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Abstract: In order that signals can be stored, transmitted or prodesse necessary that they first be converted into
digital form. This, in turn, raises the problem of how to diizg data so as to achieve the best trade-off between data loa
and performance, i.e., “how to make the most out of a littlelo issues are involved in this problem, namely temporal
guantization (i.e., sampling) and spatial quantizationese two problems have traditionally been addressed selyara
Indeed, there exists substantial literature dealing viightémporal quantization problem, covering both bandtéchand
non-band-limited signals. The usual underlying paradigthat of an analysis filter, followed by a sampler, followgd b

a reconstruction filter. Various parts of this architectca@ be optimized once other parts have been specified. On the
other hand, spatial quantization has been studied extndor a given sampling strategy, particularly in the framek

of sigma delta conversion. Finally, it is also possible tofalate the joint design problem for sampling and spatial
quantization. This typically leads to enhanced perforreazmmpared to that achievable by considering the two aspects
separately.

This paper will survey the general area of sampling and dgetign and analyze methods for achieving efficient data
representations for signal processing and control agits. We will show how, on the one hand, contemporary céntro
theory can contribute to the design of sampling and quaitizaystems and, on the other hand, how these systems
impact on the performance of modern feedback control system
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1 INTRODUCTION the first two claims began to be formally determined years

We live in a data rich world. Most technological systems after they were formula_lted, and is St'". subject of ongoing
research. In the pursuit of better quality at lower bit-sate

operate by first converting continuous time, continuous am- . . . .
) ) . o (and lower costs), increasingly parsimonious methods are
plitude signals from the analog world into digital represen

tations. This is a necessary precursor to allow signals tocontm_uall;q dg_\/glolﬁ)ed S0 as to acquire, process and repre-
be stored, transmitted and processed without degradatioﬁent signals digitally.
other than that introduced by the analog-to-digital conver This topic has also motivated important theoretical result

sion itself. from areas such as information theory, functional analy-
The above was indeed the motivation that led Alec Reeve$is, optimization, communication theory, frames, wavelet
to inventpulse-code modulatioPCM) seven decades ago theory, etc.. As we will discuss in this paper, also con-

. In his 1938 patent]2], Reeves highlighted the main trol theory has much to contribute to this circle of ideas.

benefits of PCM, namely: Conversely, much of the theory and techniques from digital
_ _ signal processing are highly relevant to several aspects of
1. Quality depends only on conversion steps. control, e.g., networked control, where parsimonious sig-

nal representation is a key element, see, e.gL1[31[4][5].

In the present work we present some of the main strate-
3. Low cost. gies of sampling, quantization and reconstruction of ana-
log, continuous-time signals. We will describe reconstruc
tion quality and relate it to design constraints such as fil-
ter complexity, data-rate and sampling frequency. We
also present some ideas concerning the joint problem of
These are remarkable statements for the time they wersampling-quantization, on one side, and reconstruction on
formulated. Indeed, most of these benefits have only bethe other. We limit our analysis to uniform sampling of
come reality in recent times. Furthermore, the validity of scalar signals, sampling and reconstruction by singledilte

2. Quality is independent of transmission media.

4. Compatibility with different media and traffic.

5. New features can easily be embedded.



(as opposed to filter-banks), quantizers with scalar outputvhere A > 0 is the quantization stegsee Fig[P) and
and we will not discuss any issues related to further sym-[« /A7 denotes rounding to the closest integer value greater

bol encoding. thana/A.
The layout of the remainder of the paper is as follows:
Section[? presents the basics of PCM quantization and Ua,. —
discusses some of the shortcomings that justify the j
introduction of a more general model for a sampling- fA——
guantization-reconstruction system. Secfidn 3 poses the -8 2 '
sampling and reconstruction processes in a frame theoretic — 9Oa > u = 9Qa(c) : : i —
perspective. Sectidd 4 is a review of some recent general- 2 % c
ized results on the sampling and reconstruction problem. Nearest — T-a
In Section[F we present some basic aspects of scalar Neighbour i

