is a poor representation

of the true system over all sensible sampling frequencies.
O

Example 3.33 (Stochastic systems with GSF'd)et us consider the presence of an unmodelled fast
pole in the continuous-time stochastic system def{Be88) Thus, consider the following true system:

1
p+2>(wiup+1)

We use the piecewise constant GSF obtained in Example 3s2%llo@m a nominal system of relative
degreel.

(3.105)

H(p)—(
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Figure 3.9: Magnitudes of the sampling zeros in Example:¥&2 pole ats = —103.

10q 3
- ©O— 6 -G
8 25 e,
) Q
2 g, !
€ 6 2 \
=) = \
s 15 Q
o 4 2 \
N S 1 \
N \
2 0.5 O
49—9—9—%\@ Fefef(}@fefe__e__oi_\é
0{74 -2 0 0 -4 -2 0
10 10 10 10 10 10
Sampling Period A Sampling Period A
(a) Zero Order Hold (b) Generalised Hold

Figure 3.10: Magnitudes of the sampling zeros in Examplg:3dast pole ak = —10.

We assume an unmodelled fast pole located.at= 200[rad/s]. We consider the following two
cases for the sampling period:

1. A = 0.1]s] : This corresponds to a sampling frequeney = 60[rad/s]. In this case, the
unmodelled pole lies well beyond the sampling frequenayesexpect no significant effect on the
sampled-data model. Indeed, we obtain the spectral factor:

C11-107%(2+1.2-107%)(2 — 5.3-107%)

H,(2) (z— e 02)(z — ¢20)

(3.106)

We can see that the sampling zeros and the fast discreteptifeeare located close the origin.
Thus, the system can be roughly approximate(BB3) as expected.

In this case, we have chosen a sampling frequémgige the bandwidtkwvhere the assumption on
the relative degree is justified.
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2. A = 0.01[s] : We now increase the sampling frequency uptor 600[rad/s]. The unmodelled
pole, in this case, should ideally be considered in the GSfigde However, assuming that the
presence of the high frequency pole is unknown, and theg tisrsame GSF as above, we obtain
the following sampled-data model:

~ 3.8:107°(z+2.1-1071)(z —3.3-1072)

Hy(z) (z — e 002)(z — ¢2)

(3.107)

We see, in this case, that the slowest sampling zero is far fi@ origin. The reason for this
outcome is understandable since the relative degree aggumgm the nominal model is no longer
valid anymore at this sampling rate.

O

The previous examples confirm the heuristic notion thatststem relative degreend our design
procedures, should be considered in terms tfadwidth of validityfor the nominal model of the
continuous-time system.

3.7 Summary

In this chapter we have analysed #mifactsinvolved in the sampling process. Sampled-data models
depend both on the continuous-time system and the detditedafiscretisation process. In particular,
we have analysed the role of the hold device that generagesathtinuous-time input to the system,
and the sampling device, which gives us an output sequensamgples. We have shown that these
devices determine theampling zerosf the corresponding discrete-time model, both in the deitgic
and stochastic cases.

Based on the previous analysis, we have shown that the heidedeharacterised as a generalised
hold function, can be designed asymptotically (as the signpleriod goes to zero) to assign the sam-
pling zeros of deterministic systems. A dual result has &ksen presented for stochastic systems,
namely, a generalised sampling filter can be designed tgrasise asymptotic zeros of the sampled
output spectrum of a system.

An important observation is that the proposed procedurabwidi¢h sampling zerosnly. Intrinsic
characteristics of the system, such as non-minimum phaee aee noartificially removed.

Another key point is that the proposed design proceduremdependent of the particular plant. In
fact, the methods rely only on the system relative degreey e based on the key observation that, at
high frequenciesi., for fast sampling rates), any linear system of relativerdeg can bedescribed
as anr-th order integrator.

Finally, we have made an important observation regardiegr/éthidity of nominalcontinuous-time
models when using fast sampling rates. In particular, ttadive degree may be an ill-defined quantity
in continuous-time because of the presence of high frequpales or zeros. Thus, in practical cases,
the use of the generalised filters described here should m&Edsyed within eandwidth of validity
where one can rely on the relative degree assumption. Tateplan upper bound on the sampling rates
that can be sensibly used in connection with the proposeladst
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Chapter 4

Sampling issues in continuous-time
system identification

4.1 Overview

In recent years, there has been an increased interest inablem of identifying continuous-time mod-
els (Johansson, 1994p&erstom et al,, 1997; Unbehauen and Rao, 1998; Johansta@h, 1999; Rao
and Garnier, 2002; Larsson andderstbm, 2002; Garnieet al., 2003; Kristenseet al., 2004; Gillberg
and Ljung, 2005; Gillberg and Ljung, 200B). These kinds of models have several advantages com-
pared to discrete-time models: the parameters obtaineghggically meaningful, and can be related
to properties of the real system; the continuous-time mobtdined is independent of the sampling pe-
riod; and these models may be more suitablddst sampling rat@pplications since a continuous-time
model is the (theoretical) limit when the sampling periothigesimally small.

Even though it is theoretically possible to carry out sysigemtification using continuous-time data
(Young, 1981; Unbehauen and Rao, 1990), this will genemallglve the use of analogue operations to
emulate time derivatives. Thus, in practice, one is usdatiged to work with sampled data (Sinha and
Rao, 1991, Pintelon and Schoukens, 2001).

In this chapter we explore the issues that are associatédtiagt use of sampled-data models in
continuous-time system identification. Specifically, we sampled-data models expressed using the
operator, to estimate the parameters of the underlyingraomis-time system. In this context, one might
hope that, if one sampleguickly enoughthe difference between discrete and continuous proagssin
would become vanishing small. Thus, say we are given a satafd, = u(kA), yr, = y(kA)}, and
we identify a sampled-data model:

Ma oy, = Gs(8,0)up + Hs(6,0)vy, 4.1)

whered is a vector with the parameters to be estimated, then, wetrhigre tha) will converge to the

corresponding continuous-time parameters)agoes to zeroi,.e,
g 220 9 (4.2)
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wheref represents theue parameter vector of the continuous-time model:

M y(t) = Gp,O)ul(t) + H(p,0)o (4.3)

Indeed, as we have seen in the previous chapters, there ayecases which support this hypothesis.
Moreover, the delta operator has been the key tool to hightige connections between the discrete-
and the continuous-time domains (Middleton and GoodwiR01%euer and Goodwin, 1996).

The above discussion can, however, lead to a false sensewftgavhen using sampled data. A
sampled-data model asymptoticatlgnvergego the continuous-time representation of a given system.
However, there is an inherelutss of information when using discrete-time models representations. In
the time-domain, the use of sampled data implies that we tkrmawv the intersample behaviour of the
system. In the frequency domain, this fact translates tavideknown aliasing effect: high frequency
components fold back to low frequencies, in such a way thadipossible to distinguish among them.

To fill the gap between systems evolving in continuous-time their sampled data representations,
we need to make extra assumptions on the continuous-timelnaod signals. This is a particularly
sensitive point when trying to perform system identificatitssing sampled-data. In Section 4.2, we
pay particular attention to the impact of high frequency eilidg errors. These kinds of errors may
arise both in the discrete- and continuous-time domains.disarete-time models, treampling zeros
go to infinity (in they-domain corresponding to the operator) as the sampling period is reduced,
however, their effect cannot, in all cases, be neglectedaislty at high frequencies. For continuous-
time systems, undermodelling errors may arise due to tteepoe of high frequency poles and/or zeros
not included in the nominal model.

Based on the above remarks, we argue here that one shoulgsall@fine ebandwidth of fidelity
of a model and ensure that the model errors outside that hdtiddo not have a major impact on the
identification results. This is the identification analogii¢he design restrictions discussed in Section
[3.6 in the previous chapter. In Section]4.2, we propose thetia maximum likelihood identification
procedure in the frequency domain, usingeatricted bandwidth. We show that the proposed iden-
tification method is insensitive to both high frequency unaedelling errors (in the continuous-time
model), and to sampling zeros (in the sampled-data model).

A well known instance whergaiveuse of sampled data can lead to erroneous results is in the ide
tification of continuous-time stochastic systems wherenthise model has relative degree greater than
zero. In this case, we saw in Chagteér 2 that the sampled dadalmdll have sampling zeros These
are the stochastic equivalent of the well-known samplingzéhat occur in deterministic systems. We
will see in Sectioh 4.3 that these sampling zeros play a alugie in obtaining unbiased parameter esti-
mates in the identification of such systems from sampled &&éashow that high frequency modelling
errors can be equally as catastrophic as ignoring sampéirasz These problems can be overcome by
using the proposed frequency domain identification proeedestricting the estimation to a limited
bandwidth.
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4.2 Limited bandwidth estimation

In this section we discuss the issues that arise when usingled-data models to identify the underlying
continuous-time system. The discrete-time descriptidremexpressed using theperator, converges
to the continuous-time model as the sampling period goesrm However, for any non-zero sampling
period, there will always be a difference between the disei@nd continuous-time descriptions, due to
the presence of sampling zeros. To overcome this inheréidutty, we propose the use of maximum
likelihood estimation in the frequency domain, using ariettd bandwidth.

To illustrate the differences between discrete-time neodal the underlying continuous-time sys-
tems we present the following example.

Example 4.1 Consider a second order deterministic system, described by

d? d
ﬁy(t) + o %y(t) + O‘oy(t) = ﬂou(t) (4.4)
If we simply replace the derivatives in this continuousetimodel by divided differences, we obtain

the followingapproximatediscrete-time model described in terms of haperator:
§%yx + a10yx + aoyr = bouk (4.5)

We see that thisaivederivative replacement model has no extra zeros. Howev&ection 2.2, we
obtained arexactdiscrete-time model based on the use of a ZOH:

82yx + a16yx + aoyr = bouy + biduy, (4.6)

This model generically has sampling zero Moreover, as the sampling perial goes to zero,
the continuous-time coefficients are recovered, and th@kagzero can be readily characterised (see
Theorem 2.19 on page 24):

5%yk + 16y + otk = Bo(l + S6)uy, (4.7)

Figure[4.1 shows a comparison of the Bode magnitude diag@mesponding to a second order
system ag4.4) (on the left hand side) and the exact sampled-data m@H8), obtained for different
sampling frequencies (on the right):

Bo

bﬂ’ + bo
_ Po G —
2 4+ o8 + o, 5(7)

G(s) = -
(> 72+a17+a0

(4.8)

The figure clearly illustrates the fact thatp matter how fast we sampléhere is always a difference
(near the folding frequency) between the continuous-timeainand the discretised models.
(Il

The difference between discrete- and continuous-time faddghlighted by the previous example,
in fact, corresponds to an illustration of thiasingeffect predicted by the relationship in (2120) on page
[15. If we assume that the continuous-time system frequersponse (jw) goes to zero ags| — oo,
then the corresponding discrete-time frequency respamseeoyes:

OO _ ,—sA
Jim Gy(e™%) = lim 3" {% G(s)} — G(jw) (4.9)

{=—00 s=jwt+i KL
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Figure 4.1: Continuous- and discrete-time frequency nesponagnitudes.

Remark 4.2 Equation(4.9) establishes that the frequency response of sampled-dadalmonverges

to the continuous-time frequency response, as the sampdéingd goes to zero. However, for any finite
sampling frequency, there is a difference between themontis- and discrete-time, in particular, near
the Nyquist frequencys(y = %= = X). Indeed, this is a direct consequence of the presence of the
asymptotic sampling zeros.

A different kind of problem may arise when tkrele system contains high frequency dynamics that
are not included in the continuous-time model. We illugtithis by the following example.

Example 4.3 Consider again the continuous-time system in Example 4elwiconsider(4.4) as the
nominal model of the system. We are interested in analybmgffect of an unmodelled fast pole. Thus,
let the true system be given by:

G(s) = Po __Gol9) (4.10)

ez ()

Figure[4.2 shows the comparison of nominal and true modeis for the continuous-time system
and the sampled-data models. The nominal poles of the sgs¢eais = —1 ands = —2, the sampling
frequency isvs = 250[rad/s], and the unmodelled fast pole isat= —50.

Note that the true system has relative dedgre@nd, thus, the corresponding discrete-time model will
have2 sampling zeros. As a consequence, while the asymptoticledwdata model for the nominal
system is given b.8), thetrue model will yield different asymptotic sampling zerosagoes to zero.
Thus, the nominal model satisfies:

bo (14 £7)
G, o2/ 4.11
75(7) - 72 +a1'}/+ao ( )
whereas the the true model satisfies:
by (1 LA+ %272)
Gs(v) — (4.12)

(V2 + a1y + ao) (% + 1)
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Figure 4.2: Frequency response for nominal and true models.

The previous example illustrates the problems that may avisen usindast sampling ratesThe
sampling frequency was chosen well above the nominal pdldsecsystem, in fact, two decades. In
theory, this allows one to use the asymptotic charactéisatf the sampled-data model. However,
we can see that, if there are any unmodelled dynamics natdedlin the continuous-time model (in
this case, one decade above the nominal fastest pole), ieem will also be undermodelling in the
sampled-data description. Moreover, even though the saghpéros go to infinity for the nominal and
true models, their precise characterisation dependdisignily on high frequency aspects of the model,
as shown in(4.11) and (4.12).

Remark 4.4 The above discussion highlights the issues that have tolkes fato account when using
sampled-data models to identify continuous-time systeecifically:

e Any method that relies on high-frequency system charattesiwill be inherently non robust,
and, as a consequence,

e Models should be considered withirbandwidth of validity to avoid high-frequency modelling
errors — see the shaded area in Figure 4.3.

In Section 4.3, we will see how frequency domain maximumlililamd estimation, over eestricted
bandwidth can be used to address these issues.

4.2.1 Frequency Domain Maximum Likelihood

In this section we describe a frequency domain maximumilikeld (FDML) estimation procedure.
Specifically, if one converts the data to the frequency dantaien one can carry out the identification
over a limited range of frequencies. Note, however, thatmeeds to carefully define the likelihood
function in this case. We use the following result (for thalac case, the result has been derived in
Ljung (1993), while the multivariable case is considereMirKelvey and Ljung (1997)):

Lemma 4.5 Assume a given set of input-output daia = w(kA),yr = y(kA)}, k= 0... Ny, is
generated by thexactdiscrete-time model:

yk = Golq, O)ug + Hy(q, 0)vy, (4.13)
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Figure 4.3: Representation of the bandwidth of validity.

whereuvy, is Gaussian DTWN sequeneg,~ N (0,02).
The data is transformed to the frequency domain yieldingltberete Fourier transform#&, andY,
of the input and output sequences, respectively.
Then the maximum likelihood estimatedpfvhen considering frequency components up,t@. <
=+, is given by:
Orrr = arg mein L(6) (4.14)

whereL(#) is the negative logarithm of the likelihood function of ttealgivend, i.e.,

L) = — logp(Yg7 e Yo 10)

nia:x |Y'€ ]ng )Ug|2
)\2|H emA I

+ log(mA2|H, (702, 0) %) (4.15)

where\? = ANy02, andn.y is the index associated with,,.
Proof. Equation/(4.18) can be expressed in the frequency domain as:
Yy = Gy(e?2,0) U, + Hy (702, 0)V, (4.16)

whereYy, Uy, andV; are discrete Fourier transforms (DF€)g,
Ndfl
Y, =Y (eR) = A Z ype Tweka Jwp = %Nid (4.17)
k=0
Assuming that the DTWN sequeneg ~ N (0,02, thenV, are (asymptotically) independent and
have a circular complex Gaussian distribution (BrillingE74; Brillinger, 1981). Thus, the frequency
domain noise sequendé has zero mean and variankg = AN,o2. We therefore see thaf, is also
complex Gaussian and satisfies:

Yy ~ N(Gq(e?*2,0)Up, N2 | Hy (72, 0)[?) (4.18)

The corresponding probability density function is given by

B i ¥ — Gy (26U 2
PO = e, (e, B2 eXp{ N[, (755, 0) (4-19)
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If we consider the elements, within a limited-bandwidth, i.e., up to some maximum frequency
Wmax INdexed byn,ax With wiayx = ws ;;;dx < %=, the appropriate log-likelihood function is given by:

Mmax

L(0) = —logp(Y, ..., Y,..) = —log ] p(v2)
£=0
S e

)\2|H EEENNE +10g(7r)\3|Hq(ej“’ZA,9)|2) (4.20)

O

Remark 4.6 The logarithmic term in the log-likelihood functiq@.15) plays a key role in obtaining
consistent estimates of the true system. This term can bectedpnly if (Ljung, 1993):

e The noise model is assumed to be known. In this ésdoes not depend ahand, thus, plays
no role in the minimisatiot{4.14) or

e The frequencies), are equidistantly distributed over the full frequency rarig, %’r). This is
equivalent to considering thielll bandwidth case in(4.15) i.e., nmax = % (or N, because of
periodicity). This yields:

Ng—1 2w
2 5 — 00 3
va D" log|Hy(e/2,0)]? —==— / log | Hy(e'*, 0)[*dw (4.21)
A 0

The last integral is equal to zero for any monic, stable anceisely stable transfer function
H,(e’*,0) (Ljung, 1993).

Remark 4.7 In the previous lemma the discrete-time mo@el3) has been expressed in terms of the
shift operatorg. The results applynutatis mutandisvhen the model is reparameterised using dhe
operator:

) = G = (271) w2

4.3 Robust continuous-time identification

In this section we illustrate the problems that may ariserwg@mpled-data models are used for continuous-
time system identification. In particular, we illustrate ttonsequences of both types of undermodelling
errors discussed earlier:

e Sampling zeros are not included in the sampled-data moael, a
e The continuous-time system contains unmodelled high &aguydynamics.

We show that these kinds of errors can have severe consexpugnthe estimation results for de-
terministic and stochastic systems. We show that the fremyudomain maximum likelihood (FDML)
procedure, using restricted bandwidth, allows one to mraecthese difficulties.
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4.3.1 Effect of sampling zeros in deterministic systems

We first explore the consequences of neglecting the presd#rsampling zeros in determistic models
used for identification. Specifically, the following exarmonsiders a deterministic second order sys-
tem with known input. The parameters of the system are etgimasing different sampled-data model
structures.

Example 4.8 Consider again the linear system A.4). Assume that the continuous-time parameters
area; = 3, ap = 2, fp = 2. We performed system identification assuming three differeodel
structures:

SDRM: Simple Derivative Replacement Model. This correspondsastructure given i4.5), where
continuous-time derivatives have been replaced by divitiféelences.

MIFZ: Model Including Fixed Zero. This model considers the presenf the asymptotic zero, assum-
ing a structure as ir{4.7).

MIPZ: Model Including Parameterised Zero. This model also inekid sampling zero, whose location
has to be estimatedle., we use the structure given (4.6).

The three discrete-time models can be represented in tefrthe & operator as:

B;s(7)

Gs(y) = Ty + o (4.23)
where:
Bo (SDRM)
Bs(v) =< Bo(1+44)  (MIFZ) (4.24)

Bo + b1y (MIPZ)

We use a sampling periad = 7/100[s] and choose the input, to be a random Gaussian sequence
of unit variance. Note that the output sequenge= y(kA) can be obtained by either simulating the
continuous-time system and sampling its output, or, al&ively, by simulating the exact sampled-data
model in discrete-time. Also note that the data is free ofraegsurement noise.

The parameters are estimated in such a way to minimise thatiequerror cost function:

) 1 N-—1 R 1 N—1
J0) = + > en(0)? = ~ > (Pye — 61 0) (4.25)
k=0 k=0
where:
=6k, Yk, ug)” (o1, ao, Bo]” (SDRM)
O = § [0yi, —yns (1 + S6)ug)” and  0=1ay, a0, fo]7  (MIFZ)  (4.26)
[—0Yk, — Yk, Oup, ug)” [, a0, B, Bo]t (MIPZ)

Table[ 4.1 shows the estimation results. Note that the syst@sidered is linear, thus, the exact
discrete-time parameters can be computed for the given lgagmperiod. These are also given in Table
[4.1.
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Parameters Estimates
CT | ExactDT | SDRM | MIFZD | MIPZD
a; | 3 | 2923 | 2.8804 | 29471 | 2.9229
ap | 2 | 1.908 | 1.9420 | 1.9090 | 1.9083
Bi| - | 0.0305 - | 22 =0.03 | 0.0304
Bo | 2 | 1.908 | 09777 | 1.9090 | 1.9083

Table 4.1: Parameter estimates for a linear system

We can see that, while both models incorporating a samplarg MMIFZ and MIPZ) are able to
recover the continuous-time parameters, when using SDRMdtimate, is clearly biased.
O

The result in the previous example may be surprising sing though the SDRM in (4.27) con-
verge to the continuous-time system as the sampling pemes ¢p zero, the estimat& does not
converge to the underlying continuous-time parameters €htimate is asymptotically biased. Specifi-
cally, we see thatl, is incorrectly estimated by a factor dfby the SDRM. This illustrates the impact
of not considering sampling effects on the sampled-dataatsagsed for continuous-time system iden-
tification.

Indeed, the following result formally establishes the agigotic bias that was observed experimen-
tally for the SDRM structure in the previous example. In jgaitar, we show that, is indeed underes-
timated by a factor of.

Lemma 4.9 Consider the general second order deterministic systeengiv(4.4). Assume that sam-
pled data is collected from the system using a ZOH input ggadrfrom a DTWN sequeneg, and
sampling the outpu,, = y(kA)
If an equation error identification procedure is utilised éstimate the parameters of the simple
derivative replacement model:
8%y + d16y + Gy = Bou (4.27)

then the parameter estimates asymptotically convergdyeasampling period\ goes to zero, to:
Q1 — aq, dp — g, and 3y — 350 (4.28)

Proof. The parameters of the approximate SDRM (4.27) model can teénadl by simple Least
Squares, minimising the equation error cost function:
1 N—-1
AT N2 _ N\ 2
J(0) = Jim — 203 ex(0)* = E{ex(0)*} (4.29)
whereey, = 6%y + 610y + Goy — Fou. The parameter estimates are given by the solutioﬂoﬁdgi2 =0.
Thus, differentiating the cost function with respect toteatthe parameter estimates, we obtain:

E{(0y)*} E{0y)y} —E{(oy)u}| & —E{(dy)(0%y)}

E{(oy)y}  E{y*} —E{yu} | |&o| =| —E{yds%y} (4.30)
-E{y*} —E{yu} E{u?} o E{ué?y}
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This equation can be rewritten in terms of (discrete-tintgjedations as:

2ry(O)A—227‘y(1) Ty(l);Ty (0)  ryu (0);ryu(l) é 3ry (0)—42,3(1)-1—7@ (2)
ry(l);ry(o) TU(O) _ryu(o) ao| = —Ty(0)+2£y2(1)—7"y(2) (431)
T?/u(o)gryuu) _Tyu(o) Tu (0) BO Tyu (0)_2""1/Au2(1)+7"yu (2)

To continue with the proof we need to obtain expressionsHerdorrelations involved in the last
equation. If we assume that the input sequence is a DTWN @peeth unit variance then we have
that:

ru(k) =0k k] = dL(P) =1 (4.32)

Then, the other correlation functions can be obtained floerélations:
ryu(k) = Fy H{@0, (7)) = Fit {Gy (/2@ } = F i {Gy (%)} (4.33)
ry(k) = F {@4(e72) ) = Frt {Gyle 79202, (/%) = F H {IGy ()P} (4.34)

whereGq(ej“’A) is the exact sampled-data model corresponding to the amtstime system (4.4).
Given a sampling period\, the exact discrete-time model is given by:

Bo(c1z + co)
Gq(2> = (Z — eAlA)(Z _ 6)‘2A) (435)
where:
6)‘1A—1/\ _ ez\gA_l)\ AQ A3
c] = ( ()2_2/\25/\1)\2 )i :7—1—?()\14-)\2)-1-... (4.36)
€>\1A e)\zA — DN — e)\gA e)\lA 1 AQ AS
co = ( ()\31)\2»\1)\2 ) 2:7—&—?()\1—1-/\2)—1—... (4.37)

and)\; and), are the continuous-time system (stable) poles of systefi, (€., a; = — (A1 + \2) and
ag = A Aa.

The exact discrete-time model (4.35) can be rewritten as:
Gy Co

G = 4.38
a(?) z—eMB el (4.38)
whereC; = % andC, = % Substitituting in[(4.34), we obtain:

rgu(K) = Fi {Gole2)} = (CreM A0 4 G2 s — 1] (4.39)

wherep[k] is the discrete-time unitary step function. From (4.35) haee that:

e/\lA ef/\1A e/\zA 67’\2A
Gy (2)Gy(z7h) = K4 ( + > + Ko ( + > (4.40)

z—eMB |y _e A z—erB e

B ﬂg(c%e)‘lA + cocq + cocre2MA c%eAlA)

H1 = (208 Z 1) (eMBehad ZT)(eMA — ehaA) (4.41)
Ky = B3 (cte=® + coer + coere®22 + cfet22) (4.42)
2= (e222A —1)(erBeMA —1)(e)2d — eMid) '

Substitituting in[(4.34), we obtain:

ry(k) = Fi {|Gq(z = e28) 2} = KieM Akl 4 Koer2 8k v ez (4.43)
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The correlations (4.32), (4.39), and (4.43) can be useddmttmal equation (4.30) to obtain:

oA 0+0a?) —2A] [a] AL
0+0(A%) oA 0 | fao| = | Agi (4.44)
YN 0 1] 6] [Z2+0n)
If we consider only terms up to of ordéx we obtain:
& S [~ (A1 + A)
o | = A Ao 220 L A (4.45)
] |BERREES [ o2

which corresponds to the result in (4.28).
O
The above results show that sampling zeros should be caadide obtain a sampled-data model
accurate enough for estimation. Even though the samplirgfee the exact discrete-time model (4.7)
goes asymptotically to infinity (in the-domain), if it is not considered, then the parameter eséma
will be generically biased (for equation error structures)

4.3.2 Effect of sampling zeros in stochastic systems

A particular case of the above problem for stochastic systeas been studied in detail byd&erstom
et al, 1997; Larsson andd@lerstom, 2002; Larsson, 2003). These papers deal with contintimes
auto-regressive (CAR) system identification from samplathdSuch systems have relative degiee
wheren is the order of the auto-regressive process. Thus, consisigstem described by:

E(p)y(t) = o(t) (4.46)

wherev(t) represents a continuous-time white noise (CTWN) procesk[Edp) is a polynomial in the

d

differential operatop = =,

i.e.,

E(p) =p" + an_1p" ' +... +ao (4.47)

For these systems, it has been shown that one cannot igremrdbence of stochastic sampling
zeros. Specifically, if derivatives are replaced by dividéterences and the parameters are estimated
using ordinary least squares, then the results are asyiogilphiased, even when using fast sampling
rates (®derstom et al, 1997). Note, however that the exact discrete-time modsl diescribes the
continuous-time systerh (4.46) takes the following genferim:

B (g Yy(kA) = F (g Hwy, (4.48)

wherewy, is a discrete-time white noise process, dndand F, are polynomials in the backward shift
operatorg 1.

As we have already seen in Chapter 2, the polynotja ") in equation/(4.48) isvell behavedn
the sense that it converges naturally to its continuous-tiounterpart. This relationship is most readily
portrayed using the delta form:

Es(0) = 0" 4+ an_16"" "+ ...+ ap (4.49)
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Using {4.49), it can be shown that, as the sampling pefiagbes to zero:

lima; =a; ;i=n-—1,...,0 (4.50)
A—0

However, as seen in Section 2.4, the polynonfialg—') contains the stochastic sampling zeros,
with no continuous-time counterpart. Thus, to obtain theem estimates — say via the prediction
error method (Ljung, 1999) — then one needs to minimise tiséfomction:

Jpem = Z { ;CA)] (4.51)

Notice the key role played by the sampling zeros in the abapeession. A simplification can be
applied, when using high sampling frequencies, by reptpttie polynomialF, (¢~ 1) by its asymptotic
expression. However, this polynomiaas to be taken into accountwhen estimating over full band-
width. Hence it is not surprising that the use of ordinarystesgjuares,e., a cost function of the form:

N

Jrs =Y [Byla Hyka)]” (4.52)

k=1
leads to (asymptotically) biased results, even when ugir®j. We illustrate these ideas by the follow-
ing example.

Example 4.10 Consider the continuous-time system defined bydmeinal model
E(p)y(t) = i(t) (4.53)
wherev(t) is a CTWN process with (constant) spectral density equé) &nd
E(p) =p*+3p+2 (4.54)

From Examplé 2.32 on page 32, we know that the equivalentlsartata model has the form:

_ K(z—2z)
(z — e B)(z — e 28)

W (z) (4.55)

Moreover, from Example 2.39, we know that, as the samplitg) ircreases, the sampled model
converges to:

Fq(z) A0 A? (Z — ZT)
ETR 4.
Ey(2) 3 (z—eB)(z—c 2B) (4.56)
wherez; = —2 + /3 is the asymptotic stochastic sampling zero, which cormedpdo the stable root

of the sampling zero polynomidi;(z) = 22 + 4z + 1 (see Section 2.5).

For simulation purposes we used a sampling frequency: 250[rad/s]. Note that this frequency is
two decades above the fastest system pole, locatee-at-2. We performedVy;,,, = 250 simulations,
using N = 10000 data points in each run.

Test 1: If one uses ordinary least squares ag4n52) then one finds that the parameters are (asymptoti-
cally) biased, as discussed in detail irdfirstomet al, 1997). The continuous-time parameters
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are extracted by converting to the delta form and then ughg0) We obtain the following

(mean) parameter estimates:
a 1.9834
= (4.57)
ao 1.9238

In particular, we observe that the estimaitgis clearly biased with respect to the continuous-time
valuea; = 3.

Test 2: We next perform least squares estimation of the paramebetsyith prefiltering of the data
by the asymptotic sampling zero polynomiad, we use the sequence of filtered output samples

given by: .

T 12— VB)g !

Note that this strategy is essentially as in (Larsson abde®stdm, 2002; Larsson, 2003).

yr(kA) y(kA) (4.58)

Again, we extract the continuous-time parameters by caimgeto the delta form and using
(4.50) We obtain the following estimates for the coefficients @fablynomiak4.54)

lall _ l2.9297] (459)
io 1.9520

The residual small bias in this case can be explained by teeofithe asymptotic sampling zero
in (4.56), while the sampling period is finite.

O

In the previous example we obtained an asymptotically bi@séimation of the parametér when
the sampling zeros are ignored. In fact, the estimatesrduddh [(4.57) are predicted by the following
lemma. This presents the stochastic counterpart of Lémandmely, the asymptotic parameter esti-
mates obtained when using the simple derivative replaceaparoach for second order CAR systems.

Lemma 4.11 Consider the second order continuous-time autoregressiseem:

d? d
ﬁy(t) +o E?J(ﬁ) + aoy(t) = o(t) (4.60)

whereo(t) is a continuous-time white noise process. Assume that @seq{ly, = y(kA)} is obtained
sampling instantaneously the system output. If an equadicor procedure is used to estimate the
parameters of(4.60)using the model:

Sy? + a0y + Gy = e (4.61)
Then, as the sampling perial goes to zero, the parameters goes to:

ap — %041 do — g (4-62)
Proof. The proof follows similar lines to the proof of Lemra 4.9 orgpa/1. The details can be
found in (derstomet al, 1992).

O
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Up to this point, we have considered undermodelling ertwasdrise whesampling zerogstochas-
tic or deterministic) are not considered in the discretgetimodel. In the next subsection, we show
that high frequency modelling errors in continuous-tima ba have an equally catastrophic effect on
parameter estimation.

4.3.3 Continuous-time undermodelling

In this section, we illustrate the consequences of unmedely/namics in the continuous-time model,
when using estimation procedures based on sampled datdo€usr will be on the case of stochastic
systems, however, similar issues arise for determinigstesn.

The input of a stochastic system is assumed to be a contirtimaswhite noise (CTWN) pro-
cess. However, such a process is only a mathematical afimtrand does not physically exist (see
Remark 2.24 on page 28). In practice, we will havide-bandnoise processes as disturbance. This is
equivalent to a form of high frequency undermodelling.

The solution of the CAR identification problem for sampledadaould seem to be straightforward
given the discussion in the previous subsection. Appareotie only needs to include tleampling
zerosto get asymptotically unbiased parameter estimates usimst squares. However, this ignores
the issue of fidelity of the high frequency components of tloeleh. Indeed, as pointed out before in
Section 3.6, the system relative degree cannot be robuedilyedi for continuous-time models due to the
presence of (possibly time-varying and ill-defined) higkqgiuency poles or zeros. If one accepts this
claim, then one cannot rely upon the integrity of the extrypamial ,(¢~'). In particular, the error
caused by ignoring this polynomial (as suggested by thefenstion (4.52)) might be as catastrophic as
using a sampling zero polynomial arising from some hypathéassumption about the relative degree.
Thus, this class of identification procedures are inheyerdh-robust. We illustrate this by continuing
Example 4.10.

Example 4.12 (Examplé 4.10 continued)_et us assume that titeue modelfor the systen{4.53)is
given by the polynomial:
E(p) = E°(p)(0.02p+1) (4.63)

where we have renamed the polynon{#@/54)in the original model as=°(p). Thetrue system has
an unmodelled pole at = —50, which is more than one decade above the fastest nominalipole
(4.53)(4.54) but almost one decade below the sampling frequencys 250[rad/s].

We repeat the estimation procedure describedest 2 in Example 4.10, using the filtered least
squares procedure. We obtain the following estimates:

a 1.4238
= (4.64)
ag 1.8914

These are clearly biased, even though the nominal sampdirigtas been included in the model.

To analyse the effect of different types of under-modelliregconsider thérue denominator poly-
nomial (4.63)to be:

B() = E0) (£ +1) (4.65)

Wy
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We consider different values of the parametgrin (4.65) using the same simulation conditions as
in the previous exampleg€., 250 Monte Carlo runs using 0000 data points each). The results are
presented in Figure 4.4. The figure clearly shows the effabieounmodelled dynamics on the parameter
estimates. We see that the undermodelling has an impactbeyamd the sampling frequency, which
can be explained in terms of the inherent folding effect efsthmpling process.

Filtered LS estimate

— — — —truea

25

R 7trueao

15 N |

Figure 4.4: Mean of the parameter estimates as a functioleofitmodelled dynamics, using filtered
LS.

Figure[4.5 shows similar simulations results using an iastental variable (IV) estimator. The V-
estimator is a basic IV method where the IV vector consistbsérvations ofi(¢) delayed one sampling
period (Bigiet al, 1994).

O

The difficulties discussed above arise due to the fact thatrie high frequency characteristics
are not exactly as hypothesised in the algorithm. Thus,dlénig that occurs isiot governed by the
anticipated sampling zero polynomial that is used to pezfihie data.

4.3.4 Restricted bandwind FDML estimation

The examples presented in the previous subsections ragpigstion as to how these problems might
be avoided or, at least, reduced, by using an identificatrosguiure more robust to high frequency
under-modelling. Our proposal to deal with this problenoislésignate dandwidth of validityfor the
model and, then, to develop an algorithm which is inserestiiverrors outside that range. This is most
easily done in the frequency domain.

In the following example we will use the FDML procedure pretgel in Lemma 4.5 to estimate the
parameters of CAR systems as (4.46).
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Basic IV estimate

R 7trueal

25

- - — 7truea0

a
151 0 B

aoic(ao)

Figure 4.5: Mean of the parameter estimates as a functioneofihmodelled dynamics, using simple
delayed IV.

Remark 4.13 For the a CAR system as {#.46) let us consider the (approximate) derivative replace-
ment discrete-time model:

Ey(q)yr = wy, (4.66)

wherey;, is the sequence of instantaneous output samplé$.46) andw;, is a discrete-time stationary
Gaussian white-noise sequence with variange GivenN data points of the output sequengg:A)
sampled atv,[rad/s], the appropriate likelihood function, in the fregaucy domain, takes the form:

Mmaz | (ojweAYY (giweA)(2 E (edwed)|2
L B ) 467)
£=0 w

w

wherew, = “’]f,‘ andn,,.., corresponds to the bandwidth to be consideres],, w,q, = “=F=.

Example 4.14 We consider again the CAR system presented in 4.10. If whesesultin Lemma 4.5,
using the full bandwidtho, 7 /A] (or, equivalently, up td25[rad/s]) we obtain the following (mean)

1|  |4.5584
L}O] - [1.9655
As expected, these parameters are clearly biased becausewet taking into account the presence
of the sampling zero polynomial in the true model.

Next we consider an estimation procedure restricted to tatebandwidth of validity For example,
the usual rule of thumb is to consider up to one decade abavéagiest nominal system pole, in this

value for the parameter estimates:

(4.68)

case,20[rad/s]. The resultant (mean of the) parameter estimatesthen given by:

lall _ l3.0143] (4.69)
a0 1.9701
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FDML using RESTRICTED bandwidth
T
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Figure 4.6: Parameter estimates using FDML as a functiomofadelled pole.

Note that these estimates are essentially equal to theifeanis-time) true values. Moreover, no
prefiltering as in(4.51) or (4.58) has been used! Thus, one has achieved robustness to theeelat
degree at high frequencies since it plays no role in the ssiggeprocedure. Moreover, the sampling
zeros can be ignored since their impact is felt only at higlgfrencies.

Finally, we show that the frequency domain procedure is edbaist to the presence of unmodelled
fast poles. We consider again the true system to be @&3). We restrict the estimation bandwidth up
to 20[rad/s]. In this case, the mean of the parameter estimatagan very close to the nominal system

coefficientsj.e., we obtain:
a 2.9285
“l - (4.70)
ao 1.9409

A more general situation is shown in Figure 4.6. The figurewshthe parameter estimates ob-
tained using the proposed FDML procedure, with the sameicgstl bandwidth used befote,,., =
20[rad/s], for different locations of the unmodelled fast @al,, as in(4.65)

O

Remark 4.15 Note that the likelihood functiof#.67)is not scalable by2 and hence one needs to also
include this parameter in the set to be estimated. This isrgortant departure from the simple least
squares case.

4.4 Summary

In this chapter we have explored the robustness issues risatia the identification of continuous-
time systems from sampled data. A key observation is thdtdbéty of the models at high frequencies
generally plays an important role in obtaining models slé#or continuous-time system identification.
In particular, we have shown that:
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e Sampling zeros may have to be included in the discrete-timaets to obtain accurate sampled-
data descriptions.

e Unmodelled high frequency dynamics in the continuous-tinoglel can have a critical impact on
the quality of the estimation process when using sampléal-da

This implies that any result which implicitly or explicitjepends upon the folding of high frequency
components down to lower frequencies will be inherentip-robust As a consequence, we argue that
models have to be considered withibandwidth of validity

To address these issues, we have proposed the use of frggi@nain maximum likelihood esti-
mation, using a restricted bandwidth. We have shown thatapproach is robust to both the presence
of sampling zeros and to high frequency modelling erroromtiouous-time.

The problems discussed above have been illustrated for #etérministic and stochastic, systems.
Special attention was given to the identification of continsrtime auto-regressive stochastic models
from sampled data. We have argued that traditional appesaiththis problem are inherently sensitive
to high frequency modelling errors. We have also arguedtitiese difficulties can be mitigated by using
the proposed FDML with restricted bandwidth.



Chapter 5

Sampled-data models in LQ problems

5.1 Introduction

In this chapter we consider a particular application of daaolata models, namely, their use for Linear-
Quadratic (LQ) optimal control problems. In particular, amine the presence of input and/or state
constraints, when using fast sampling rates. We presentrtaio convergence results. These estab-
lish connections between continuous-time and sampleal@f@tmal control problems. First, we show
that the constrained control problem in discrete-time hagkhdefined limit as the sampling rate in-
creases. An immediate consequence of this result is theeagis of a finite sampling period such that
the achieved performance is arbitrarily close to the lingitpberformance, obtained by the hypothetical
continuous-time control law. The second result consideessingular structure of sampled data LQ
problems for continuous-time linear systems. We show tsthe sampling rate is increased, there
is a natural convergence between the finite set of singulaesaf the discrete time problem, and the
(infinite) countable set in continuous time.

Connections between continuous-time and sampled-dataatontrol strategies have previously
been addressed in the literature (Middleton and Goodwifi0;1Beuer and Goodwin, 1996; Chen and
Nett, 1995) for theunconstrainedcase. However, the constrained case has received lesticatten
because of the inherent difficulties involved in solving doastrained control problems in continuous-
time (Berkovitz, 1974; Vinter, 2000). However, in discr¢irme, different numerical procedures and
algorithms can be implemented to deal with this kind of peofis.

An increasingly common strategy to deal with constraintsantrol is Receding Horizon or Model
Predictive Control (MPC) strategies (Sznaier and Damti®§y7; Rawlings and Muske, 1993; Scokaert
and Rawlings, 1998; Maynet al., 2000; De Oliveira Kothare and Morari, 2000; Canrairal, 2001;
Cheng and Krogh, 2001; Goodwet al, 2004). This is a form of (discrete-time) control in whicleth
current control action is obtained by solving-ling at each sampling instant, a finite horizon optimal
control problem for the open-loop plant using the currebs@ved) state as initial condition. The first
component of the optimal control sequence is applied toykem, and the procedure is repeated again
at the next sampling instant. One of the key advantages stth&ategies is that constraints can be
taken into account in the optimisation procedure, for edamnpa Quadratic Programming (QP) (Van

81
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De Panne, 1975; Sznaier and Damborg, 1987; Chmielewski armbdbiouthakis, 1996; Scokaert and
Rawlings, 1998).

Traditionally, MPC has been applied to systems having lamg tconstants, e.g. petrochemical
processes. However, increasing computational power arahte@dvances in this area, suchoéfsline
implementations of the solution (Bemporatal,, 2002; Sebn et al,, 2003), haveopened the docio
short time constant applications including aerospac@maobile control and electro-mechanical servo
problems. These applications typically use fast samplatgsrand a common design goal is that the
sample-hold nature of the input should have minimal impadthe achievable performance. This goal
is consistent with the control of linear systems in the absesf constraints. Indeed, it is common for
the sampling rate to be chosen so that the response of thdeshdgia control system gractically
indistinguishablefrom the corresponding continuous-time solution. The gdatonstrained control
will often be similar,i.e,, it is desirable to choose a sampling period such that tlfaeg of sampling
arepractically unobservable

We begin in Section 52 by presenting the (constrained) L&m@b control problem, both in
continuous- and discrete-time. In particular, the latteybfem is formulated in such a way that it
corresponds to the sampled-data version of the underlyongraious-time problem. A particular fea-
ture of the discrete-time problem statement is that thetiapd/or state constraints are tightened by a
scaling factorv(A), whose choice is explained later.