L i Quantizer '
memory-less quantization and oversampling. Sedfion 6 - T-24

despribe_s fgedback quanti;ers. In par_ticular, some of the Figure 2: Nearest Neighbour Scalar Quantizer.
basic principles of predictive and noise shapirfg/(
analog-to-digital converters are presented. In Selior 7 w
present noise shaping quantizers that generalizecon- _
verters based on model predictive control. Sedfion 8 givedized valuestu
elements to analyze the joint problem of the quantization B

and sampling-reconstruction design, including some riecen ulk] = Qa(c[k]), Vk €Z. @)
results and insights. In Secti@h 9 we show how conceptsy
related to sampling and quantization can be utilized in
control problems. Sectidn1LO draws conclusions. Fmally,quency foae = 1/(27) [Hz] and impulse response

an Appendix is included with some of the basic conceptssinq2fmazt), t € R, where sinér) 2 sin(rz)/(rz). The

of frame theory necessary to understand several of the . ) : S
: : output of R is the analog, continuous time sigriglgiven
results presented in the main body of the paper.

by themixed convolutiof

Thus, the output 0D A in Fig. [ is the sequence of quan-
(K]} kez, Where

he synthesis filtei? in Fig.[ is, in the simplest case,
an ideal continuous time low-pass filter with cut-off fre-

2 AD - CONVERSION FUNDAMENTALS a(t) = 3 ulk]sind2frast — k), VEER ()

In this section we will first describe PCM as a basic archi- hez

tecture used in AD—conversion applications. Various short |f there were no quantization (i.e., & = 0), thenu[k]
comings of PCM will then motivate us to introduce later a would equalc[k] for all k. In this situation,a(t) in @)
more general framework. would equalkexactlythe inputa(t) for all ¢ € R, since, by
21 Basic PCM Scheme virtue of the Shannon-Whittaker sampling theoré&in [6], if

. . . . t) is band-limited tof,,.., it can be reconstructed from
We consider the (simple) and idealized PCM system repre—a( ) f

sented by the block diagram in FIg. 1. samples by the interpolation formula

clk] ulk] a(t) =Y a(kT)siNG2fymast — k), VEER. ()
a(t) = » Oa s R > a(t) ke
T
NN‘?aQ%St . Ideal Low-Pass In the presence of quantization, it is generally no longer
Qﬁlgntizcgfr Filter true thata = a. Nevertheless, it is reasonable to expect
Figure 1: PCM system with ideal low-pass reconstructionthat, if the quantization step is small, then the quantized
filter. samples{u[k]}, ., will be close to the analog samples

{a(kT)},cq for all k, and the output of the simple PCM

The usual paradigm associated with this setup is that theystem of FigL will be C'Qse (in some sense) to the gnalog

input signala(t), ¢ € R, is taken to be band-limited to input a. Unfortunately, this and other assumptions in the

some frequency, say,... [Hz]. Then, in accordance with above model are often far from realistic, as discussed next.
’ max . 1

the Shannon-Whittaker sampling theoré&in [6], the sampling2 2 Practical Aspects of PCM
step is chosen as= 1/(2f,.q2). Since the input signal is
directly sampled, we havgk| = a(7k), Vk € Z.

The nearest neighbour scalar quantizer in Elg. 1 corre
sp?lnds to the non-linear transfer functig (-), defined

by

Whilst the PCM method described above is certainly at-
tractive, it suffers from several shortcomings that hiritker

‘usefulness in many practical situations. In what follows,
we will describe some of the main deficiencies of this ar-

Oa(@) 2 [a/A]l -4, VaeR 1) chitecture.

2 The reconstruction formula is often written as a continuiine
L In practice, all quantizers are subject to overload, iberd existsa  convolution with input the sequence of impulsgs[k]5(t — k7)}, <7,
saturation limitM > 0, such tha{Qa ()| = M, Va > M — %. yielding the expression iftk3).