The analysis presented in Section 5.3 shows that theresexftite sampling period such that the
sampled-data response of a finite horizon constrainedrlowdroller is arbitrarily close to the response
which would be achieved by a continuous-time constraineelli controller. Previous work having a
connection with our work has been reported in (Kojima and &/ipr2004), where the finite horizon
constrained LQ problem is solved in continuous-time, usipgctral properties. In their approach,
however, the constraints are satisfied only at a finite seboftp over the control horizon. By way
of contrast, we show that the continuous-time solutionhwibnstraints imposed fall time, can be
arbitrarily approximated using a standard discrete-tipgreach provided one chooses a suitably fast
sampling rate and, possibly, tighter constraints at thepiaginstants.

In Section 5.4 we study the spectral properties of the optorrol problem, both for the continuous-
time formulation and its corresponding sampled-data warsspecifically, we obtain the singular struc-
ture in continuous- and discrete-time domains. We show #sathe sampling rate is increased, there
is a natural convergence between the finite set of singulaesaf the discrete time problem, and the
(infinite) countable set in continuous time.

The motivation for this work was the results reported in (K@ and Morari, 2001), where a sin-
gular value decomposition of linear operators is used toadmate the solution of constrained LQ
problems in continuous time. Related work regarding siagualue structures has also been reported
in the context of cross directional control (Rogtsal., 2002) and constrained receding horizon control
(Rojaset al, 2003; Rojas and Goodwin, 2004) for discrete time systentss body of work raises
the more general system theoretic question regarding tiieection between the singular value struc-
ture of discrete-time LQ problems and the associated cootisrtime case. A deeper understanding
of this connection could, for example, lead to approximag@rithms for the continuous time prob-
lem, which are solved using standard discrete time methddseover, the existence of a well defined



5.2. Linear-Quadratic optimal control problems 83

limit as the sampling rate increases could be exploited gh Isbeed applications, using ad-hoc algo-
rithms for constrained systems in MPC strategies. Furtbegpconnections with intrinsic properties
of the continuous-time system, such as its frequency respdrave also been established (Rojas and
Goodwin, 2004; Rojast al,, 2004; Rojas, 2004).

5.2 Linear-Quadratic optimal control problems

In this section we present the LQ optimal control problemnmfolation in continuous-time and its cor-
responding sampled-data version. The latter problem iallyssolved inopen loopusing discrete-time
MPC strategies at each sampling instant. Thetoaed loopmplementation is obtained by exploiting
a receding horizon strategy. We will initially focus our &sas on the fixed horizon case. The moving
horizon problem will be discussed later in Section 5.3.2.

In the following subsections we consider two related protdeone defined in continuous-time and
an associated discrete-time sampled-data problem.

5.2.1 Continuous-time problem

As a benchmark problem, we consider a fixed horizon congtdagontrol problen, defined in the
continuous-time domain as follows:

(i) A continuous-time model in state-space form:

=-
—~

~
~—

I

Az(t) + Bu(t) ; z(0) =z, (5.1)
y(t) = Cu(t) (5-2)
whereA € R™*", B € R"*™ C € R™*",
(i) A fixed time horizonT; < oco.

(iii) A quadratic cost function:

J(w) = i+ T (5.3)
where:
Ty
Ji = / ((t)Qu(t) + u(t)” Ru(t)) dt (5.4)
0
Joe = 2Ty Pa(Ty) (55)

with @ > 0, R > 0, and where the final state weighting matrik, gives rise to the infinite
horizon optimalunconstrainedcost associated with the co$t when the initial state is: (7).
Thus P satisfies theontinuous-timelgebraic Riccati equation:

0=Q+ATP+PA—-PBR'BTP (5.6)
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(iv) And a set of (continuous-time) state and/or input caaists, written in the following general

form:

()
L, a(t)

IA

(5.7)

L,u
T

M,
M,

IN

for all ¢t € [0, T]. Note thatL,, will typically have rankm whilst L, will have rank less than or
equal ton.

Leti/ C R™andX C R" be the sets of all possible valuesudi) andzx(¢), ¢ € [0, Ty], such that
(5.1) and/(5.7) are satisfied. Then, the only requirements,od..., M,,, and)M,, are that the sets
U andX’ are bounded (possibly as a functiorugfin the case oft’) and contain the origin of the
respective space — see (Chmielewski and Manousioutha3@§)1Note that this implies that all
entries in both\/,, and M, are positive.

Given (i)—(iv), the continuous-time problef is defined to be: find the optimal control signal

u* = u*(t) such that the cost functioh (5.3) is minimisee,,

*(t) = in J 5.8
' (1) = arg min J(u) (58)

Remark 5.1 There has been substantial work, spanning three centubesparticularly since the
1950's, on the general conditions under which optimal cginproblems such a® have a solution.
These results give necessary and sufficient conditiong wideh a solution is truly a minimiser. More-

over, existence theorems for this minimiser assume thagpribtdem isfeasible i.e., that the class of
admissible pairgu(t), z(t)} which satisfy the system dynamic equation (5.1) and cansirés.7) is
non-empty (Berkovitz, 1974; Vinter, 2000).

We will thus assume the existence of a solution of the canigwtime constrained optimal control

problem?P, even though an explicit expression will not be obtainedtdad, we show that, subject to

existence, the solution can be approximated to any desegaed of accuracy by solving an associated
sampled-data constrained optimal control probl&g, described in the next subsection.

Remark 5.2 Note thatitis common in Receding Horizon Control to utiidal state weighting matrix
as in(5.5) (see also equatiofb.14)below). This choice ensures that, if the constrains areactiveat

the end of the fixed horizdf, the cost(5.3) represents in fact the infinite horizon cost (Chmielewski
and Manousiouthakis, 1996; Mayeeal, 2000; Goodwiret al, 2004).

5.2.2 Sampled-data problem

A natural way to approximate the continuous-time problBns to use a (small) sampling periail
together with a Zero Order Hold (ZOH) approximation to thpuhsignal. In this framework, the
optimal solution can be found using standard numericalrdalgas such as QP.

For a given sampling interval, we defineux (t) as the piece-wise constant continuous-time input

to the system, generated by a Zero Order Hold (ZOH) ds in Y24@age 1Bi.e.,

u(t) =ua(t) =up ; kA<t <EA+A (5.9)
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wherek € Z is the discrete time domain index. Furthermore, we assuatelte sampling interval is
an integer fraction of the fixed time horizdnp, i.e.,

Ty

A:N — NA=T} (5.10)

for someN € N.

Given the continuous-time problef, we next define an associated discrete-time constrained op-
timal control problemPA. This, in fact, corresponds to a sampled-data version dblpno P, but
where the input and state constraints have been slightlyfieddThe choice of the scaling factor in the
discrete-time constraints will be clarified later in Seot®3.

We consider:

(i) A discrete-time model expressed in state-space form:

Tp+1 = Agxy + Byur, 5 ,asin(5.1) (5.12)
Yk = Cl‘k (5.12)

As discussed earlier in Section 2.2, if the system matricegien by:
A
A, =e™ 5 B, = / e B dn (5.13)
0

the model[(5.11)+(5.12) corresponds, in fact, to the sathmesion of the continuous-time system
(5.1)—(5.2),.e, 1, = x(kA) andyy, = y(kA).

(i) A fixed discrete-time horizoV = .

(iii) A quadratic cost function:

N-1 0 S T
Ia(uy) = FAYY o I A B R IR N 5.14
A(ug) ];){mk uk} [S{ Ry | NPAzN (5.14)
where:
A T
Qq = / et Qe dt (5.15)
0
A T
S, = / et tQh(t) dt (5.16)
0
A
R, = / h(t)TQh(t) dt + RA (5.17)
0
t
h(t) = / e Bdr (5.18)
0

and wherePx satisfies the followingliscrete-timealgebraic Riccati equation:

Pa = Qq+ ATPaA, — (AT PaB, + S,) (Ry + BIPaAB,) " (BT Pad, +57)  (5.19)
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(iv) And a set ofdiscrete-timeconstraints for the state and/or the input signal, writtetihé following
form:

Ly up < a(A)M,
L,z < a(A)M,

(5.20)

forall k € {0,...,N — 1} and wheren(A) € (0, 1] is a scaling factor, whose choice will be
discussed in the next section.

Given (i)—(iv), the sampled-data problef is to find the optimal control sequenae = u} , such
that the cost function (5.14) is minimisdd.,

Up = argmin Ja (ug) (5.21)
ug

The previous formulation of the discrete-time probl@x is clearly justified by the following two
remarks.

Remark 5.3 It can be readily shown (Middleton and Goodwin, 199Gtrom and Wittenmark, 1997)
that the choices (5.15) tb (5.19) ensure that:

J(un) = Ja(ur) (5.22)

whereJa (uy;) denotes the discrete-time cost value, as defined in (5.18nthe control sequeneeg,
is applied to the system (5.11)—(5.12), ah@d:» ) denotes the continuous-time cost valué in|(5.3)+(5.6)
whenua (), as defined inf (5.9), is applied to the continuous-time sy$te1)-(5.2).

Remark 5.4 It has been shown earlier in this thesis that delta operatodeis provide a natural con-
nection between discrete- and continuous-time. In facthasampling period goes to zero, we have
that (Feuer and Goodwin, 1996; Middleton and Goodwin, 1990)

Aqu—>A, %HB, %HQ, %HO, %HR, P — P (5.23)

This means that thenconstrainedsampled-data problem given by (i)—(iii) converges to thecdig-
tion of the underlyinginconstrainedcontinuous-time problem given by (i)—(iii) in Section 5.2.

In the next section we consider the corresponding consiiagase. We show that, under some
additional requirements on the scaling factdr\), the formulation of the sampled-data problé
converges, ad — 0, to the formulation of probler®, defined in continuous-time.

5.3 Constrained control using fast sampling rates

While the explicit solution of the continuous time problémis very difficult to obtain, solvingPa
for a given sampling period\ is relatively straightforward using standard numericalgedurese.g,
quadratic programming (QP) (Goodwaéh al.,, 2004).

In this section, we present results that will help us to eethe solution ofPA to the solution of
P. We first discuss the scalafA) introduced earlier, in equation (5.20), as a scaling faassiociated
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with the discrete-time constraints (5120). We then presentesults that will be used later, in Theorem
[5.11 in the next section, to establish the convergence afdhgion of P to the solution ofP.

We first introduce some definitions and notation that will bediin the sequel. Given the continuous-
time system (with initial conditiorr,) in (5.1), and the constraints (5.7), we define the follondets:

S ={ue€ L30,T}] : L,u(t) < M, andL, z(t) < M., Vt € [0,Ty]} (5.24)

and:

Sa = {u € L2]0,Ty] : Ly u(t) < a(A)M,, Vt € [0,Ty]
and L,z(kA) < a(A)M,,Vke{0,...,N—1}} (5.25)

Remark 5.5 Note that the se$ contains all possible signals(t) among which we need to find the one
that minimises the cost functiof(u) in (5.3}5.6), i.e, u*(t) € S C L£2[0, T¥].

On the other hand, every sequenge(including u}, the solution ofP,) satisfying the difference
equation(5.11) and the constraint$5.20) will generate a piece-wise signalx (t), as in (5.9), that
belongs taSA. However, even if we choose a scaling facid\) < 1, assumingua (t) € Sa is not
sufficientto ensure thatia () € S, because of the inter-sample state trajectory.

The previous remark highlights the fact that further cdodi are required on the scalafA)
to ensure that, when using a ZOH to implement in continuous-the solution of the discrete-time
problemPx, the conditions of the continuous-time problétrare also satisfied.

Given a sequence of sampling peridds; > 0}, such that:

A; > Ai+1 and ‘lim A; =0 (526)
we require the following properties for the correspondioglisig factorsv(A;):

lim a(A;) = lim a(A;) =1 (5.27)

71— 00 A;—

and for the resulting sequence of sg, }:

Sa; € Sa (5.28)

i+1

Remark 5.6 Condition (5.27) ensures that, as the sampling rate increases, the sequérntisceete-
time constraint{5.20)approaches the continuous-time constraint$5ry). Moreover, from definitions
in (5.24)and (5.25), we have that:

lim Sa, = Al:rilo Sa, =95 (5.29)

11— 00

Furthermore, the requiremer{6.28) ensures that the sequence of sgfs,, } approach the sef
from the interiori.e,,

Sa, €©SA, C...C S (5.30)

O
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A particular choice for the sequencgd;} and{«(A;)} ensuring that the above requirements are
satisfied, is described in the following result:

Lemma 5.7 Consider the sequence of sampling internvals }, defined by:

2—1i 2
A= ( vitdy ) (5.31)

4] 2y

Then, one particular choice for the scaling factefA) that satisfie€5.27)+(5.28)is given by:

1
A) = .32
) = T T DE@AE ) (5:32)
where is a constant given by:
IIL?II)( 1Bl )
v = | max L X + U (533)
( oM Al

and whereL! and M are thei-th row andi-th entry of L, and M, respectively, and wher& and U
denote upper bounds on the normse¢f) and«(t) in the bounded set§ andi/, respectively, defined
in Section 5.2.1.

Proof. We show that the choice of the sequence of sampling pefidd$ and the scaling factor
a(A) satisfies the given requirements (5.26)—(5.28).

If the sampling period\; is chosen as i (5.31), we clearly have the strictly decnggsbndition in
(5.26). As a consequence, the scaling factoh) defined as in (5.32) satisfies condition (5.27).

To show that/(5.28) holds, let us take any Sx,, which by definition(5.2b) implies that:

Ly u(t) < a(A;)M, and L, x(kA;) < a(A)M, (5.34)

Sincea(A;) < a(A;+1) we have thatl,, u(t) < a(A;4+1)M,. (Recall that the entries dff,, are
positive). Furthermore, solving the differential equat{®.1) fort = o + kA; ,0 < o < A;, we have:

L.z(t)=L, <6Agx(k:A7;) + / AT Bu(t + kA) dT)
0

= Laalk0) + L (47 = Do) + [ Ao Butr + kg ar )
0

Izt )
< a(A)M, + | 122 (HeA”—IH |x(k:Ai)+H/ AT Bu(r + kA dr
. 0

)

L2l
< a(A) M, + M, —z
_Oé( z) z T w(mﬁ‘lx M;’
(1o = Dt + [ b1 5 fu(r + kA ar (5.39
0
From the definitions of the boundé andU and equatior (5.34) we have:

lz(kA)| < a(A)X  and |u(r + kA)| < a(A)U (5.36)
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Then:

Ly (t) < a(A) M, + a(Ag) M, <mrax AZ') (1417 1) (X . |||ff1|| U)

ellAlla:
< a(A)M, (1 + (ell Al 1)7) =M, 1 +1(2+7“:E 1)(6|A|A1;1)_ 1)

1+ (22 1)

< M, 5.37
- 1+ (27 + 1)(62||A||Ai+1 _ 1) ( )
We next show that:
14 v (2l AlA _q 1
( ) — a(Aiy1) (5.38)

<
1+ (2 + 1)(e2lA12e 1) = 14 (2y + 1) (elAlAir — 1)

for:

1 1+ 442 1+ 442
O<Amm(¢ﬁ> P VYN, £

1Al 2y 2y

After some manipulation, the inequality (5.38) is easilgrséo be equivalent to:
v (27 + 1)e2ANA (4 4 )ellAlAin 942 < (5.40)

The left hand side is negative for bath*l2:+1 = 1 andellA12i+1 = 7”2:472, hence it is negative
in the whole range which verifiels (5.39). In (5.37) we thenehéat, for allt € [0, 7]

Ly 2(t) < a(Aip1) M, for u € Sa, (5.41)

This implies, by definition, that € Sa Hencel[(5.28) follows.

i+1"
(|
We next present two additional technical results, whicH @ utilised in the proof of the main

convergence result in Section 5.3.1.

Lemma 5.8 Letu(t) € S. Then, for anyy > 0 there exists a\; > 0 such that, for allA < A; and
ua(t) such that:
ua(t) = u(kA) s kA<t< (k+1A (5.42)

we have:
llu —ualle <6 (5.43)

Proof. We consider the sequence of decreasing sampling pefiagds> 0} in (5.26). For every
A,;, the piecewise constant signal, (¢t) belongs toL,[0, 7], because it is obtained by sampling and
holding the signali(t), which belongs t&& C £5[0, T].

Thus, the sequence of functiofiga, (t)} converges point-wise almost everywheire.{ except on
a set of zero measure) tdt). Using (Lang, 1993, Theorem 1.6), this implies that,, (¢)} converges
tou(t) in anL, sensei.e,

lim |lu —ua,|2 = Alimo llu —ua,ll2=0 (5.44)

O
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Lemma 5.9 For anye > 0 there exists &. > 0 such that if:
Ju— w2 < dc (5.45)

then:
J(u) = J(u") <e (5.46)

Proof. This follows from the operator factorisation approach twatwill study in more detalil
later in Section 5.4]1 on page 94. In particular, if we useddfinitions and relations detailed later in
(5.67)-(5.74), the continuous-time cost function (5.3) ee also (5.71) — can be rewritten as:

J=J(@) = Jopt + (U, (R+ G*G)i) (5.47)
where:
U=u— Uopt (548)
Ugpt = —(R+ G*G)"'G* Fu, (5.49)
Jopt = L F*(I+GR™'G*) "' Fu, (5.50)

We note that:,,; and.J,,; are theunconstrainedoptimal control signal and cost.
The operatoR + G*G in (5.47) is a compact bounded self-adjoint operator. Ittbas be expressed
as:
R+G'G=8"S (5.51)

We then have that, far,, us € £5[0, T¥]:

|J(U1) — J(U2)| = |<’17,1,S*S’l]1> — <’L~L2,S*S’L~L2>‘ = |<Sﬂ1,8ﬂ1> — <Sﬂ2,8’l]2>|
= [IISay |I* — || Stz |IP| < || Sax — Stz ||?

S ||$||2 H ﬂl - a2 H2 S O—mamHul - u2||2 (552)

whereo,,... > 0 is the largest singular value of the operathr The result then follows by taking
uy = u*, 8: = \/2/0max , and on recalling that* is the optimal control signal, sé(u) > J(u*) for
all u.

0

Remark 5.10 Lemma5.8 establishes that any input signalt) € S can be arbitrarily approximated,

in an £, sense, by the sample-and-hold signal(¢). On the other hand, Lemrma 5.9 establishes that
the optimal continuous-time performangéu*) can be arbitrarily approximated by choosing any sig-

nal u(t) sufficiently close, in ar, sense, ta:*(t). These two facts will be used in the proof of the
convergence of the solution of problém to the solution ofP, in the next section.

5.3.1 Sampled-data LQ problem convergence

In this section we present one of the main results of this telapamely, that the optimal performance
obtained by solving the continuous-time problémcan be arbitrarily approximated by solving the
discrete-time probler®x .
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Figure 5.1: Schematic representation of proof of Theorei.5.

We note first that, for any chosef, the corresponding problef, is well defined and can be
solved. We denote the resulting optimal control sequencgdy, } -
We can now state our main result.

Theorem 5.11 ProvidedP has a solution:*(¢) € S, then, for every > 0 there exists a\. > 0, such
that:
J(up,) —J(u") <e (5.53)

whereu, (t) is generated, using the Z0g.9), by the sequence,_, , the solution of problerfP,_.

Proof. Givene > 0 we know by Lemma 5/9 that there existsya > 0 such that for every
u € L5]0,Ty] for which (5.45) holds, (5.46) also holds.
Sinceu* € S andlim; .., Sa, = S, there existg\, > 0 for which the set

A={ue L2]0,T4] : lu—ula < 8.} N Sa, (5.54)

is non-empty. Let be in this set. The sdtu € £2[0,T%] : |[u — u*|2 < 4.} is open. Hence, there
existsd; > 0 such that:
{u € Lo0,Ty] : lu—al2<d}CA (5.55)

Now, using Lemma 5J8, we know thatcan be arbitrarily approximated in a3 sense by a piece-
wise constant function. This means that there exists a sagnpériodA; < A, such that:

a— a2 < 61 (5.56)

Hencejia; € Sa, C Sa; C S and|jua, —u*[|2 < d.. This is represented schematically in Figure
[5.1. Using Lemma 5.9, the latter implies that:

J(up,)—J(u*) <e (5.57)

J
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If we now considen; . ., the solution of the probler®, ;, we know that:

Ia(un, k) = Ja(ua, k) (5.58)

whereua, 1 is the sequence with the values takeniy (). Using (5.22), we then have that:

(i) > J(ul) (5.59)

J

and equation (5.53) follows by choosidg = A;. This completes the proof.
(|
The above theorem establishes that there exists a finitdisarperiodA, such that the performance
achieved with the optimal fixed horizon discrete-time caaiaed controller is arbitrarily close to the
performance achievable by the optimal fixed horizon cowtirsdtime constrained controller.
We illustrate the results in the previous sections by a smghmple:

Example 5.12 Consider the second order system:

o [-2 o0
xr = X
1 -1

y=|0 1e (5.61)

u NS [0] (5.60)

with continuous cost functiofb.3), whereT; = 5, Q = CTC, R = 0.1, and whereP is the solution
of the algebraic Riccati equatiofb.6). We impose constraints on the input and on one of the states as
follows:

w1 = H u<t>sm (5.62)
B <1 = [_11 g] x(t)gH (5.63)

The matrices of the discrete-time sampled m@Bel1)(5.12) are obtained from equatiofb.13)
Similarly, the matrices for the sampled-data cost funcl®rd4) are obtained from equation®.15)-
(5.19)

Figure/5.2 shows the evolution of the cost functiomascreasesi(e., A decreases), for the con-
strained and unconstrained cases. Note that a logarithméteshas been used. For the unconstrained
case, it can be seen that the value of the cost function appesathe continuous time optimal result.
Similarly, for the constrained case, we can see that bey¥ng 16, the minimum achievable for the
cost function is almost constant. This is also confirmed guFé/5.3, which shows the convergence of
the (ZOH or piece-wise constant) control and state signai$te constrained case.

O

5.3.2 Receding horizon control problem

To conclude this section, we consider the moving horizortrebproblem. Anissue here is that usually,
in discrete receding horizon strategies, only the first elenof the fixed horizon control solution is
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—*- constrained
—=+ - unconstrained
unconstrained cont. time

10

Figure 5.2: Cost function values v/

applied to the system at each step. The problem is then salgath at the next sampling instant
(Goodwinet al.,, 2004).

If we take the limit of the receding horizon procedure/agends to zero, we end up with an ill-
defined control law because the optimal continuous-timati&wi is only unique up to afi, equivalence.

To address this issue, we will adopt a form of discrete MPCctvimnirrors the common strategy
suggested for continuous-time predictive control (Canad Kouvaritakis, 2000). The control input
applied to the plant is changed eveky(seconds), but the fixed horizon optimisation is done ongrgv
A (seconds), wherd > A. Let/ be an integer, and define:

W (UA, T) = u*(7) vr € [0,A) (5.64)

whereu* (1) is the solution to the fixed horizon constrained continuture probleniP on the interval
7 € [0, T]. We then define the continuous timeving horizon optimal solution in terms of (5.64) as:

whyg(t) = upy (CAt—CA) Ve [(A, (0 +1)A) (5.65)

Theorem 5.13 . The discrete-time approximation of the receding horizeategy defined above, where
the control is restricted to be piece-wise constant overyeigerval [kA, (k + 1)A), converges to the
continuous-time result,e.,

iiino | uhrr a(t) = uhsm(t) o =0 (5.66)

Proof. The result readily follows from the definitions of , ;, in (5.65) and((5.64), and the previous
convergence result in Theorém 5.11
(Il

5.4 Spectral properties of LQ problems

In this section we will explore a related aspect of the linkwmen continuous- and discrete-time LQ
optimal control problems. Our goal here is to examine spéptoperties of the dicrete and continuous
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Figure 5.3: Control and state signals for= 1,4, ...,256

problems via a functional analysis approach.

Functional analysis has proven to be a powerful tool in theeld@ment of control and estimation
theory, since their early years. In fact, minimisation ofdratic functionals inC2-spaces is still the
paradigm behind optimal control and optimal estimatiorbpgms (Kwakernaak and Sivan, 1972; Leigh,
1980; Grimble and Johnson, 1988). The use of linear opethgmry provides a concise conceptual
framework and a wide range of useful theorems, both for ficeatrol and estimation (Kailath, 1969;
Hagander, 1973; De Daret al, 2000; Kojima and Morari, 2004). A brief review on linear ogrs in
Hilbert spaces is presented in Appendix B.

In this section we study the singular structure of the opesatvolved in LQ control problem®,
in continuous-time, and its sampled-data versi, defined in discrete-time. In particular, we are
interested in the relationship between the singular vadmeisfunctions associated with the continuous-
time system operator, to its sampled-data counterpart. MWehew that the (finite set of) singular values
of the discrete-time problem, converge to a subset of tHmf{ii@, but countable) set in continuous-time.

In the following sections we first obtain the singular sturetcharacterisation in the continuous-
and discrete-time domain, to then show the convergencé prsuiously mentioned.

5.4.1 Continuous-time singular structure

Our results will build on earlier work on the singular valueusture of problenP as presented in
(Kojima and Morari, 2004). We summarise these results helow

We consider the Hilbert spacésd = £,(0,77;R™) and Z = R™ x L5(0,Ty;R™), with inner
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products:
Ty
oty = [ RO R0 ifreV (5.67)
0
Ty 0 0
(91.92)z = (¢9)" 98 + / aWTgmd g = [91 g2 lgi cZ (568
0 91 92
We rewrite the input and response signal as:
v=uv(t)=R3u(t) €V (5.69)
0 P3 2(T
=] 0= f( ) (5.70)
z (1) Q2 x(t)
The cost function (5.3) and the system dynamics can thenfressed as:
J = oI} + ll=1% (5.71)
z=Fxo,+ Gu (5.72)
wherezx, € R", andF andg arelinear operators
I ,)0 P3eATr g,
I N I L (5.73)
|(Fz,)' (1) Qzettx,
1 Tf 1
[ (Gv)" Pi/ AT =) BR™30(€) d¢
Guv = ) = 0 (5.74)
[ (Gv) (t)

- Q%/OteA(t_g)BR_%v(f) de
The following theorem establishes the singular values @biperato, which satisfy:
c0>0: Gf=0g9 , G'g=o0f (5.75)
whereG* is the adjoint operator af (see Example B.11 on page 149).

Theorem 5.14 The set of singular valuesr; } of the linear operatog in (5.74) are given by the roots
of the equation:
0

det <|:_0.—1P In:| M (0)Ty ;

) =0 (5.76)
wheres > 0, and: i

A o 'BR™'BT
—0'71Q _AT
The corresponding singular vectofs € V andg; € Z, are given by the following functions:

M(o) = (5.77)

.

fi(§) =R 2BT [0 In} eM(ei)¢ L d; (5.78)
0

) = P? [I o} Moy L ] d; (5.79)

g9i (&) =Qz [In 0] Mot L?] d; (5.80)
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whered; # 0 is a vector such that:

0
[—aflp Jn} eM @) Ty L ] di=0 (5.81)

Proof. See Kojima and Morari (2004).

5.4.2 Discrete-time singular structure

We next explore the singular value structure of the assetisampled-data problem. In Section 5.4.3
we will show that it naturally converges to that of the ungie continuous problem.

We consider the Hilbert spac®s= [5(0, N — 1;R™) andZ = R"™ x I5(0, N — 1;R™), with inner
products:

-1

(fi, fa)y = foﬁ s fi,faEV (5.82)
0 T Nl . 90 9

(91,92)z = (9(1)) gg + Z (9:1[) 9% 91 = lgﬂ y 92 = Li €Z (5.83)
0 i 2

We rewrite the input and response signals as:

v=vp = REuy €V (5.84)
1
0 PE
2= [Zl — |[TAN ez (5.85)
2}, Qg Tk

In the cost function (5.14) we can neglect the coupled tenpedeing onS, based on its convergence
properties given earlier in (5.23). In this case, the costtae system dynamics can then be expressed
as:

Ja = ol + lIz11% (5.86)
z = Fazo+ Gav (5.87)

wherezx, € R", andFa andGa arelinear operatorsdefined by:

1
2 AN
PRA o

1
Qi Az,

(-FAIO)O
(Fazo)y,

Faty = (5.88)

N-1
1 1
] | PR AR
Gav = (gA )1] = (5.89)
AU 1 4 _1
S Q2> AETIB R, Py
=0

where) < k < N.
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Theorem 5.15 For a givenA, the set of singular valuegs;} of the linear operatoiG, in (5.89) are
given by the roots of the equation:

0
det ([—olPA Aﬂ MA(O')N L D =0 (5.90)
wheres > 0, and:
Aq quR(;quT
Ma(0) = 7 (5.91)

1 1
_;(AqT)_quAq (AqT)_1 (I - ;QquRq_quT>

The corresponding singular vectofs € V andg; € Z, are given by the following functions:

filkA] = R;%BqT {O Ini| Ma(o:)" LO] d; (5.92)
o0 = PS [L 0] Ma(o)™ m d; (5.93)
gl kA] = Qi [In o} Ma(07)* Lf ] d; (5.94)

whered; # 0 is a vector such that:

[-O’flpA Ag:| MA(O'Z‘)N [f] d; =0 (595)

n

Proof. The singular values and singular vectors of the linear dpeé¢ are defined by:
c>0: Gaf=o0g , Ghg=of (5.96)

wheref € V, g € Z, andG}, is theadjointoperator ofGa given by (see Example B.12 on page 150):

0 N—-1
N |9 _1 1 1
GAg = GA ll =Ry *B] [(AD)N PR+ Y (A l@;gi] (5.97)
k k=l+1
We define the variables:
k—1 .
pe=> AYTIBIR (5.98)
=0
N—-1
1 1
g =ADNTIPES + Y (AN Qz g (5.99)
k=Il+1

Using (5.96) it is readily seen that these functions satisfy

[pj“] = Ma(0) lpj] = [pjl = Ma(0)’ [p“] (5.100)
qj+1 q; q; qo
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Also the following relations hold:

{—a‘lPA AqT]

le -0 [pol - H @ (5.101)
qn qo I

Using (5.101) in the solution of (5.100), with= N, we have:
1 T N 0
[~o7'Pa AT] Ma(o) S| w=0 (5.102)

However, a necessary condition to have a non trivial sattitifferent from(f, g) = 0, is gy # 0.
Therefore conditior] (5.90) is a necessary condition. Sirlyil sufficiency can be easily verified.
The singular vectors can be obtained using the definitiogsaih (5.89),G% in (5.97), (5.98) and
(5.99):
—5 T 0 5 1 5
Jk=R¢’B, q; g =PRpnN; g =0Qq Pk (5.103)

Denoting the vectogy = d # 0, equations (5.92)=(5.94), are obtained from:

lpk‘| _ MA(J)k [Po

gk q0

= Ma(o)* m 0 (5.104)

O
The singular values of the operatGr correspond, in fact, to the (squared) eigenvalues of the
compact self-adjoint operatdfi Ga. They satisfy also the following important properties (y8&ig,
1978):

1. The singular vector§f;} are orthogonal, and

2. The singular valueés; } are real and positive, being= 0 the only possible point of accumula-
tion:
o1>...>20on>0 (5.105)

Theorem 5.16 Given a sampling perioch = Ty /N the operatorG has exactlyVm singular values.

Proof. Following the same lines as in (Kojima and Morari, 2004), tfee continuous-time case,
it can be proved that = 0 is not an eigenvalue of the opera@k Ga. Then the set of (orthogonal)
eigenvectors form a complete basisbf 1 (0, N —1;R™). This space has dimensidvwn and, hence,
the operatoga has exactlyNm singular vectors and singular values.

O

5.4.3 Singular structure convergence

We next explore the relations and connections between thincous and discrete singular structure
characterised in the previous sections. In particular, kevsthat, as the sampling periadl goes to
zero, the singular values in discrete-time approach thgugn values in continuous-time.

We start by presenting a limiting result for mati% (o), defined in equation (5.90).
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Lemma 5.17 The matrixMa (o)™ has a well defined limit whea goes to zero. Specifically:

lim. Ma(o)N = MTs (5.106)
where:
A ~“1BR-1BT
M(o) = o (5.107)
_Jle —AT
Proof. We write Ma(c) = Ma, and then we consider the following expression:
T Ma —1)?
log MY = N -log (I + (M — 1)) = Kf {(MA —I)— % +.. ] (5.108)

Using the delta domain state space matridgs= (4, — I)/A andBs = B,/A (Middleton and
Goodwin, 1990), we have:

L L

Ma—T= |71 712 (5.109)

Loy Lo

where:

Ly=A,—T=A4s5A (5.110)

1 o0 1 (RN\'
Ly = —ByR;'B; = —B; (ﬁ) Bs A (5.111)

_ 1 Ty—1 _ 1 T\—1 Qq
Ly = —;(Aq) QqAq = —;(I + AAy) K(I +AA5) A (5.112)
1
Loy = (AD)™" (I — —5QqBy Ry By ~ AqT>
~ AQ R\ !
=—(I+AA])™! <A5T + ;KQB(; (Aq) B{) A (5.113)
Using the convergence properties/in (5.23), we can thushsee t
L L A “IBR-1BT
hm |1 R2) 7 . (5.114)
A=0A | Ly Ly -0'Q —A
which corresponds exactly ff (o) in (5.107). Therefore we finally have:

. Ny _ .

ilino log (Ma(o)™) =Ty - M(o) (5.115)

and (5.106) is obtained by applying the exponential fumgtighich is continuous, on both sides of the
equation. O

Remark 5.18 Based on the previous result, and the convergence propestienatricesP and A,
when the sampling rate grows to infinity, we can notice thatgign (5.90) is transformed to (5.I76), as
A — 0.

Finally, we show that the finite set of singular values of tiezikte problem converge, in a well
defined fashion, to a countable subset of singular valuethécontinuous problem.
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Theorem 5.19 When the sampling periafl goes to zero, the singular values of the operatat for the
discrete time problem, converge to a subset of the singallres of the operatog, for the continuous
time problem.

Proof. The singular values of the operatgr are the square root of the eigenvalues of the self-
adjoint operatoiGA Ga. The last statement is true for every operator, so the sairts far the conti-
nuous time operato$ defined in((5.74) ang*G. The adjoint operator§* andg} are explicitly found
in Appendix B.

The proof uses the fact that the discrete self-adjoint dpera

N—-1
_1 _1
GAGav = Ry ? Bl |[(AD)N=1=Ipy Y AN B R, Py
k=0
Nl . it . 1
+ > (AT, Y T ATV EB R, Pu, | (5.116)
j=l+1 k=0
can be rewritten as:
1 N—-1 1
R 2 BT T B R 2
ngAU _ (_q> —q eA A(Nflfl)PA Z eAA(Nflfk)_q (_q> A
A A — A A
N-1 j—1 _1
-3 s S s By () )
j=l+1 k=0

This operator converggmint-wiseexactly to its continuous time counterpart:

T
AT (=) p / " AT BR-bu(e) de
0

G*Gv=R™ BT

_|_/ e (”'*ﬁ)Q
B

as the sampling periad goes to zero, where we have used the convergence propariesiark 5.4 on
page 86, and:

AT-OBR2y(¢) dde] (5.118)
0

NA=T;, (I+1)A=8, jA=71, kA=¢ (5.119)

According to Theorem 1.6 in (Lang, 1993), given a sequendeoohded function§Gi Ga, v}
in L5 which converges point-wise @*Gv, thenG*Gv is in £, and {ggngAnv} is Lo-convergent to
G*Gv, i.e, the discrete time operator converges in norm to the cootistime one.

Then, following the same arguments used in (De ®enal., 2000), we prove that every limiting
point of the set of eigenvalues 6, Ga (singular values ofi») converges to an eigenvalue®fg. Let
us suppose that # 0 is a limit point of a sequence of eigenvalues of GL G, hence(Aal —GAGA)
converges in norm toAI — G*G). Since the set of invertible operators is opefAik I — GLGa) is not
invertible (.e., Aa belongs to the spectrum of the self-adjoint operator) fot\athen (A — G*G) is
not invertible. This establishes thabelongs to the spectrum of the compact self-adjoint opeztg,
different from zero, so it is one of its eigenvalues.

0

Finally, we illustrate the previous convergence resulisafeimple example:
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Example 5.20 Consider the double integrator system:

o Jo 1
xr =
0 0

y=1 0]z (5.121)

0
1

T+ U (5.120)

with continuous cost function (5.3), whefe = 5, Q = CTC, R = 0.1, and P is the solution of the
algebraic Riccati equation associatedf@in (5.3).
The discrete time model matrices, fram (5.13), are:

A, = Ll) ﬂ B,=A h/ 2] (5.122)

The matrices for the sampled data cost function (5.14), are:

1 A/2 A?/6
Qy=A [ R,=A (A*/20 +0.1) S,=A A3/ (5.123)

AJ2 A?/3

and P, is obtained from the discrete time algebra Riccati equatiesociated with (5.14).

200

100

b
or
b

-100

-200

Figure 5.4: Plot offa (o) (solid) andf (o) (dashed) forV = 1,4 and 16.

We definef (o) to be the function on the left hand side of equation (5.76phs&lpositive roots are
the singular values of/, and analogously, we usg\ (o) to define the function on the left hand side of
(5.90), whose positive roots are the singular valueg@f Figure[5.4 shows the functiongo) and
fa(o) for three different values ok = Ty /N. We can see that the finite set of roots (singular values)
obtained in discrete time approach the countable set ofsraothe continuous time set. Note that the
zero crossings by (o) and fa (o) correspond to the singular values.

To illustrate the above results, Figure 5.5 shows the eiaudf the first 10 singular values for
the discrete problent?, compared with the singular values obtained in (Kojima andrdfli, 2004)
for the continuous-time problem. Note that given anye N, and the corresponding sampling period
A =Ty /N, the operatoiG, has onlyN singular values given by equatian (5190), as stated in Térmor
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10°

10 |

Figure 5.5: Convergence of the (first 10) singular valueg of

5.16. In the figure we can see that the discrete-time singudhres quickly approach their continuous-
time counterpart. For example, witN = 4 the four singular values obtained are withi0% of the
continuous time ones.

O

5.5 Summary

This chapter has explored the use sampled-data modelsrist(amed) optimal control problems, when
using fast sampling rates. We have established two nataraecgence results as the sampling period
goes to zero:

First, we have shown that a constrained optimal control lerabdefined in continuous-time, can
be approximated arbitrarily closely, by considering aroagded sampled-data problem, with (possibly)
tighter constraints. The existence of a well defined limg#uers that there exists a finite sampling period
A, for which the performance achieved by the discrete-timestrained controller is arbitrarily close to
the achievable performance by the hypothetical contintious constrained control law.

Secondly, we have explored the connections between thalamgjructure of LQ problems in con-
tinuous and discrete-time. In particular, we have shown ttihere is a natural convergence between
the finite set of singular values of the sampled-data propkerd the (infinite) countable set in conti-
nuous time. This result can be applied in suboptimal cootisttime control strategies by exploiting
the singular structure of the problem, which is implemertediscrete-time.
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Chapter 6

Sampled-data models for deterministic
nonlinear systems

6.1 Introduction

Models for continuous-time systems typically take the fafnjnonlinear) differential equations. How-
ever, in practice we need alternative models that deschibedlationship between the discrete-time
actions taken on the system and the samples taken from italsigin this second part of the thesis,
our interest is on sampled-data models for nonlinear systéirkey departure point from to the linear
sampled-data models presented in Chapter 2, is that, fdinean systems, onlgpproximate sampled-
data models can be obtained. However, the accuracy of thedelsncan be characterised in a precise
way, as we will see later.

In this chapter we consider the sampling of deterministidinear systems. Later, in Chapter 7, we
will consider the stochastic case. A similar separate aimlyas presented for linear systems in Part I.
Even thoughsuperpositiordoes not generally apply for nonlinear systems, we havetkepseparation
both for the sake of simplicity and to better reveal the refat to the linear case.

The use of sampled-data models raises the question of thigoredhip between the discrete-time
description of the samples and the original continuougtimodel. It is tempting to simply sample
quickly and then to replace derivatives in the continuaotmodel by divided difference&€., simply
replacing the differential operatgrby theo operator) in the sampled-data model. This certainly leads
to an approximate model. However, one can obtain more atecaradels. For the linear case studied
in Part 1, we saw that exact sampled-data models can be dedémaincluding extra zeros due to the
sampling processii(strbm et al, 1984; Wahlberg, 1988). One would reasonably expect simékults to
hold in the more general nonlinear framework. However, ttuagon, in this case, is more complex than
for linear systems. Indeed, to the best of our knowledgexplicit characterisation of theampling zero
dynamicshas previously remained unresolved, although, an imgl@tracterisation of the (nonlinear)
sampling zeros was given in Monaco and Normand-Cyrot (1988)the other hand, in (Kazantzis and
Kravaris, 1997), system-theoretic properties of samplai@ models for nonlinear system are studied.

Any sampled-data model for a nonlinear system will, in gahdye an approximate description of

105
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the combination of two elements: the continuous-time systself, together with the sample and hold
devices. An exact discrete-time description of such a ldybdnlinear system is, in most cases, not
known or impossible to compute (Kié et al, 1999). Thus, one needs to be clear about the potential
accuracy achieved by any model. In fact, the accuracy of pipeoximate sampled-data plant model
has proven to be a key issue in the context of control desigereva controller designed to stabilise an
approximate model may fail to stabilise the exact disctete-model, no matter how small the sampling
periodA is chosen (N&ic and Teel, 2004).

In this chapter, we present an approximate sampled-datalfadeterministic nonlinear systems.
We show how a particular strategy can be used to approxirhatsytstem output and its derivatives in
such a way as to obtainlacal truncation error between the output of the resulting sampled-data model
and the true continuous-time system output, of ofN&r!, whereA is the sampling period andis the
(nonlinear) relative degree.

An insightful interpretation of the sampled-data modeladié®d here can be made in terms of ad-
ditional zero dynamics. As in the linear case, these extra dgnamics, due to the sampling process,
have no continuous-time counterpart. We give an expliciratterisation of thessampling zero dy-
namicsand show that they are a function only of the (nonlinear)esystelative degree. Moreover, the
sampling zero dynamics turn out to be identical to thoseddurthe linear case.