Synthesis Filter The ideal low-pass filter used in Fi@. 1 ous time signal, but only to the samples taken. Depending
for synthesis cannot be implemented in practice. Firstly,on the situation, this can deprive further stages of knowl-
it is non-causal. A very close approximation of the ideal edge of important inter-sample behaviour of the physical
low-pass filter would still be non-causal, which rules it out variable. It is then necessary to make a wise design of the
from any delay sensitive application. synthesis stage, so that the input signal can be well approx-
Secondly, an ideal low-pass filter has an infinite impulseimated at the output (see, e.@J[ILT}, A2, 13]).
response length. For practical low pass filters, the closer
they mimic the ideal filter, the longer the impulse responseQuantization, Sampling Frequency and Data-Rate In
will be. One problem with a long, slow decaying impulse the simple PCM system of Fi@ 1, quantization is done
response is that it affects tiseability of the reconstruction  element-wise by a nearest neighbour quantizer, EBee (2).
in the sense that bounded errors in the samples are able tphus, if one wishes to obtain a small reconstruction error,
produce unbounded point-wise error in the reconstructethbne would naturally aim at reducing the quantization step.
output. As an example, consider the ideal low-pass recontn practice, however, the reduction Afis limited by cost
struction in [#). Itis easy to show that any bounded period-and structural constraints. Alternatively, if the statistof
ical error in the samples(k7) of the form{p(~1)"}, ., the input signal are known, then the mean square recon-
with |p| > 0, will yield an unbounded reconstruction error struction error can often be reduced by using a quantizer
in the L> norm. The second difficulty with a synthesis fil- in which the quantization step is not uniform along its dy-
ter with long (but finite) impulse response is cost and com-namic range.
plexity: In applications where synthesis is accomplishedMoreover, even though the Shannon-Whittaker sampling
via discrete-time FIR filters, longer impulse responses re-theorem shows that when the samples are un-quantized an
quire higher computational complexity. increase of the sampling frequency cannot improve recon-
Another problem with the ideal-low pass synthesis filter struction (since it is already perfect), the situation with
model is that, in many practical applications, the synthe-quantized coefficients is different. More precisely, when
sis filter is not a design choice, but is prescribed by otherquantization is introduced, sampling above the Nyquist rat
considerations. In such cases, the synthesis filter can hav@versampling) can be utilized to reduce quantizationrerro
almost any frequency response. An important example ofsee Sed_5l2) . Thus, one often has the chance to compen-
this situation is that of sampled-data control systemsfehe sate the effects of coarse magnitude quantization by means
the plant itself can be thought of as comprising part of theof a finer time quantization, i.e., faster sampling rate.gTh
synthesis filterR in Fig.[l. We will return to this situation reader may be well aware of this inbit DAC’s used in
later in SectiofP. some CD players.)

In practice, the product of the sampling rate and the number

Not Necessarily Band-Limited Input Signals The as- pfquantizat_iop levels is often constrained by da_ltg—rame li
sumption of band-limitedness of the input signak also !tatlgns. This is so because, aIthpugh not explicitly §hown
very restrictive. Most real applications have to deal with In Fig.0, the sequence of quantized valdesk]} ., in
signals over a finite time interval (strictly speaking, any Pinary form, has to be stored or transmitted before re-
non-zero finite duration signal is not band-limitéd [7]). constructlo.n takes place at another location in time .an.d
Even when processing a virtually infinite duration, per- SPace. This means th_at_the total .nur_nber- of bits, or simi-
fectly band-limited signal, only a finite number of samples 1arly. the data-rate, is limited. In principle, if the quéer

can be used for the reconstruction. This introduces truncal@snu € N levels, then the data-rate will be approximately
tion errors[[8], i.., part of the inter-sample behaviouhef ~ 97ven by

input signal is not captured by the samples. On the other Bit Rate2
hand, it is often the case that the sampling rate cannot b
made high enough to completely avoid aliasing. Whilst this
is commonly dealt with by using a low-pass anti-aliasing
filter before sampling, this paradigm may have significant
shortcomings whenever the signal carries relevant inferma
tion in the high frequency part of its spectrum, or when the
reconstruction filter is not perfectly band-limiting (seeg.,

[, [IQ]). In this case other types of analysis filters should
be considered.