The occurrence of nonlinear sampling zero dynamics is @vant to the problem of sampled-
data control of nonlinear continuous-time systems. In tuatext, topics such as relative degree,
normal form, and zero dynamics of nonlinear systems have leaéensively studied. In particu-
lar, these elements play a key role in feedback linearisagahniques (Isidori, 1995; Isidori, 1999;
Khalil, 2002; Byrnes and Isidori, 1988; Marino, 1986). Sowfethese results have also been ex-
tended to discrete-time and sampled nonlinear systemgZ|€yi1986; Monacet al, 1986; Leeet
al., 1987; Jakubczyk, 1987; Glad, 1988; Arapostattial., 1989; Jakubczyk and Sontag, 1990; Barbot
etal, 1992; Barboet al,, 1993; Castilleet al,, 1997; Teekt al, 1998; Dabroom and Khalil, 2001; Hamzi
and Tall, 2003; Chen and Narendra, 2004; Monaco and Norr@amdt, 2005). However, the theory for
the discrete-time case is less well developed than for théragus-time case (Monaco and Norman-
Cyrot, 1997) and the absence of good models for sampledadatmear plants is still recognised as an
important issue for control design (&ié and Teel, 2001).

The approximate sampled-data models presented in thigerhae believed to give important in-
sights into nonlinear systems theory. By way of illustrati;m Section 6.4, we examine their implica-
tions in the system identification context.

6.2 Background on nonlinear systems

In this section we review some concepts and results fromimesn system theory that will be used later
in Section 6.3. The results presented here are based oor{J<i€l95), for continuous-time systems, and
partially based on (Monaco and Normand-Cyrot, 1988; Bagbai., 1992; Hamzi and Tall, 2003), for
the discrete-time case.
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6.2.1 Continuous-Time Systems

Much of the work regarding control of (continuous-time) tinear systems is based on a model con-
sisting of a set of ordinary differential equations affingha control signals (Isidori, 1995):

#(t) = f(x(t)) + g(x(t))u(t) (6.1)
y(t) = h(z(t)) (6.2)

wherez(t) is the state evolving in an open subgett C R™, and where the vector fieldq-) andg(-),
and the output functioh(-) are analytic.

Definition 6.1 (Relative degree)The nonlinear systeif6.1)-(6.2)is said to have relative degreeat a
pointz, if:

() LgL’;h(a:) = 0 for z in a neighbourhood of, and fork = 0,...,r — 2, and
(i) LyLy'h(x,) # 0.

whereL, and L ; correspond to Lie derivatives. For example,h(x) = %g(x).
O

Intuitively, the relative degree, as defined above, cooerdp to the number of times that we need to
differentiate the outpug(¢) to make the input:(t) appear explicitly. For example:

dy Ohdx  0Oh oh
i B—xf(m) + %g(x)u = Lsh(xz) + Lyh(x)u (6.3)
We next show that there is a local coordinate transformdkiahallows one to rewrite the nonlinear
system|(6.1)+(6.2) in the, so callathrmal form

Lemma 6.2 (Local coordinate transformation) Suppose that the system has relative degraéz,,.
Consider the new coordinate defined as:

21 = ¢1(x) = h(z) (6.4)
22 = ¢o(x) = Lyh(x) (6.5)
zr = ¢p(x) = L} h(z) (6.6)
Furthermore, ifr < n itis always possible to defing 1 = ¢,1(x), ..., z, = ¢,(x) such that:
21 ¢1(7)
has a nonsingular Jacobian at,. Then,®(-) is a local coordinate transformation in a neighbourhood
of z,. Moreover, it is always possible to defing.; = ¢,+1(x), ..., z, = ¢,(x) in such a way that:
ngbi(gc) =0 (6.8)

in a neighbourhood of,, foralli =+ 1,...,n.
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Proof. See (Isidori, 1995).
0

Lemma 6.3 (Normal form) The state space description of the nonlinear syg@i)—(6.2) in the new
coordinate defined by Lemma 6.2 is given by the, so callednaldiorm:

0 0

¢ = 0 Lt ey 0 (b(C,m) + alC, mu(t)) (6.9)
o\o 0

0= e(C,n) (6.10)

where the output is; = h(z) = y, the state vector is:

- lc@)l {at) = 1) 22(8), - 2 (O] 611
n(t) n(t) = [zr41(8), zr12(t), - - 2 (O]
and:

b(¢,m) = b(z) = LTh(27(2)) (6.12)

a(¢,n) = a(z) = LyLy (@ (2)) (6.13)

Ly¢ria(®7(2))
c(¢m) =c(z) = : (6.14)
Lydn(®7(2))
Proof. See (Isidori, 1995).
g

Remark 6.4 Note that the state variables containeddift), defined in(6.4)6.6), correspond to the
outputy(¢) and its firstr — 1 derivatives:

2t) =2V =y V@) se=1,..r (6.15)

This fact will be used later, in Section 6.3, where a sampla@ model for a nonlinear system is
obtained based on its normal form.

Definition 6.5 (Zero dynamics) The zero dynamics of the nonlinear syst@ni)(6.2) are defined as
the internal dynamics that appear in the system when the eapdiinitial conditions are chosen in such
a way as to make the output identically zere,, y(t) = 0, for all ¢t > 0.

Using the coordinate transformation, and, thus, the sys®pnessed in the normal form (6.9)—
(6.10), we can see that the zero dynamics satisfy:

0 = c(0,m) (6.16)
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for any initial conditionz(0) = [0,7(0)7]%, and, from|(6.9), for an input:

b(0,7)
a(0,m)

The concepts presented above, of course, apphatis mutandifor linear systems. This is formally

u(t) = uzalt) = — (6.17)

stated below.

Remark 6.6 For linear systems, the zero dynamics correspond to themsyseros. In this case, equa-
tion (6.16)reduces to a linear differential equation= Sn, where the eigenvalues of the matfare
the roots of the polynomidl'(s) in (2.6) on page 13 — see also (Isidori, 1995).

6.2.2 Discrete-Time Systems

In this section, we consider the case of nonlinear systeffirsadiein discrete-time. We summarise, in a
similar fashion to the continuous-time case in the previametion, several concepts and results partially
based on (Monaco and Normand-Cyrot, 1988; Badiat., 1992; Califancet al, 1998).

We consider the class of nonlinear discrete-time systempessed as:

oxy) = F(l‘k) + G(mk)uk (618)
yr = H(xy) (6.19)

whereF(-), G(-), andH (-) are assumed analytic. Note that the state equation (6.b&lsa be easily
rewritten using the shift operator:

qry = Tp1 = Fy(or) + Gq(zr)ur (6.20)
where, using the delta operator definition (2.30), the fionstcan be readily obtained as:
Fq(l‘k) =z + AF(x) and Gq(l‘k) = AG(xg) (6.21)

Definition 6.7 (Discrete-time relative degree)The discrete-time systef®.18)-(6.19) has relative de-
greer if (Barbotet al, 1992):

)

() g’“” —oforall £=0,...,r—1
Uk (w,un)

Qs

(i) Clia #0.
Ok |y un)

Intuitively, the discrete-time relative degree corregg®mo the number of time shifts before an
elementu;, of the input sequence appears explicitly in the output sequengceThe relative degree
can be also characterised in terms of divided differenceg ads follows:

Lemma 6.8 The conditions in Definition 6.7 are equivalent to:

¢
(@) 20w —0,forall £=0,...,r—1
duy, (Th,uk)
0"y
(b) w #0.
Uk (2h,ur)
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Proof. We next prove thati)—(ii) < (a)—(b).

(i)—(ii) = (a)—(b) : Using the delta operator definition (2/30), we have that:

a(6* 0 1 1 0 /v o
(&ik) " ouk ((qT)ey’“) A Duy, - Z (->(—1)£ (q"yr)

¢ 0
Z < ) 1)¢-i Tkt (6.22)
i—0 auk

where Clearly Ifag%:l = O, forall; = 0’ R 1, then 3(giik) — O, forall ¢ = O7 = 1.
Furthermore,agZ:" £0 implies%zk) £0.

(a)—(b) = (i)—(i7) : This follows from similar arguments, on noting that= 1 + Ad. Then we have

that:
¢
yrre  Olg'yx) 0
= = 1 A5 ALS?
8uk 8uk 8uk (( + Zz: Yr
e (]
= (g) 190w (6.23)
: 2 auk
=0
where clearly ifa ‘Vyk =0,foralli=0,...,r —1, then% =0forall¢=0,...,r —1.
Furthermore,a(guy" 7é 0 implies 2 £ 0,

O

Definition 6.9 (Discrete-time normal form) Consider the nonlinear discrete-time sysi@ni8)-(6.19)
and assume that it has relative degreé/NVe say that the system is expressed in its discrete-tinmeator
form when it is rewritten as:

0 0

I :
0 = Cr + . (B(zk) + A(zr)ur) (6.24)

ojo ... 0 1
oni = Clzy) (6.25)

where the state vector is:
= (210, 2205 oo s 2r k)T
o = [Ck‘| Ck = [21,ks 22,k ) (6.26)
Mk M = (24 1.0y Zr42,ks - - s Znk)

and the outputis; ,, = H(xx) = y&.

Remark 6.10 The state variables contained §p, defined in(6.26), correspond, in fact, tg, and its
firstr — 1 divided differences, i.e.:

2o =0 oy =6y VO=1,...r (6.27)
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Califanoet al. (1998) discuss necessary and sufficient for the existenegdisdcrete-time normal
form defined in a different way. They consider nonlinear disetigtee models expressed in terms of
the shift operator, and, thus, their result cannot be direxqiplied to the normal form considered in
Definition[6.9.

Definition 6.11 (Discrete-time zero dynamics)The discrete-time zero dynamics of the nonlinear sys-
tem (6.18)-(6.19) are defined as the internal dynamics that appear in the systeen the input and
initial conditions are chosen in such a way as to make thewuttentically zeroj.e., y, = 0, for all
k>1.

If the system is expressed in the normal form (6.24)—(6.2®),can see that the zero dynamics
satisfy:
onr. = C(0,mk) (6.28)

for any initial conditionzy = [0, 17, and, from[(6.24), for an input:

B(0,n)
_,zd ’
T A, )

(6.29)

Remark 6.12 Similarly to the continuous-time case in Remark 6.6, whetricting ourselves to linear
systems, the discrete-time zero dynanic&8)reduce to a linear difference equation = S, where
the eigenvalues of the matrikcorrespond to the zeros of the discrete-time transfer fanct

The following result re-establishes Lemma 2.12 regardimg sampled model for an-th order
integrator. Here, we restate the result in a novel form. Irti@aar, we show, via use of the normal
form, that the eigenvalues of the zero dynamics in this caseespond to thsampling zero®f the
discrete-time transfer function (2.54). This result wil bsed for the nonlinear case in Section 6.3,
specifically, as a key building block in the proof of Theoler®2%

Lemma 6.13 (Sampledh-th order integrator in normal form) Given a sampling period, the discrete-
time sampled-data model corresponding to thth order integratorG(s) = s~", n > 1, for a ZOH
input, can be written in the normal form:

n—1

621 = quiz1 + Quan + 2y (6.30)

n

on = Q2121 + Q227 (6.31)

with outputy = z;. The scalarg;; and the matrices):2, Q21, and Q2 take specific forms as given
below in(6.35) Furthermore, the sampling zeros (B.54) appear as eigenvalues of the mattj.,
i.e., the following equation holds:

Pu(Ay) = det My, = 2- = det (v, 1 — Qa2) (6.32)

n

Proof. An n-th order integrator can be represented in state-space (@&n-{(2.3), on page 12,
where the matrices are given By (2.57). We consider the sporeding sampled-data model, in delta
form, given by|(2.31)+(2.32), where the matrices are give(269), on page 21.
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If we apply the state space similarity transformatior= 7'z, where the nonsingular matrik is

given by:
1 0 1 0
— T'= (6.33)
TQl In,1 _T21 Infl
where:
. T
Ty = [_vzn _Ag;l} (6.34)

Then, the new state space representation is given by tlosvial) matrices:

Ay = TA(;T_l _ q1 | Q12
| Q21 | Qa2
1o 0| Aw 1| o
| T ’ I 0 ‘ Ago —1I% ‘ I
[ — AT, A
_ 12751 ’ 12 (6.35)
|~ (To1Ara + Ag) Ty ‘ To1A12 + Ao
where, from[(2.59):
Ap=[1 & . A (6.36)
An—S T
0 1 - AL
App=|" : (6.37)
0 . 0 1
0 0 |
and:
= n—1 T
By =TBy = [~ 0 ... 0] (6.38)

These state space matrices giveribemal formthat appears in (6.30)—(6.31).
To prove[(6.32), we first note that:

0 ‘ Ino1 | A ‘ A1z
Mo [ 1 ’ 0 ] a l *%Tm ‘ Ay — Iy ‘| (6.39)

Computing the determinant of the matrices on both sideseodbfove equation (using matrix results
in Appendix A), we have that:

(det M,,)(—1)"~" = A% 2 det (Agy — L1 + To1 A1) (6.40)

where, from definition of),, in (6.35), we finally have that:

det M,, = A2 (—1)" T det (—y L1 + (2o + To1 Arz))

= A" det (YI,-1 — Q22) (6.41)
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6.3 A sampled data model for deterministic nonlinear systems

In this section we present the main result of this chaptenety a sampled-data model that approxi-
mates the input-output mapping of a given nonlinear systWmalso show that this discrete-time model
contains extraero dynamicsvhich correspond to the asymptotic sampling zeros of thealitase.

We are interested in obtaining a discrete-time model thegeaty approximates the nonlinear input-
output mapping given by (6.1)—(6.2), when the inp(it) is generated by a digital device using a ZOH.
This will result in a model of the form:

ox% = f5(2%) + g% (%)u (6.42)
v = h(z®) (6.43)

wherex® = 27 € R" is the discrete-time state sequences uy, is the input sequencg? = y5 is the
output sequence, aride Z is the discrete-time index.

Our goal is to define the discrete-time model (6.42)—(6.483h thaty® is close(in a well defined
sense) to the continuous-time outpit) in (6.2) at the sampling instants= kA, when the input.(t)
is generated fromu,;, with the ZOH [2.10). Theorem 6.15 (below) explicitly defirtee vector fields
50, ¢°(-), andh®(-) in (6.42)-(6.43) in terms of the sampling periddand the vector fields(-),
b(-), ande(+) in Lemmd 6.3, which are function ¢f(-), g(-), andh(-) in the original continuous-time
nonlinear model (6.1)=(61.2).

We first introduce the following assumption:

Assumption 6.14 The continuous-time nonlinear systé®nl)-(6.2) has uniform relative degree< n
in the open subsett C R™, where the state(t) evolves.

This assumption ensures that there is a coordinate tramafmm, as in Lemmpa 6.2, that allows us
to express the system in its normal form.
We then have the following key result:

Theorem 6.15 Consider the continuous-time nonlinear sysi{@m )-(6.2) subject to Assumptidn 6.14.
Then the local truncation error between the outptit = z; of the following discrete-time nonlinear
model and the true system outpuit) is of orderA”*1:

A Az P
2 (7‘—1:)3! r! ,
A" A"
00 1 - =y (=i
6¢% = |t oo | | (bran) (6.44)
A
0 .0 2
0 0 .0 1
on® = e(¢%,n%) (6.45)

wherea = a(¢%, %), b = b(¢,n%), andc(¢®,n°) are defined in Lemmia 6.3, is the discrete-time
input to the ZOH, and the discrete-time state vector is:

S S _ 1,8 .S ST
ZS _ [CS] { [2’1,22,...,27"] (646)
Ui

S _ [,5 S ST
77 - [Zr+1vzr+27"'7zn]
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Proof. Assumption 6.14 ensures the existence of the normal forrthiononlinear model (6.1)—
(6.2). In Lemma 6.8, the vector fields:), a(-), andc(-) are continuous and, thus, the state variables
21(t), ..., z-(t) are continuous functions of This implies (see Remalrk 6.4) that the output sigi{a)
and its first-— 1 derivatives are continuous. However, when the input sig(glis generated by a ZOH,
the r-th derivative,y(") (t) = 2,(t) = b(z) + a(2)u(t), is well defined but is, in general, discontinuous
at the sampling instants= kA, when the ZOH control signal (2.10) is updated. This allowsouapply
the Taylor’s formula with remaindefApostol, 1974, Theorem 5.19) id¢) and to each one of its— 1
derivatives at any poirt, as:

(r)
y(to +7) = ylto) +yV(te)r + ...+ 2 r(fl)” (6-47)
() ,
Vot 1) =y (0) oot L (6.48)
YD (o +7) = 4V (ko) + 4 (67 (6.49)
forsomet, < & <t,+ 7, foralld =1,... r.

In turn, this implies that, taking, = kA andr = A, the state variables, att = kA + A can be
exactly expressed by:

z1(kA + A) = 21 (kA) + A zo(EA) + ... + %[b + au]tzgl (6.50)
ZQ(kA + A) = ZQ(kA) + ...+ (T’ :_11)' [b + au]tzgz (651)
2o (kA + A) = 2. (kA) + A b+ auli—e, (6.52)
and
U(kA =+ A) = U(kA) + A[Q]t=€r+l (653)

for some time instant8A < § < KA+ A, 0=1,...,7r+ L
Next we rewrite[(6.50)1(6.53) using tideoperator. We also replace the signals at sampling instants
by their sampled counterparts, using the superscript

A r—1
0o =25 + 525 + oot == [b(¢ ) + alC muli=e, (6.54)
r—2

62y = 25 4+ ...+ 1) [b(¢,m) + al(C, n)uli=¢, (6.55)

827 = [b(¢,m) + a(C, )=, (6.56)

on® = [e(¢,m)]i=¢, 11 (6.57)
Note that this is an exact discrete-time description of toelinear system together with a ZOH
input, for some (undetermined) time instagis ¢ = 1,...,r + 1. Replacing these unknown time

instants bykA we obtain the approximate discrete-time model in (6.44%56
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We next analyse thcal truncation error (Butcher, 1987) between the true system output and
the output of the obtained sampled data model, assumingdhat= kA, the statez® is equal to
the true system stategkA). We compare the true system output at the end of the sampitagval,
y(kA + A) = z; (kA + A) in (6.50), with the first (shifted) state of the approximatenpled-data
model in (6.44)j.e., with:

gzf = (L+A8) 27 = 27 + A2y +... + 20 (¢, 7%) + a(¢%, 1%l (6.58)
This yields the following local truncation output error:

e= |y(kA—|—A)—qu|

N
7!

[b(45 77) + a(Ca ﬁ)uk]t:& - [b(Cﬂ 77) + a(Ca n)uk]t:kA

§ %‘T : LH(C»U)t:& - (Can)t:kAH
=2 - L[z(&) — 2 (kA) (6.59)

r!
where the existence of the Lipschitz constant- 0 is guaranteed by the analyticity ¢f-), ¢(-), and
h(-) in (6.1)—(6.2) and, as a consequenceyg@f, b(+), andc(+). Indeed, any’* map satisfies locally at
each point a Lipschitz condition (Lang, 1997).
Furthermore, according to (Butcher, 1987, Theorem 1121€)| tpschitz condition guarantees that
the variation of the state trajectoeyt) can be bounded as:

eLlér—kAl _q LA 1
|2(&1) — z(kA)|| < C - 7 <O =0(4) (6.60)
The result then follows from equatidn (6!59). O

Remark 6.16 The Taylor series truncation used in the proof of Theorenb Gslclosely related to
Runge-Kutta methods (Butcher, 1987), commonly used tdatmonlinear systems. In fact, the model
in Theorem 6.15 describes an approximate model for the outfil and its derivatives tsolve the
nonlinear differential equation in one sampling intervafurthermore, we will see in Theorem 622
that this improved numerical integration technique can fiiteripreted as incorporating sampling zero
dynamics into the discrete-time model.

Remark 6.17 Theorem 6.15 shows that the accuracy of the approximatelsdrajata model improves
with the continuous-time system relative degre€hus, in general, one obtains a more accurate model
than would result from simple derivative replacement usindzuler approximation.

Remark 6.18 Note that the sampled-data model described in Thebrem @Ga%e obtained for any
equivalent representation of the nonlinear system of tha {6.1)-(6.2). Specifically, the approximate
sampled-data modgb.44)(6.45)is described in terms df(-), a(-), and¢(-) which are functions of
(), g(-), andh(-) — see Lemnia 6.3.

Remark 6.19 In (Barbotet al, 1992), asampled normal forns obtained by a Taylor series expansion
of all the elements of the state vec{@:11)to the same order in the sampling peridd By way of
contrast, we have considered the smoothness of the inputand, thus, ofy(¢) and its derivatives,
to obtain the exact representation given@54)-(6.57)and, from there, the approximate discrete-time

model(6.44)-(6.45)
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Remark 6.20 Note that the result in Theorém 6/15 can be equally appligéamonuniform sampling
case. In the latter case, the local truncation output errall e of order in A;“, whereA, is the
length of the sampling intervady, t511).

Remark 6.21 An interesting observation can be made when obtaining tlopgeed sampled-data
model for a linearn-th order integrator. The normal form for this particular sgm is readily ob-
tained by substituting(z) = 1 andb(x) = 0 in Lemma 6.3. Thus, the model given by Thedrem|6.15
corresponds to thexactdiscrete-time description of the integrator obtained imired 2.12 on page 20
— see, in particular, the matrices {@.59)

Next we present a result which shows that the discrete-tiane dynamics of the sampled-data
model presented in Theorém 6.15 are given by the sampledearpant of the continuous-time zero
dynamics, together with extra zero dynamics produced byanepling process. Perhaps surprisingly,
these sampling zero dynamics turn out to be the same as thHushk appear asymptotically for the
linear case.

Theorem 6.22 The sampled-data mod@.44)-(6.45)generically has relative degrele with respect to
the outputzy = y°. Furthermore, the discrete-time zero dynamics are givetwoysubsystems:

() The sampled counterpart of the continuous-time zeraayos:
on° = c(0,25,,m°) (6.61)

wherezy £ [z5,...,29]", and

)’ Er

(ii) A linear subsystem of dimensien- 1:

525, = Qa2 75, (6.62)

where the eigenvalues of matfi}. are the same sampling zeros as in the asymptotic linear case,
namely, the roots qf,.(A~) defined in(2.55)

Proof. Using the definition of discrete-time relative degree girehemmd 6.8, we have that:

S 25
B =%=0 (6.63)
2080 — 2050 — & (2 4.+ A b+ au]) £0 (6.64)

which shows that (6.44)—(6.45) generically has relativgrelel. This result is consistent with (Barbot
etal, 1992, Lemma 2.2).

Now, in order to extract the zero dynamics of the discrateetnonlinear systerh (6.44)—(6.45), we
rewrite it in its normal form. To do so, we proceed as in theopaf Lemmd 6.13 on pade 111 for the
n-th order integrator. We first define the following lineartstaansformation:

z Z
F=|:l=1|:|=1¢ (6.65)
=S S
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where matrixI” is defined analogously tb (6.33):

1 0 . 1 0
T= — T = (6.66)
T21 Ir—l 7T21 Ir—l
where:
Ty = — [% A:!fl} (6.67)

Substituting[(6.65)=(6.66) in (6.44), we obtain a discititee normal form:

=S S
S =5 21 _ qu | Q2 1 21 1
‘ Lgr] l Q| Q2 | |2,

AnT1L 5,8 alFS S
0
on® =e((,n°) = q(37,25,,1°) (6.69)

where the sub-matrices in (6]68) are given by expressioal®gous to[(6.35)~(6.34).
Taking the outpuy® = 27 = 27 = 0, for all (discrete) time instants € Z, we now see that the
discrete-time zero dynamics are described by two subsgstem

825, = Qo 25, (6.70)
5% =q(0,25,,1%) (6.71)

and the eigenvalues ¢j»; are clearly the same as the rootepfA~) as in Lemma 6.13.
O

Remark 6.23 If the continuous-time inpui(t) is generated by a different hold device, for example,
a First Order Hold as in(2.11)on page 18, this information can be used to include more témntise
Taylor's expansiorf6.50)6.52) This, of course, would lead us to a different approximasemite-time
model in Theorem 6.15, with different sampling zeros in Tdmb.22.

Indeed, this fact corresponds to the results for linearesystin Chaptér 3, where it was shown that
the asymptotic sampling zeros depend on the system retiggree andalsoon the nature of the hold
device used to generate the continuous-time system input.

6.4 Implications in nonlinear system identification

We believe that the results in the previous sections givétiaddl insight into many problems in non-
linear system theory. As a specific illustration, we nextsider the problem of nonlinear system iden-
tification based on sampled output observations. Note tleatovnot explicitly consider noise in this
section since our focus is on the deterministic (bias) emresulting from under-modelling in sampled-
data models.

The results in Section 6.3 describe an approximate sangaltdiscrete-time model for a nonlinear
system. This model shows that the accuracy of the sampledndatlel can be improved by using a
better approximation than simple Euler integration (Thtetgprocedure is equivalent to replagie in
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the continuous model, by theoperator in the approximate sampled-data model). The numerate
discrete-time model can be interpreted as includiampling zero dynamicsvhich are the same as in
the linear system case.

In this section we illustrate the use of the approximate dadigata model (6.44)—(6.45) for param-
eter estimation of a particular nonlinear system. This rhaogkich includes sampling zero dynamics,
gives better results than those achieved by simply regiaaime derivatives by divided differences, even
when fast sampling rates are utilised.

Example 6.24 Consider the nonlinear system defined by the differentiahgn:
§(t) + a1y (t) + aoy(t) (1 + 19> (1)) = Bo(1 + e2y(t))u(?) (6.72)

This model can be expressed in state-space form as:

= 2 (6.73)
T2 f(xla T2, U’)
y =1 (6.74)
where we have defined the function:
flx1,20,u) = —aqxe — apzr (1 + 5@%) + Bo(l + eqxy)u (6.75)

This system has relative degree- 2 for all z, € R?, and is already in normal forni6.9)6.10)
The nonlinear functioif6.75)can be linearly reparameterised &%z, v, u) = ¢(t)* 6, where:

[ —as(t) | 0] [ o]
—x1(t) D) ag
ot)= | —x (1)’ | and 0= [65| = |e100 (6.76)
u(t) 04 Bo
21 (Du(t) ARRELY

We next perform system identification by applying an eqoatiwor procedure on three different
model structures (compare with the linear case treated tiGa/4.3.1):

SDRM: A Simple Derivative Replacement Model. This model is obthioy simply replacing the
time derivatives by divided differences in the state-spaodel(6.73)(6.74) This leads to the
approximate model:

SDRM: 6%y = —6016y — Oy — O3y> + Oau + O5uy (6.77)

where the parameteid; are given in(6.76)

MIFZD: A Model Incorporating Fixed Zero Dynamics. This is based anproposed discrete-time
nonlinear model in Theorem 6.15. The corresponding stedeespepresentation is given by:

0r1 = xo + %f(a:l,x27u) (6.78)
dxg = f(x1,72,u) (6.79)
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where f(z1, 22, u) is defined in(6.75) This particular systencan be rewritten as a divided
difference equation as follows:

MIFZD: 6%y = —616y + (1 + 50)(—b2y — O5y° + Osu + O5yu) (6.80)

where the parametei; are given in(6.76)

MIPZD: A Model Incorporating Parameterised Zero Dynamics. Thial& based on our proposed
discrete-time nonlinear mod&.78)-(6.79), with the difference being that here we exp46&0)
and relax the existing relation between the parametersefifferent terms. This yields:

MIPZD: %y = —016y — Oay — O3y> + Osu + Osyu — 066(y>) + O70u + O36(yu)  (6.81)

wheret; = a1 + Sag, {02, ....05} are given in(6.76), 05 = Sape1, 07 = 53, andls =
2 Boes.

Note that the MIPZD ir{6.81)can be rewritten in state-space form as:

51‘1 = T — 91171 - Qﬁx‘f + 07’& + 98U£E1 (682)
dxrg = —bOsw1 — 93.%‘:1)) + 04u + O5uxq (683)

with outputy = ;.

The parameters for the three models, SDRNBIT7), MIFZD in (6.80) and MIPZD in(6.81) can
be estimated using the ordinary least squares method bynisimg theEquation Erroicost function:

1 N—-1 1 N—-1
=5 > en(0)? 6%y — 1.1 0)? (6.84)
k=0 k:O
where:
=6y, =y, —y*, u, uy]” (SDRM)
ok =19 [0y, —(1+ £8)y, —(1+ £6) (), (1 + 5£d)u, (1 + £6)(uy)]” (MIFzD)  (6.85)
[—6y, —y, =y, u, uy, —0(y®), du, &(uy)]" (MIPZD)

The parameters for each model were estimated by performingdnte Carlo simulations, using
different realisations of a Gaussian random input sequencgero mean, unit variance). The sampling
period wasA = 7/20[s]. The results are summarised in Table 6.1. We can see titatMIFZD and
MIPZD give good estimates for the continuous-time parameetghereas SDRM is not able to find
the right values, especially for the parametdrs, 64,65}. Of course, small discrepancies from the
continuous-time parameters are explained by the non ieBimital sampling period.

To explore the convergence of the parameter estimates tthtenuous-time values, we repeat the
simulations for different sampling period. Table 6.2 shdhe root mean square error between the
average parameters obtained by running 50 Monte Carlo satirts for each sampling period. Note
that we are able to compare only the first five parameters ofMhZD. In fact, we can see that, as the
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CT SDRM MIFZD MIPZD
avg std avg std avg std
01 3 2.6987 | 0.4622 | 2.6479 | 0.0241 | 2.6414 | 0.0141
0 2 1.5080 | 1.2832 | 1.5999 | 0.0487 | 1.5876 | 0.0330
03 1 5.8089 | 30.2745 | 0.6442 | 1.0831 | 0.7299 | 0.3986
04 2 0.7431 | 0.1467 | 1.6054 | 0.0081 | 1.5882 | 0.0052
05 1 0.1597 | 0.9703 | 0.7752 | 0.0557 | 0.7770 | 0.0317
O - - - - - 0.1152 | 0.0959
0 - - - - - 0.1345 | 0.0004
0s - - - - - 0.0665 | 0.0022
Jee(#) | 0.6594 | 0.1493 | 0.0069 | 0.0021 | 0.0001 | 0.0001
Validation 0.7203 0.0076 0.0003

Table 6.1: Parameter estimates using equation error puoegd

A SDRM | MIFZD | MIPZD
/20 2.2691 0.3513 | 0.3438
m/100 | 9.6156 0.0744 | 0.0714
m/200 | 53.6027 | 0.0508 | 0.0366
/500 | 109.5187 | 0.0167 | 0.0146

Table 6.2: Convergence of parameter estimates.

sampling period is reduced this is the model that gives tls¢ &gtimation of the true parameter vector.
On the other hand, the estimate corresponding to the SDRIMaslg asymptotically biased.

We also tested the three models, SDRM, MIFZD, and MIPZD tivithverage estimated parameters
that appear in Tablé 6.1, using a longer validation data seleagth 100[s] and the same sampling
period A = 7 /20[s]. Part of the output of the nonlinear continuous-timeteys and the discrete-time
models, when using the validation input, are shown in Figife We see that both models based on
our proposed state-space model as described in Sectiorepli@ate the continuous-time output very
accurately. On the other hand, the SDRM has a clear bias.

The value of the Equation Error cost functi@84)for each one of the three discrete-time models,
when considering the sampled input and output validaticiadappears in the last row of Takle 6.1.

0

The results obtained for the nonlinear models in the pre/example highlight that the inclusion of
zero dynamics (as in MIFZD and MIPZD) allows one to obtaintdretesults than a simple derivative
replacement approach (as in SDRM). Actually, the resukks@mted here are a nonlinear extension of
the results presented earlier in Chapter 4 for linear systémparticular, if we consider; = e, = 0in
(6.72), we obtain the same second order linear system aesicarlier in Example 4.1 on pdge 65.
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CT System
x  SDRM
O  MIFZD
*  MIPZD

Figure 6.1: Simulated output sequences for the validatipnti

We recall that in the linear case presented in Section 413 dage 70, we were able to show ana-
lytically that the system gain was underestimated by a fat@ using the SDRM approach. On the
other hand, all the continuous-time parameters were reedwehen using MIFZD and MIPZD. Thus,
the results presented in Example 6.24 are clearly consistigmthe simpler linear results presented in
Part 1.

Remark 6.25 The asymptotic bias in the SDRM estimates obtained in Exafp# can be explained
by reviewing Lemma 4.9 on page! 71. In that result, we show pis}{im bias is also obtained in the
linear case (see Example 4.8). This bias can be mitigatedeXample, if we use output error system
identification instead of least squares estimation, bubatéxpense of using non-convex optimisation.

6.5 Summary

In this chapter we have developed an approximate disdragerhodel for deterministic nonlinear sys-
tems. The sampled-data model described here has severalsiing features:

It is simple to obtain, in particular, by expressing the amnbus-time system in itsormal form

It provides alocal truncation errorbetween the output of the approximate discrete-time model
and the output of the underlying continuous-time systentdéA” !, wherer is the (nonlinear)

system relative degree ardis the sampling period.

It is obtained through a more sophisticated derivative axipration than the simple Euler ap-
proach.

An insightful interpretation is given in terms of explicharacterisation of the nonlinesampling

zero dynamicsf the obtained discrete-time model.

These results extend well-known results for models of sachlihear systems to the nonlinear case.
Of particular interest is the occurence of sampling zeraadyias, with no counterpart in the underlying
continuous-time nonlinear system. This mirrors the lirczese.

The results are believed to give important insights in déffe problems in nonlinear systems theory.
By way of illustration, we have shown that models obtainedgiequation error system identification
methods have higher fidelity when nonlinsampling zero dynamiesre included in the model.
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Chapter 7

Sampled-data models for stochastic
nonlinear systems

7.1 Introduction

In this chapter we consider sampled-data models for sttichanlinear systems. These systems are
usually expressed, in continuous-time, usstgchastic differential equations(SDES).

Stochastic differential equations are of interest in maiffgr@nt areas of science and engineering.
They have been successfully applied to problems such adaimpugrowth models, signal estimation,
optimal control, boundary value problems, and mathemldfiicance (Jksendal, 2003). SDE models
have also been used for nonlinear system identification [[B@md Graebe, 1995; Kristensen al,,
2003; Kristenseret al, 2004) and control of stochastic systems (Deng and Krs674;, Deng and
Krstic, 199D; Pan, 2001; Pan, 2002).

In this chapter we are interested in the use of SDEs to mod#lmmus-time stochastic systems
(also calledchoise models and from those models, to obtain sampled-data desangptidiich are accu-
rate in a well defined sense.

The mathematical treatment of SDEs has similarities, aa slight differences, to the usual theory
of deterministic differential equations. One needs to barawef these similarities and differences when
considering numerical methods to solve them. This will toat to be important in the context of the
current chapter, where we study how one can obtain distiragemodels for nonlinear systems based
on numerical solutions of stochastic differential equagio

Explicitly solvable SDEs are rare in practical applicaidiloeden and Platen, 1992). Thus, nu-
merical solutions play a key role in filling the gap betweenad @eveloped theory and applications. In
this framework, sampled-data models can be understoodrasriwal algorithms for solving (approxi-
mately) a given SDE.

The basic theory of SDEs presented in Section 7.2 is mairggdan (Jksendal, 2003), whereas
topics related to numerical methods for SDEs can be founHlimelen and Platen, 1992). There also
exist many other references in the area of stochastic eca@pplied to control and estimation (Bucy
and Joseph, 196 strom, 1970; Jazwinski, 1970; Kallianpur, 1980). More advahoethematical
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details can be found in (Protter, 1990; Kushner and Dup@i821Klebaner, 1998).

In Sectiorl 7.3 we present a sampled-data model to repremehiastic nonlinear systems. To find
the exact solution of a (stochastic) nonlinear differdreguation will usually be impossible, as was
found for the deterministic case in the previous chapteus] bnlyapproximate sampled-data models
will be obtained. However, the accuracy of the proposed moeilebe characterised in terms of a very
specific order of convergence. Connections to the linear aesalso established.

7.2 Background on stochastic differential equations

In this section we review some concepts and results fronhagiic calculus and stochastic differential
equations. We deal with these topics in a general framewnck)ding linear systems as a particular
case of the nonlinear theory.

We will consider stochastic nonlinear systems expresseadsasof differential equations:

dx(t) .
5 = a(t,x) + b(t,x)o(t) (7.2)
y(t) = c(t, x) (7.2)

where the input(¢) is acontinuous-time white noi€TWN) process having constant spectral density
o2 = 1. The functionsz(-) andb(-) are assumed analyticale., C>°. This latter assumption can some-
times be relaxed temooth enougfunctions, ensuring that the required derivatives are dediined.

Note that the model structure in (7.1) is similar to the detaistic description in[(6.1)i.e., the
system equation is affine in the input signal. Conditionsfastence of diffeomorphisms that transform
stochastic linear systems to different canonical formsteafound in (Pan, 2002).

The model[(7.1)(7.2) depends on the CTWN proag$s. However, as previously discussed in
Section 2.4, white noise processes in continuous-time dexist in any meaningful sense (see Re-
marki2.24 on pagde 28). In fact, for a proper mathematicalrtreat, equation (7.1) should be understood
as a stochastic differential equation (SDE):

dxy = a(t,x;) dt + b(t, zy) dvg (7.3)
where the driving input to the system are therements of v; = v(t), a Wiener process of unitary
incremental variance. Equatidn (7.3) is, in fact, usuadlyritten as the integral equation:

ot ot
Ty =T, + / a(t,x;)dr + / b(r, x;)dv, (7.4)
0 0

which consists of an initial conditiom, (possibly, random), a slowly varying continuous component
called thedrift term, and a rapidly varying continuous random componemedahediffusion term.

Remark 7.1 The last integral involved in expressi¢n.4) cannot be interpreted in thesualRiemann-
Stieltjes sense (Fksendal, 2003). In the literature, twestroictions of this integral are usually consid-
ered, leading to different calculi:

e Thelto integral construction:

/ FE)dvy =1m Y f(te)[vs,,, — vr,] (7.5)
: 4
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e TheStratonovich integralconstruction:
/f(t) odvy = Hme (%) [Vt — Vt,] (7.6)
¢

Each one of these definitions presents some advantages antdattks. For example, by using the
Stratonovich constructiof?.6), the usuakhain rulefor transformations can be applied, whereas when
using (7.5) we need to apply thio rule (see Section 7.2.1). On the other hand, the Ito inte¢jfdd)
has the specific feature ofot looking into the futureln fact, the Ito integral is anartingale, whereas
the Stratonovich integral is not, and, conversely, everytimgale can be represented as a Ito integral
(Dksendal, 2003) .

Here we will consider the Ito construction (7.5) only, butizglent results can be obtained by using
the Stratonovich definition (7.6). We will refer to (7.4) as ko integral, andr; as an Ito process
described either by this integral equation or by the SDE i&)(7

7.2.1 The ltorule

The Ito construction of a stochastic integrallin (7.5) iraplan important departure point from tingual
calculus. Specifically, the usuehain rulefor transformations has to be modified. The key point that
leads to this result is given by the properties of the Wiemec@ssu(t) (see Sectioh 2.4.2 on page 27).
In particular, its incremental variance can be obtained as:

E{(v(t)—v(s)’}=|t—s| ;Vt#s (7.7)
= E{dv’}=E{(v(t+dt)—v(t))?} =dt (7.8)

Lemma 7.2 (lto rule for scalar processes)Let us consider a scalar Ito process as in(7.3), and a
transformation of this process:

y=g(t,x) (7.9)

whereg(t,x) € C? ,i.e, g has at least its second order continuous derivatives. Theny, is also an
Ito process, and:

_ 9%, . 99 oy L0% )2
= 5 (t,z)dt + o (t,z)dx + 5 92 (t,x)(dx) (7.10)

The differential in the last ternfdxz)? = (dx(t))(dz(t)), is computed according to:

dy

dt-dt=dt-dv=dv-dt =0 (7.11)
dv - dv = dt (7.12)

Proof. See, for example, (Jksendal, 2003).
O
Note that the Ito rule arises from (7.7), where we can sedlleatariance of the increments is of
orderdt. As a consequence, the last termin (7.10) has to be condidere
Lemma 7.2 presents the derivative rule for transformatafresscalar process(t). The next result
considers the general case for a vector procgss
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Lemma 7.3 (Multidimensional Ito rule) Let us consider an Ito process; defined by the set of SDE:

dX = A(t, X)dt + B(t, X)dV (7.13)
where:
J?l(t) al(t,X) bll(t,X) R blm(t,X)
X=X;=| i | AtX)=| Bt,X)=| .1 | (719
2 (t) an(t, X) bpi(£,X) -+ bum(t, X)

anddV are increments of a multidimensional Wiener (vector) pssce
T
V=Vi=[un() - ont)] (7.15)
We consider the transformation given bgavector map:
T
Y =Gt X) = [t X) - gyt X)) (7.16)

ThenY =Y, is again an Ito process, given (component-wise) by:

Ogx g < - g
dYy, = = (tht+Z< (t, X)d >+ Z amgamm X)(day)(dz,,) (7.17)

forall k =1,...,p; and where the terms in the last sum are computed according to
dvg - dt = dt - dvy, = dt -dt =0 (7.18)
dvg - dvy, = Sk [0 — m]dt (7.19)

Proof. See (dksendal, 2003).
O

Remark 7.4 A linear stochastic system as considered in Sedtion 2.4 on[pdge 2becarpressed as
the (vector) SDE:

where the matricesl € R"*™ and B € R".

Note that, in this case, the driving input comprises incretsef a single scalar Wiener process
vy = v(t). The solution to this SDE can be obtained by applying theltésiLemma 7.3 for the
transformation:

Y=eMX = deMX)=(-A)e MXdt + e MdX (7.21)

Note that, in this case, all the second order derivative§/id7)vanish. Thus, reordering terms in
(7.20)and multiplying by théntegrating factoe~“?, we can see that:

e MdX, — Ae At X, dt = e~ Bdu, (7.22)
d(e=*X,) = e * Bduv, (7.23)

t
e X, = Xy + / e~ A7 Bdv. (7.24)
0



7.2. Background on stochastic differential equations 127

where we finally obtain the solution:
t
X, =eM X, + / A7) Bdu, (7.25)
0

Note that this solution corresponds, in fact, to the samgegtansition equation as in the determin-
istic linear case (see, for exampl@.15)on page 14) where the deterministic input is replaced by the
CTWN process,e., u(t)dr = o(7)dr = dv,.