[bits/s]. (5)

?t is possible, however, to reduce the data-rate by an effi-
cient encoding of the sequence of quantized values (com-
pression). When such encoding is applied, the data-rate
limitation translates into an information-rate limitatio
precisely given by the entropy of the sequence of symbols
at the output of the quantizer]14]. Systems with entropy
coding are also callecariable-rateencoders. In this paper,
however, we will not consider such coding methods. Thus,
we will only consideffixed-rateencoding, and the data-rate
will be given by [3).

log, ny
T

Availability of the Input Signal Before being able to )

sample the value of any physical variable, it is necessary té-3 A More General Model for AD—Conversion

convert it to an electrical signal by means of a transducer)n view of the limitations of PCM conversion discussed
which in itself is a dynamical system. It is often the case above, a more general model for the analysis of sampling,
that sampling is performed in the transducer itself. In thisquantization and reconstruction systems is presented in
case, one does not have access to the underlying contindrig.[3.
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Figure 3: A more general sampling, quantization and recooson system.

For the remainder of this work, we will restrict our anal- Note that this definition allows for the uniform, nearest
ysis to input signals which are modeled as finite energy neighbour scalar quantizer il (2) as a special case. The
scalar functions of a single parametei.e.,a € L*(R)). last condition in Definitio L means that the generalized
For example, we could think dfas denoting time, for the scalar quantizer in Fif] 3 is allowed, in principle, to deter
case of time varying scalar signals. Thus, the analysis filte mine the output.[¢], for any/ € Z, based upon knowledge

S in Fig.[d accounts for all the continuous-time linear pro- of the entire sequencgc(k]}, ., i.e., it is a dynamic sys-
cessing of the input that occurs before the sampling takesem. Therefore scalar quantizers with memory (such as the
place. The sampling process is assumed uniform (i.e., regpredictive and noise shaping quantizers to be discussed in
ular sampling), with fixed sampling interval Sectior®) are special realizations of the generalizedscal
The synthesis filterR in Fig. @ represents the lin- quantizer!.

ear processing in continuous-time (possibly with someln Fig. [ anerror frequency weightindilter H has been
discrete-time pre-filtering) applied to the quantized sam-added. Inclusion of this filter reflects the fact that, depend
ples {u[k]},.,. The output ofR is denoted a&. It ap-  ing on the application, the practical impact (s} of the
proximates: in some well defined sense. reconstruction error is frequency dependent. Accordingly
The quantizeQy in Fig.[d is labeledyeneralizecdbecause  H filters the instantaneous erra(t) — a(t) to produce a

it is allowed to have access to previous and future inputfrequency weightedrror signak;; (t).

samples during operation, asdalar, because it generates Based on the general setup illustrated in Elg. 3, throughout
a sequence of scalars, one at a time. We will only discusghe remainder of this work the performance of the system
quantizers of this type in the remainder of this paper, whichwill be assessed in terms of the squatd&dnorm of the
justifies a more precise definition of the clasgeheralized ~ generated signal;:
scalar quantizers

_ . . 2 o f 2
Definition 1 (Generalized Scalar Quantizersjny quan- lem |72 = / (er(t))” dt. (7)
tization strategy that can be devised within the following —0

conditions
3 SAMPLING AND RECONSTRUCTION

e The quantizer has no access to the continuous time FROM A FRAME THEORETIC PERSPEC-
signala, but only to the sampleg:[£]}. TIVE

As mentioned above, a paradigm which underlies many
signal processing schemes consists gire-filtering (or
analysig stage, a sampling stage, a digital, discrete-time
%rocessing stage andpost-filtering (also referred to as
synthesior reconstruction stage. It has been shown that

e Each of the elements in the output sequence of thetbheetjveegrzoﬁﬁi?tsss;ecgglz;\gﬂe?;rtgxi;eﬁﬁeﬁ% n;gﬁ)zrgs

quantizer can take values only from a finite, given and . .

k . . [B]). This viewpoint allows one to use the powerful tools of
fixed set of scalar®, i.e, the output of the quantizer
satisfies 3 The possibility of quantization based alh the future samples also

admits a restricted class of vector quantizers. In thissclee reproduc-

ulk] €U, VkeZ. 6) tion codebook is restricted to be the &8¢! C RI%l, where|Z| denotes
the cardinality of the integer&. The asymptotic performance of infi-

e The quantizer has access to all past and future analognite length vector quantizers has been the subject of inemesearch,
samples although traditionally with a different choice of reconsttion codebook,

’ see, e.g.[119.16.17]. However, vector quantization besoimpractical

. . . for long vectors and large reproduction codebo®ks [17]. riimers suit-
is said to belong to the class of Generalized Scalar Quan-pje for on-line applications, based on a finite number afreisamples,

tizers. will be discussed later, in Sectigh 7.

e The quantizer outputs a sequence of scalarf]}
at a constant rate, one element everynits of time.

number of input analog samples.