O

7.2.2 Ito-Taylor expansions

In this section we review stochastic Taylor expansions.sélexpansions generalise the deterministic
Taylor formula as well as the Ito stochastic rule. They altmve to obtain higher order approximations
to functions of stochastic processes and, thus, will preaful in the context of numerical solutions of
SDEs in the next section.

We first review the usual Taylor formula we used to obtain thedninistic sampled-data model in
Chapter 6. However, in this case we will reexpress it in iraefprm. We thus consider the following
nonlinear differential equation and itsplicit solution in integral form;

@ _ ) e at)=a(0) + /0 a(x)dr (7.26)

If we now consider a general (continuously differentialile)ction f(x), then, by using theisual
chain rule, we have that:

df (x)
dt

o)yt f@)= o)+ [ L (7.27)

where we have used the notatibn= a(:c)a% , andzy = z(0).
Note that the integral relation in the last equation is vahdparticular, forf = a. Thus, it can be
used to substitute(x) into the integral on the right hand side of (7.263,,

x(t) = xo + At (a(a:o) + ATI La(x)d7’2> dmy

=29+ (1(370) t+ Ro (728)

where we have eesidualterm: .
T1
Ry = / / La(x)drodr (7.29)
0 JO

We can use again relation in (7.27), with= a, to replace:(z) in Rz, obtaining:

x(t) = zo + alzg) t + (La)(xo) r + R3 (7.30)

R3 = / / / L?a(z)drsdrodr, (7.31)

We thus have the following general result.
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Lemma 7.5 Given a functionf € C"*1,i.e,, r + 1 continuously differentiable, we can express it using
the Taylor formula in integral form

T t[
F(t) = f(xo) + X (L f)wo) 5 + Ros (7.32)
=1 ’
where the residual term is given by:
t T1 Tr
Rii1 :/ / / L' f(x)droqy ... drodTy (7.33)
0 JO 0
0

Note that|(7.28) and (7.30) are particular casek of (7.3®)sideringf(x) = = and, thusL f(x) =
a(z).

For the stochastic case we can follow a similar line of reasprThus, if we consider an Ito process:

t t
Ty = T +/ a(acT)dT—i—/ b(x;)dv, (7.34)
0 0
and a transformatioffi(x) € C2, we can apply the Ito rule in (7.10) to obtain:

f(@e) = f(xo) +/0 (a(xr)af;f) + %bQ(a:T)a gif”) d7+/0 b(:cT)afa(zT)dvT

t t
= fao)+ [ 25w ar+ [ 1 i, (7.35)

where we have defined the operators:

0 1., 92 0
0 _ 1.9 1_
L= “or + 2b Ox2 L b(?;l: (7.36)
Analogously to the deterministic case, if we now apply tloefdrmula (7.35) tof = a andf = bin

(7.34), we obtain:

t t
Ty = To + a(aco)/ dr + b(xo)/ dv: + Rj (7.37)

t pT1 ’ ’ t rm
R :/ / Loa(x,,) dry dTlJr/ / L*a(z,,) dv,, dry

0o Jo 0 Jo

t T t 1
+ / / LOb(2,,) dro dv,, + / / L'b(2,,) dv,, dvs, (7.38)
o Jo 0o Jo

which is the stochastic analogue for the Taylor formula absel order. Indeed, if the diffusion term is
b(z:) = 0, then equations (7.37)—(7.38) reduce to the determiregpcessions in (7.28)—(7.29)

It is possible to go further to obtain Ito-Taylor expansievisere we use agaih (7.35) to substitute
f=aandf = bin (7.38). However, the expressions become increasingbhied, including multiple
stochastic integrals. Kloeden and Platen (1992) give @gyaic notation to manipulate the required
multiple integrals and, thus, to obtain higher order Itgdda expansions for a general SDE, by using
multi-indicesand hierarchical sets For example, in (Kloeden and Platen, 1992, p.182) theatig
expression is obtained for the stochastic analogue to fhanskon obtained in (7.30):

Ty = To + aI(O) + b](l) + (aa’ + %bQGH) I(O,O)
+ (ab + Lb%0") Lo 1) + ba'I (1 ) + b0 I (1 1) + RS (7.39)
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where:
da 0%a
a = a(xg) a = %(1‘0) a’ = w(xo) (7.40)
b
b= b(l‘o) b/ = a—l(l‘o) (741)
and:
t t
o) = /0 dry Iny = /0 dvr, (7.42)

t 71 t e

1(070) :A /0 dTQd’Tl I(O,l) :A A d’TQd'UTl (743)
t 1 t 1

I,0) :/0 /0 dvr,dr Iy :/o /0 dv,,dv-, (7.44)

In the next section we will discuss numerical solutions fDIES that can be derived from Ito-Taylor
expansions of the type described above. We first presenttlmving result which establishes the
convergence of truncated Ito-Taylor expansions.

Lemma 7.6 Consider an Ito process; as in(7.34)and its corresponding:-th order truncated Ito-
Taylor expansion:(t), aroundt = t,. Then we have that:

E{|zy — z(t)]*} < Cpl(t —to)Ft! (7.45)
whereCy, is a constant that depends only on the truncation ovcer

Proof. The details of the proof and can be found in (Kloeden and R)di892, Section 5.9).
(Il
The previous lemma establishes that an Ito-Taylor expareaverges to the original Ito process in
the mean square sense,kagoes to infinity. Under additional assumptions, the presimsult can be
strengthened to convergence with probability one, unifpion the interval,, t].

7.2.3 Numerical solution of SDEs

In the previous section we presented Ito-Taylor expandiwaisallow higher order approximations of an
Ito process defined by an SDE. Analogously to the deterniirgaise in the previous chapter, Ito-Taylor
expansions can be used to derive discrete-time approxingato solve SDEs. The simplest of these
approximations can be obtained by truncating the exparisith37):

¢
xy = x0 + a(xo)t + b(xo) / dv, (7.46)
0

This is the stochastic equivalent of the Euler approxinmatar ordinary differential equations, and
is sometimes called theuler-Maruyama approximation . Note that from this approximation a simple
sampled-data model can readily be obtained as:

#((k+1DA) = 2(kA) + a(@(kA))A + b(z(kA)) Avy, (7.47)
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whereAvy, = v11)a — vka are increments of the Wiener process
E{Av.} =0 E{(Avp)*} =A (7.48)

Naturally, other algorithms can be derived by considerirggaerierms in the Ito-Taylor expansions.
To analyse the quality of different algorithms we will emplwvo different criteria to measure their
accuracy, namely, strong and weak convergence. Theseptsrare formally defined as follows:

Definition 7.7 We say that a sampled-data approximatigit A ), obtained using a sampling periay,
converges stronglyo the continuous-time process at timet = kA if

lim E{|z(kA) — zxal} =0 (7.49)

Furthermore, we will say that it converges strongljth order~y > 0, if there exists a positive
constant”' and a sampling period\, > 0 such that

forall A < A,.

This type of convergence is also callpdth-wiseconvergence: the sampled data model is required
to replicate the continuous-time system output when theesaaalisation of noise process is used as
input.

The error between the discrete-time model and the contsime process can also be bounded
using the Lyapunov inequality:

E{|Z(kA) — zxa]} < \/E{|x(kA) _JMF} (7.51)

Example 7.8 If we consider again the Euler-Maruyama scheme introducedipusly in(7.46), we see
that it corresponds to the truncated Ito-Taylor expansionteining only the time and Wiener integrals
of multiplicity one. Thus, it can be interpreted as an ordérstrong Ito-Taylor approximation (Kloeden
and Platen, 1992, p. 341)

O

A weaker definition of convergence can be obtained by notideriag eachpath of the process
involved, but instead focusing on the associated stadigpi@perties.

Definition 7.9 We say that a sampled-data approximatig{itA), obtained using a sampling periah,
converges weaklyo the continuous-time process at timet = kA, for a class7 of test functions if

lim B {g(a0)} — B {g(@(kA))} =0 (7.52)

Note that if7” contains all polynomials this definition implies the comearce of all moments. Fur-
thermore, we will say that it converges wealdlith orders > 0, if there exists a positive constagt
and a sampling period\, > 0 such that

|E{g(z)} = E{g(z(kA))}| < CA? (7.53)

forall A < A,.
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7.3 A sampled data model for stochastic systems

In this chapter we will restrict ourselves to the class oflim@ar stochastic systems described in (7.1)-
(7.2). Note, in particular, that this continuous-time mioias a single scalar noise source as driving
input. Before presenting a sampled-data model for thisataslinear stochastic system, we consider
the following preliminary case.

Example 7.10 Consider the stochastie-th order integrator:

d"y(t)
dtn

= i(t) (7.54)

This system can be described by the linear SDE:

dX = AX dt + Bduv (7.55)
where:
X1 0 0
X = A= Iny B=|" (7.56)
Tp—1 0
Ty 0 0

and the output ig/(t) = x1(¢).
If we consider the SDE equation corresponding to the lagesta, we can see that the expansion
in (7.37)gives theexactsolution, becaus&s = 0, i.e,,

A
de, =dv, = z,(A) =2,(0) —|—/ dv-, (7.57)
0
If we now use this expression in the equation corresponding t ;, we have that:
A
dlEn_l =Ty dt = ZEn_l(A) = ZEn_l(O) +/ xn(Tn_l)dTn_l

0
A Tn—1
=2p-1(0) + 2,(0) A + / / dv,, dTp,—1 (7.58)
o Jo

Proceeding in this way for the other state components of Bie §.55)-(7.56)we obtain:

n—1
LA L S Ia....0,0)
0o 1 ... Affz Ti0,..0
x| Ty | S (759)
0 --- 0 1 Iy

where we have used multi-indices a{T42) i.e.,

A T1 Tm
s _ / / / dvs,, ATy ... dry (7.60)
(1,&\.’.;(3) o Jo 0 141

m zeros
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Note that since this system is linear, the same discretetiimdel can be obtained using our earlier
results in Chapter 2. Specifically, we can use Lefnmal 2.25 ga/ 8. Substituting the matricesand
B given in(7.56)into equation(2.115)we obtain:

An—l
1 A e m
0 1 .. AT A
Xa = (2 X+ / AB=T) By, (7.61)
. . O
0o --- 0 1 1%
Aq

whereA, = ¢4, and the elements &f can be obtained fron2.116)on pagé 29j.e.,

~ T
V=lo 5 - (7.62)
A _
A — 7)(n=0)
= @g:/ B e, i=1,...0m (7.63)
The first two moments of vectorin (7.61)can be obtained as in Lemma 2,28,
E {V} ~0 (7.64)
nnfl nn—l T
o A . A | (n=D)! (n—1)!
E{VVT} = / A BB A Mdn = / : | dn
0 0
1 1
A » iy
,r]n 7 nn J :|
= e y] dn
/0 L” — i) (n —j)! i,7=1,...n
2n—i—j+1
_ [ A o ] (7.65)
(n—il(n—-j2n—i—-j+1) i,j=1,...,n
where[m;;], ._,  represents am x n matrix whose entries are;.
For example, if we consider the case of a the second ordehasbic integrator, we have that:
52 o A% A
o 8 Bl B IR (7.66)
Uol1 03 5 A
O

Remark 7.11 The results in the previous example are consistent withgééa and Platen, 1992, Sec-
tion 5.7) where moments of multiple stochastic integrathsas the ones given {{7.59)are obtained.

Remark 7.12 Note that the discretised mod@.61) was obtained by expanding each of the states of
the continuous-time descripti@i.55)to different orders. However, for this particular systeracle one

of the Ito-Taylor expansions involved is exact and, thus stimpled-data model for the stochastith
order integratorconverges stronglyo the true solution with ordet = oc.

Note that we have found two alternative ways to define theengéstorV. First, its elements were
defined in terms of multiple stochastic integrals[in (7.58) §7.60). Secondly, using the (simpler)
approach in Lemma 2.25 in Chapter 2, we obtaihed (7.61)3)7\&e next prove that both expressions
are equivalent.
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Lemma 7.13 Consider a standard Wiener processaand a time period\. Then the followingeduction
rule for multiple integrals holds:

A Tm Ty A A — )™
]10 0:/ / / dUTdTl...dTm:/ Qd% ;m>1 (7.67)
(L, ) Jo Jo 0 0 me

m zeros

Proof. Relation[(7.67) can be proven using induction. Foe= 0, we have, by definition:

A
I(l) = / dvT (768)
0

Form = 1 we have:

A A A
I(10) / / dvrdm = / / dridv, = / (1 — A)dv, (7.69)
0 T 0

where we changed the order of integration in the double rateg
Finally, we assume that the result holds fer= %, and we will prove it form = k + 1:

Tk+1
1(1 0 / (/ / dv,dry .. di> dTi41

k+1 zeros
A Thl
- / < / (Tk“)dvf) AT (7.70)
0 0 k.

where we have used the result (7.67) for= k settingA = 7,.1. The result is obtained by changing
the order of integratiori,e.,

Tk+1
I e / / T’““ ddeTkH / / T’““ diHdvT

k+1 zeros
A k+1
B (A—71)

O

Corollary 7.14 As a consequence of Lemma 7.13 we have the following relatitween(7.60) and
(7.63)

=1 (7.72)

]

We next turn to a general class of nonlinear stochastic systéve will obtain a sampled-data model
for this class of systems based on a similar expansion oniffieeetht state variables. We will consider
that these systems can be expressed in a particular stte-dpscription which mimics the, so called,
normal formfor deterministic nonlinear systems. Normal forms for kemtic differential equations
have been studied in (Arnold and Kedai, 1995; Arnold and llake1998).
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Assumption 7.15 Given the stochastic nonlinear systdim1)}(7.2), we assume that there exists a
transformationZ = ®(X), such that, in the new coordinates, the system is expressed a
dZ(t)
dt
y(t) == (7.74)

— AZ + Balt, Z) + b(t, 2)i(t)) (7.73)

where the matricesl and B are as in(7.56)

Renaming the state variables, the previous assumptionesgiat we will restrict ourselves to
stochastic nonlinear systems that can be expressed adltivarig set of SDESs:

dxry = xodt (7.75)
dx,_1 = T,dt (7.76)
dx, = a(z)dt + b(z)dv; (7.77)

where the output i§ = z1. The functions:(-) andb(-) are assumed analytic 6/°.
Note that, as in Example 7.10, if we expand the last statetiqué/.77), we can use the first
Ito-Taylor expansion as:
Tn(A) = 2,(0) + a(Xo) A + b(Xo) 0, (7.78)

whereX, = [21(0),22(0), -+ ,2,(0)]T and®, is defined in((7.683).
If we proceed in the same manner with the second last stateiSOE/6), we obtain:

Tp-1(A) = z,—1(0) + /OT Zp(T)dT

2
== I’n_l(O) + In(O) A + a(Xo) % + b(Xo)f)"_l (779)

where we have used Corollary 7,14 to substitljie,, = v,,—1. Proceeding in a similar way with the
rest state components, we can obtain truncated Ito-Tayfmaresions up to the first state in (7.768,,

n—1 n

n!
Note that the last equation corresponds, in fact, to th&diger expansion for the system output
y = x1 of ordern.
Note that the truncated Ito-Taylor expansions obtained@lfar each of the state components can
be readily rewritten and summarised in terms of dteperator:

XA — X

0 = 6Xa = As X+ Bga(Xo) + H(Xo)V (7.81)
where:
21(A) o 1 - % A:!*l
Xa = xQ(_A) Ao 00 Bs — h V:%f/ (7.82)

Zn(A) 0 --- 0 0 1
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The following theorem presents a sampled-data model basdw@xpansions in (7.78)—(7/80), and
precisely characterises its accuracy.

Theorem 7.16 Consider the continuous-time stochastic sysfémb)-(7.77), with outputy = x;, and
the following sampled-data model:

5X (kA) = As X (kA) + Bsa(X (kA)) + b(X (kA)) Vi, (7.83)

and As and B; are defined as iif7.82) andV;, = LV}, corresponds t7.62)(7.63)where the inte-
gration interval has to be changed [pA, kA + A) (By stationarity ofv;, vectorsV}, and V' have the
same covariance).
Then, the outpugi(kA) = Z;(kA) of this modekonverges stronglyo thetrue output with order
~ = n/2, provided that:
B {|y - 5(0)*} < Coa” (7.84)
for some constant’,.

Proof. The proof follows from the fact that the discrete-time exgsien obtained for the output
y = 1 corresponds to the truncated Ito-Taylor expansion of ordeand thus from (Kloeden and
Platen, 1992, Section 10.6) we have that:

E {‘Z/t:kA+A —y(kA + A)|2} < Cpp1 A" (7.85)

provided thatE{|yt:kA - y(kA)|2} < Oy A™
The result then follows by applying the Lyapunov inequalifys1) and the Definition 7.7.

|
Remark 7.17 From (7.65)we can see that the covariance structurd/gfwill be given by:
1 - An—izi Or [k — 1]
Ty _ _~ T _ K
E{ka }_ A2E{V’“Vf } {(n—i)!(n—j)!(?n—i—j) ij=1,....n A (7.86)

As the sampling period goes to zero, this covariance apresithe continuous-time covariance of
Bo(t) (see equatiorf7.73)). This results parallels the linear case discussed eaitieRemark 2.27 on
page 30.

Remark 7.18 We can see that the sampled-data model presentgddB)closely resembles the discrete-
time model obtained for the-th order stochastic integrator in Example 7.10. In partanithe vector
Vi plays a key role as the driving input in both cases. If we sthista(X) = 0 andb(X) = 1 in
(7.83) we can see that this model reduces to¢kactsampled-data model obtaingd.61) Thus, for
this particular case, the order of strong convergence ofsl@pled-data model ig = cc.

The previous remarks show strong parallels between thbastic nonlinear case discussed here and
the corresponding results for linear stochastic sampégd-chodels. The analysis reinforces the notion
that then-th integrator case gives important insights into obtajréccurate sampled-data models for
more general systems. The role of the integrator was firstligigted in the context of linear systems in
Part | to characterise asymptotic sampled-data modelofttiraious-time system. Furthermore, in the
previous chapter we noticed that the sampled-data modelefi@rministic nonlinear systems happens
to be exact when considering the case of linear integrager Remark 6.21 on page 116).
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7.4 Summary

In this chapter we have presented a sampled-data modebfdreasttic nonlinear systems described by
stochastic differential equations (SDES).

We have briefly reviewed basic SDE theory and associated micethsolution schemes. These
schemes are generally based on Ito-Taylor expansionsafastic processes. These expansion are the
stochastic counterpart of thsualdeterministic Taylor expansion in integral form.

We have considered a particular class of stochastic nailisgstems that can be expressed in a
form that resembles the, so callegyrmal formfor deterministic nonlinear models. The discrete-time
description obtained for this class of systems was showe tcburate in a well defined sense.

Moreover, a connection to the linear case was establisheecif®ally, the associated input of the
proposed stochastic sampled-data model has the sameawastructure as the discrete-time input
that arises in the sampling of anth order stochastic linear integrator.



Chapter 8

Summary and conclusions

8.1 General Overview

In this thesis we have studied sampled-data models forrlaxe@d nonlinear systems. We have reviewed
existing results and presented novel contributions. Is finial chapter we summarise the main results
presented throughout the thesis. We also discuss the mtiplic and inherent difficulties of using
sampled-data models, defined at discrete-time instantsptesent real systems evolving in continuous-
time. There are still many open and new problems in this anéathus, we also present some future
research directions based on the issues raised along theechaf this thesis.

8.1.1 Sampling of continuous-time systems

We have studied the sampling process of continuous-tintersgs linear and nonlinear, deterministic
and stochastic. The sampled-data models obtained werensiooslepend not only on the underlying
continuous-time system, but also on the details of the samplrocess itself. Specifically, the hold
device, used to generate a continuous-time input, and timglsay device, that gives us the output
sequence of samples, both play an important role in the sagymlocess. The effect of thea#ifactsof
sampling becomes negligible when the sampling period goesrb. However, for any finite sampling
rate, their role has to be considered to obtain accuratelsdrajata models.

8.1.2 Sampling zeros

We have seen that sampled-data models have, in general,zer@® than the underlying continuous-
time system. These extra zeros, caltainpling zeroshave no continuous-time counterpart. For the
linear case, their presence can be interpreted as a comsegoé thealiasing effect of the system
frequency response (or spectrum), where high frequencypooants are folded back to low frequencies
due to the sampling process. We have seen that samplingarésesn both deterministic and stochastic
systems. Exact expressions for these zeros are not eastain.ddowever, they can be asymptotically
characterised in terms of the EulemdBenius polynomials.
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The presence of thesampling zeroi discrete-time models is an illustration of the inherdffed
ence between continuous- and discrete-time system désngp When using-operator models these
zeros go to infinity as the sampling period goes to zero, inahets they generally have to be taken into
account to obtain accurate discrete-time descriptions.

We have seen that the above ideas can be also extended tanthreapcase. In fact, the sampled-
data model obtained for nonlinear systems contains exttadgmamics with no counterpart in conti-
nuous time. Theseampling zero dynamic®e a consequence of using a more accurate discretisation
procedure than simple Euler integration. Surprisinglg, élttra zero dynamics turn out to be the same
as the dynamics associated with the asymptotic sampliras Zeithe linear case.

8.1.3 Use of sampled-data models

We have seen that sampled-data can be successfully applestiination and control. In particular,
when expressed in terms of tleoperator, these models provide a natural framework to deél
continuous-time problems in real applications, where @aiz control actions are defined at specific
time instants only.

The use of sampled data taken from continuous-time systemesantly implies doss of informa-
tion. Even though it is possible to obtain accurate models, thifalways exist a gap between the
discrete- and continuous-time representations. As a qolesee, one needs to rely assumptions
on the inter-sample behaviour of signals or, equivalewtiythe characteristics of the system response
beyond the sampling frequency.

We have seen that frequenaljasingand the presence of sampling zeros are strongly connedbed. T
characterisation of the asymptotic sampling zeros relethe continuous-time system relative degree.
However, relative degree is alirdefined quantity in continuous-time because that can be affected by
high frequency under-modelling.

In a similar fashion, the unknown input to stochastic systésrassumed to be a continuous-time
white noise process. However, this is a mathematical atigirawhich has no physical counterpart. In
practice it is only used to approximate (coloured) broadehaoise processes. This implies the presence
of potential modelling errors in the continuous-time stastic system description.

Based on these issues we have repeatedly stressed thetaafriimepwidth of validity for continuous-
time models, within which assumptions, such as relativeeksgcan be trusted. We have emphasised
the importance of this concept, in particular, when utilgsasymptotic results for fast sampling rates.
We introduced this concept for sample and hold designs irpteha, and we showed its importance
also for continuous-time system identification from sardglata in Chaptér 4.

8.2 Summary of chapter contributions

There has been significant ongoing research regarding thefusampled-data models to represent
continuous-time systems. However, there remain many oparigms and associated research oppor-
tunities. In this context, we believe that the current théss presented novel contributions and new
insights into the sampling process and into the use of saivgdéa models for control and estimation.
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In Chapter 2 we presented the basic framework associated with the sagnpliocess of linear
systems, both deterministic and stochastic. The residtsepted have been expressed in two equivalent
forms: using the shift operatqr and the divided difference operatbrin particular, we have presented
a novel characterisation of the sampling zeros that arisarmpled-data models in thedomain. Even
though this result is well known in the.domain, the alternative formulation in thedomain turns out
to be one of the key enabling tools for the nonlinear case imp@ 6. We have also presented a novel
recursive relation between the polynomials that define dingpding zeros in thé-domain.

In Chapter[3 the role of sample and hold devices in obtaining sampled-aatdels was studied in
detail. It is well known that the zeros of sampled-data medel deterministic and stochastic systems
depend on the particular choice of the hold used to genenatedntinuous-time system input, and
the pre-filter used prior to obtain the output sequence ofpsesn respectively. The contribution in
this chapter has been to show that these devices can be el@sigsuch a way as to asymptotically
assign the sampling zeros of the discrete-time model. Tsalt clearly illustrates that thartifacts
of the sampling process do play an important role in obtgigiocurate discrete-time descriptions for
continuous-time systems. We have also stressed that, keaglht the design procedures depend only
on the continuous-time system relative degree, this maijl-defined In fact, we have shown that
(continuous-time) modelling errors beyond the samplieg@iency can have a significant impact on the
discrete-time results. Thus, as a second contributionarcttapter, we have introduced the concept of
bandwidth of validityfor continuous-time models, within which one can rely onreleteristics such as
relative degree.

The issue of validity of continuous-time models was also ohthe key motivations for the work
presented irChapter [4, in the context of continuous-time system identificatioonir sampled data.
We studied the role of the sampling zeros and the effect di figquency (continuous-time) under-
modelling on sampled-data models used in parameter egimadur contribution in this chapter has
been to show that these issues can be addressed by ussgieted bandwidtimaximum likelihood
estimation in the frequency domain. Indeed, the proposedeuiure was successfully applied to CAR
systems and shown to be robust to (continuous- and distne¢g-modelling errors beyond the consid-
ered bandwidth of validity.

In Chapter[5 we have shown how sampled-data models can be successfpligdjn LQ opti-
mal control problems. The presence of input and/or statstcaints can render the continuous-time
solution of the problem impossible to find explicitly. Thus)e is usually forced to use optimisation
algorithms in discrete-time. As a first contribution, we @ahown that the solution of an associated
sampled-data problem (with possibly tighter constraints)verges to the hypothetical solution of the
original problem, satisfying the continuous-time conistia An immediate consequence of this result
is the existence of a finite sampling period such that theexeki performance is arbitrarily close to
the limiting continuous-time performance. Thus, samplath models are a useful tool to deal with
problems defined in continuous-time that may be more diffisuéven impossible to solve.

A second novel result in Chapter 5 was the convergence &dtabilbetween the singular structures
of the discrete- and the continuous-time LQ problems. Iri@aar, the singular values of a linear
operator associated with sampled-data LQ problem were rsttoweonverge, as the sampling period
goes to zero, to (a subset of) the singular values of the tiperarresponding to the continuous-time
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problem. The existence of a well defined limit, as the sangptate increases, could be exploited in
approximate algorithms for the continuous-time problerhigh speed applications, which are solved
using standard discrete-time methods for constraine@ st

In Chapter 6 we have presented an approximate sampled-data model fennueistic nonlinear
systems. The proposed model has several interesting ésatitiis simple to obtain, it is accurate in a
well defined sense (as a function of the nonlinear relatiggateand the sampling period), and it has
sampling zero dynamicwith no counterpart in continuous-time. The model was iolethby aRunge-
Kutta-like discretisation procedure more accurate than simplerEntegration, where derivatives are
replaced by divided differences. As a way of illustratiome tmodel was used for nonlinear system
identification and shown to lead to better results than wissmgusimple Euler integration models.

The presence of sampling zero dynamics in sampled-datalsfatenonlinear systems has been
previously been established. However, a contribution ingér 6 has been to show that the sampling
zero dynamics of the proposed model are exactly the same aygtlamics corresponding to the asymp-
totic sampling zeros in the linear case.

Finally, in Chapter 7, we have considered sampled-data models for stochastimeansystems.
An approximate model was obtained by similar consideratamin the deterministic case, but making
use of the stochastic Ito-Taylor expansions. The resultmatrete-time description is, in fact, closely
related to existing approaches for numerical solution @élsastic differential equations.

8.3 Future research

The work reported in this thesis raises several interediieg of research for the future. We next list
some of these possible research topics.

Robust continuous-time system identification.We have seen in Chaptelr 4 that issues associated with
the use of sampled data can have a key impact on continunesstistem identification results.
We have shown that procedures such as frequency domain mmaxiikelihood estimation can
be modified,e.g, using a restricted bandwidth, in such a way as to reduceghsitvity to the
inherent loss of information due to sampling. In this regattier identification approaches can
be analysed and modified accordingly to achieve robustoasetissues associated with the use
of sampled data and discrete-time models.

Singular structure for the infinite horizon case. In Section 5.4 we established the convergence, from
discrete- to continuous-time, of the singular structurdiregfar operators associated withite
horizon LQ optimal control problems. On the other hand, in (Rojas @eddwin, 2004; Rojas
et al, 2004; Rojas, 2004) connections are established betweesirtgular values of the associ-
ated Hessian of discrete-time LQ problems and the frequessponse of the system, when the
discrete-time horizon tends to infinity. These results &hbe understood in a common frame-
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work represented schematically by the following diagram:

Discrete-time LQ problem Ao  Continuous-time LQ problem
R m—

with finite horizonT = NA with finite horizonT
N_WOJ, lT—wo (81)
Discrete-time LQ problem Continuous-time LQ problem
_—
with infinite horizon A—0 with infinite horizon

The result presented in Section 5.4 corresponds to the mpewvee described accross the top of
the diagram: the singular structure of a sampled-data enolglonverges, as the sampling period
goes to zero, to the singular structure of the underlyingioanus-time problem, both specified
for a fixed finite horizon.

On the other hand, the results in (Rojas and Goodwin, 200fgsiebal., 2004; Rojas, 2004) cor-
respond to the left column of the diagram. They showed thanwdonsidering a (pure) discrete-
time problem, the singular values of the Hessian matrix@ated with the LQ problem converges
to the frequency response of an associated normalisedigyasathe discrete-time horizon grows
to infinity.

The two aforementioned results are certainly strongly ected. In particular, singular values
of matrices are known to be equivalent to singular valuesnefar operators defined in Hilbert
spaces.

To complete the relations in the above diagram would unwspeér mathematical connections be-
tween finite and infinite horizon LQ problems in discrete- andtinuous-time. In particular, we
believe that once the continuous-time infinite-horizonpbem (bottom left corner of the previous
diagram) is fully understood, the remaining three casedsdrptevious scheme can be obtained by
truncating the time horizon and/or introducing samplethaaodels. This certainly constitutes an
interesting and challenging research topic.

Applications of nonlinear sampled-data models.The sampled-data model presented in Chagpter 6 is
believed to give insights into nonlinear systems theorypanticular, Sectioh 6.4 has explored
the use of this model for nonlinear system identificationwigeer, the latter is only one example
used here to illustrate the advantages of using a sampltedrdadel that is simple but more
accurate than simple Euler integration. The sampled-datiehpresented here may give similar
advantages in other areas such as control of nonlineamsystén this framework, it could be
used either to have an accurate discrete-time descriptithreglant, or to digitally implement a
continuous-time controller. These issues remain an igtieigresearch area.

Stochastic sampling zero dynamicsAn insightful interpretation of the sampled-data modeldeter-
ministicnonlinear systems in Chapter 6 was given in terms of the poesef sampling zero dy-
namics. Moreover, these extra zero dynamics of the prop@ksctrete-time) model were shown
to be the same as the dynamics associated with the asymgdatigling zeros in the linear case.
An immediate question that arises is how this relation betwiear and nonlinear sampling ze-
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ros can also be established for the stochastic case. Weagewiao possible lines of research to
unveil this connection:

e In the linear case, stochastic sampled-data models (and, sochastic sampling zeros)
are obtained by spectral factorisation of the output sachgeectrum. Thus, extensions of
spectrum and spectral factorisation of sampled-data reaatel required for the nonlinear
case. For continuous-time systems, nonlinear spectradrfaation has been considered in
(Ball and Petersen, 2003; Bait al,, 2004).

e Pan (2002) and Arnold and Imkeller (1998) have studied cimaband normal forms for
(continuous-time) stochastic systems. If such analysistsnded to sampled-data (or purely
discrete-time) models then, writing these models sampled normal formone would be
able to recognise its (sampling) zero dynamics.



Appendix A

Matrix results

Exponential Matrix

Theexponential matrix, for a given matrixi/ € R™*", is given by the formal power series:

oo

M __ 1 2 _ 1 n
M =T+ M+ M +..._H§HM (A.1)
Continuous-time Lyapunov equation
The continuous-time Lyapunov equation is given by:
AP+ PA" 4+ Q=0 (A.2)

whereQ is hermitianj.e, Q = Q7 = (Q*)T.

e There is a unique solution fd? if, and only if, no eigenvalue ofl has a zero real part and no two
eigenvalues are negative complex conjugates of each dftibis condition is satisfied then the
uniqueP is hermitian.

e If Ais stable therP is unique, hermitian, and:
P= /O h A Qe Tdr (A.3)
o If Ais stable and) is positive definite (or semi-definite) thénis unique, hermitian and positive
definite (or semi-definite).
Discrete-time Lyapunov equation
The discrete-time Lyapunov equation is given by:

APAT —P+Q=0 (A.4)

whereQ is hermitianji.e, Q = Q7 = (Q*)T.
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e There is a unique solutioR if, and only if, no eigenvalue afl, is the reciprocal of an eigenvalue
of Af. If this condition is satisfied, the uniqueis hermitian.

o If A, is stable (eigenvalues inside the unit circle) thfers unique, hermitian, and:
P=> " AkQAll)* (A.5)
k=0

o If A, is stable and) is positive definite (or semi-definite) théhis unique, hermitian, and positive
definite (or semi-definite).

Computation of covariance matrix

Lemma A.1 Let us consider a matri,. hermitian, positive semi-definite, and the following matri

1[4 i
Qs = — / AT Tdr (A.6)
A Jo
Then the following relation holds:
_i _ _AAp ATA
% =% (P AB pe ) (A.7)

whereP is the solution of the Lyapunov equatifh.2) where@Q = Q..

Proof. It follows from the derivative of a matrix product:

d d d
(A PetT) = (A7) Pt et () (A.8)
But noting, from/(A.1), thatdeM™ = MeM™ = M7 M, we obtain:
d
e (eATPeAHT) = AT (AP + PAH) AT = _eATQ AT (A.9)
-

if, and only if, AP + PA" + Q. = 0. If now integrate on both sides of the last equation we olitzén
result:

A A
/ eATQCeAHTdT =— {eATPeAHT] ey (A.10)
0 0

O

Block Matrices

Theorem A.2 Consider the block matrix:

A B
_ (A.11)
C D
whereA is ann x n matrix, B andC” are ann x m matrices, andD is anm x m matrix.
Theschur complementsf A and D are defined (if they exist), respectively, as:
P=D-CA™'B (A.12)
Q=A-BD'C (A.13)

Then the following results hold:
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(Block decomposition)

A B A 0|, A~'B
— (A.14)
C D c I,||0 D-CA'B
I, B||A-BD7'C 0
— (A.15)
0 D D-'C I,
(Determinant)
A B D C
det = det = det(A)det(D — CA™'B) (A.16)
C D B A
= det(D)det(A — BD™'(C) (A.17)
(Inverse)
-1
A B -1 —-Q 'BD!
= @ @ (A.18)
C D -D7'cQ~* D YI,, +CQ 'BD™Y)
A=Y(I, +BP 'CA™Y) —A-'BP!
_ AT Ut ) (A.19)
—PlCcA? P!

Matrix Inversion Lemma

A very important consequence of the previous results réggielock matrices is the matrix inversion
lemma, expressed in the following general form:

Lemma A.3 Provided that the matrices have the appropriate dimensems the inverses exist, the
following equation hold:

(M + MyMsMy)™" = My (I = Ma(My " + My My Mp) ™ My M) (A.20)

Proof. The result can be obtained, for example, by comparing théefoplocks of matrices (A.18)
and (A.19), where we replacé = My, B = —Ms, C = My, andD = Mg‘l.
(Il
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Appendix B

Linear operators in Hilbert spaces

Hilbert spaces

In this appendix we present some concepts and definitioaterkto Hilbert spaces and spectral proper-
ties of linear operators (Helmberg, 1969; Balakrishnai@gl&reyszig, 1978; Leigh, 1980; Lang, 1993).

This brief review is included as supporting material for thpics and results in Chapter 5, related
to singular structure of LQ optimal control problems.

Definition B.1 A linear spaceis a nonvoid setS for which two operations are defined: addition and
scalar multiplication. Addition is commutative and assditie. Multiplication by scalars (either from
the real or complex field) is associative, and disctributivith respect to addition of elements &fas
well as addition of scalars.

Definition B.2 Aninner productin a linear spaceS is a function(-,:) : S x § — C satisfying the
following properties:

() (121 + aoxa,y) = a1 {x1,y) + as(xe,y) ;forall scalarsay, as andxy, xo,y € S.
(i) (z,y) = (y,x)* ,where* denotes complex conjugation.
(iii) (x,z) >0 ,and the equality holds only if is zero.

Definition B.3 A linear spaceS endowed with an inner produ¢t, -) is called aninner product space
(or pre-Hilbert space). It is a normed linear space, where tiorm is induced by the inner product:

[z = /{z,z) (B.1)
Definition B.4 A sequence,, in a normed linear spacé is a Cauchy sequenc#, and only if:
Ve >0,3N. >0 suchthat n,m > N, = ||z, — 2| <¢ (B.2)

Definition B.5 An inner product space (normed linea$)is calledcompleteif all Cauchy sequences

{z,,} converge to an element in the spakce,
lim z, =2€S (B.3)
n—oo

Definition B.6 A complete inner product space is calletidbert space
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Linear Operators

Functions can be defined for the elements of a Hilbert spacgivén function may defined only on
a subset of the Hilbert space, called th@main of definition of the function,D. Therange R of
the function is the set into which the function maps the doméan particular, the ternfunctional is
generally used for functions whose range is scalar valReat C). It is common to refer to the function
as anoperator when the domain is a dense subspace (and hence, as a spsejaheawhole Hilbert
space), and the range is contained into a Hilbert space.

Definition B.7 Given two Hilbert space®{; andH,, an operatorL : D C H; — R C Hs islinear if
L(ax + By) = aLz + SLy (B.4)
for all z,y € H; and all scalars, .

Definition B.8 A linear operatorL is boundedif D = H; and:

[ L]

very ]|

=M < (B.5)
If the above supremum exist¥, is called thenorm of the operatorL.
Lemma B.9 Given a linear operatold. : H; — Hs, the following statements are equivalent:
(i) The linear operatorl. is bounded.
(i) The linear operatorL is continuous at the origin.
(iii) The linear operatorL is continuous at every poiat € H.

Proof. See any of the references, for example, (Kreyszig, 1978).

Adjoints operators

Definition B.10 Consider two Hilbert space’/; and H,, and a linear bounded operatdr : H; —
‘H>. Then a linear operatof™ : Hy — H;, is called theadjoint operator ofT, if and only if:

(Y, T(x))p, = (T*(y), )1, Ve e Hy, Yy € Ho (B.6)
where(-, )3, and(-, -)s,, denote the inner products iH; andH, respectively.

In the following examples we show how to obtain the adjoingrapors considered in Section 5.4.
These operators are associated with LQ optimal controllprolin continuous- and discrete-time, re-
spectively.
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Example B.11 Consider the Hilbert spaceg = £,(0,77;R™) and Z = R™ x L5(0,T;R™), with
inner products:

Ty
U fo)y = /0 AT falt) dt fifaeV (8.7)

€z (B.8)
0

(1.92)z = (99)" o8 + /Tf g1(t)" g5 (t) dt P91 = Bﬂ 192 = lg§
Let us define the linear operat¢r: V — Z (as in(5.74), such that:
@HN'®] | o / AC-OBR f(¢) de

where the matrice®, 2, and R are symmetric (see Chapter 5).
The adjoint operator can be obtained by manipulation of theer product expressions. Let us

considerf € V andg € Z, then we have that:

Ty
0.61)z = ()7 (GF)° + / (g ()T (G (D)t

gf = (B.9)

T
= ()7 P* /O LeATOBR-) f(€) d

T t
- / ") Q / A-OBR™S f(¢) dedt (B.10)
0 0

Note that in the last equation we can use Fubini’s theorenhtmge the order of integration in the

second integral as:
Ty
/ / NTQ7 A BR™2 f(¢) dédt
0

T T
/ f/ " ()T QEACOBR £(¢) drde

Ty
/0

If we now substitutéB.11)in (B.10), and rearrange terms into the integral, we obtain:

T 1 T 1
(9,6f) = :/ {R*EBTSA (Tf*t)PE(gO)
0

’ T
/ fRféBTefAT(E*t)Q%gl(t) dt] f(&)de (B.11)
3

T
1

Ty
- [ G @)@ 19 de = (670, v ©12)
0
where we have obtained the adjoint operator correspondirg, i.e.,
0
g
G*(9) =G" ]
g'(t)
= R 2BTeA (Tt pa / R 2BTe A" E0Q3 g1 (¢) dt (B.13)

O
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Example B.12 Consider the Hilbert space8 = I5(0, N — 1;R™) and Z = R™ x l5(0, N — 1;R"),
with inner products:

N—-1
(fr, oy = [ 1o i€V (B.14)
0
T N—-1 go gO
(91.92)z = () 95+ ) (gl Lo = [1 792=[f €z (B.15)
0 g1 g2

Let us define the linear operat¢r: V — Z (as in(5.89), such that:

N-—1
aupp] [PAZ AIBR
k

Qi Y AL B R, i

=0
where the matrice®a, Q,, and R, are symmetric (see Chapter 5).

The adjoint operator can be obtained by manipulation of teer product expressions. Let us
considerf € V andg € Z, then we have that:

N—-1
T T
(9.Gaf)z = (¢°)" (Gaf)" + (91)k (Gaf)k
k=0
T 1N 1 . N—-1 . 1k71 N
) PEY AYTUUIBRIA 4> (9Y), Qi _AFUIBR T (BAT)
=0 k=0 =0
Note that in the last equation we can interchange the ordéh@tsums in the second term as:
N—1k— 1 N—-1 N-1 o1 .
Qq k 1— ZBR 2fl Z Z (gl)k Q;Ag:—l—quRq2fl
k=0 l=0 =0 k=Il+1
N-1[N-1 - T
=D | 2 RPBJ (A7) Qi (gl)k] fi  (B.18)
=0 Lk=i+1
If we now substitut¢B.18)in (B.17), and rearrange terms into the sum, we obtain:
N-1 1 V-l _1 T 1 !
(9.95/)z ROBI AV PLg0+ S ROBI (AN Q4 ()| i
1=0 k=1+1
N—-1
= > GAW fi = (GA(9), v (B.19)

1=

o

where we have obtained the adjoint operator correspondirg@y, i.e.,

Galg) = Ga (ggl)k
1 T 1 N-l 1 T 1
=R, *B] (AY "N PEg"+ > RPBI (AR Q2 (9Y), (B.20)
k=l+1

O
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