Hilbert spaces, frames and algebra of operators to study ankelong to some space of signals, s&yC L?. Lety be the
design sampling and reconstruction systems. It allows foroutput of the analysis filtef, which has impulse response
elegant solutions to otherwise complex design optimizatio ((t) € L?. Then,y(t) is given by the convolution:
problems, by using inner products and projection operators

3.1 Historical notes y(t) = (a*@)(t) = / a(z)p(t — z)dz, VteR.
To the best of our knowledge, the first author to apply —o0

Hilbert spaces theory to the sampling problem was F. Beut- ) )

ler in 1961. In [Z1] he derived sampling theorems for Ifone now creates a sequengg| < (° by taking the values
random stationary processes using complex exponentiaf?fy(ﬁ) attime instants = kT, k € Z (sampling process in
Fourier expansions. Further insight and results for bandfig- ), one obtains

limited signals were provided by K. Yao in 1967 for other _ _
expansions, seE[R22]. Several publications with the Hilber [k] = y(k7) = (a x @) (k7)

space approach to the sampling problem followed in sub- by 7

sequent years. Among others, a 1986 paper by Hidemitsu = / a(z)p(kT — 2)dz = / a(2)¢(z — kt)dz
Ogawa [Z8] presented a unified approach to generalized —0 —o0

sampling theorems. It introduced the idea of regarding the (8)

approximation of signals in a more general, finite dimen-

sional reconstruction space, instead of restricting to perWhereg(t) = o(—t), vt € R. One can see that the last in-
fect reconstruction by Fourier expansions. Interestingly tegral in [B) corresponds to the conventional inner product
in [23], a finite number of samples of a filtered signal in L?, defined in[BH), between(t) and¢(t — k). If we
was used, as opposed to an infinite number of “raw” sam-now define theshift operatorZ’.. by

ples. By the early nineties, the recently arrived wavelet N
theory [24[25] began to stimulate a strong revival of sam- Tird(t) = ot —k7), t eR K € Z, ©)

pling theory (see, for examplé_.__[IZIE_Im 28]), by using the_then it is possible to writd]8) as

mathematics of basis and frames in Hilbert spaces. This

framework allowed for the re-formulation of the sampling  ¢[k] = (a = ¢)(k7) = (a, Thr¢) 2, Vk € Z.  (10)

and reconstruction problem in more general and practical

situations, including, inter alia, sampling and reconstru Therefore, the sampled filtered input signal can be seen as
tion from finite samples[123_29], study of arbitrary in- the result of a sequence of inner products. Frpmh (10) and
put and reconstruction spacési[LI] 31], sampling ofDefinition[d (see Appendix), this is indeed the process de-
non-band-limited signal$ 27, 110], oversamplifgl[BZ}, 33], scribed by the analysis operatdt associated to the frame
non-uniform sampling[[34, 18], filter-banks[35,136], and {7k-¢},c;- AS a consequence:

splines and interpolatiof [BI7,138].

In the remainder of this section we will derive a represen- L, Ma={clk]}e,

tation of the sampling and reconstruction processes in . . . .

Hilbert space frame theoretic contdxtFor a more com- qs\ls;fee that, since{T}r ¢}, is a frame for the Hilbert

plete formal analysis, see, for example,l[18,9,[34[78, 20, S £ 5pan{Ty, ¢} ey C L7,

<)
_ _ it follows thatc € ¢2 for all a € L2, as required.
3.2 Sampling and Reconstruction as Frame Opera-
tors

) ) _ Synthesis (or Reconstruction) Consider now the con-
It will be shown next that the analysis and sampling stages,,ersion from the discrete-time sequerfogk]}, ., to the
which map continuous time signals into discrete time se-gntinuous-time signai(t), see Fig[B. If we denote
quences, can be seen as #malysis operatoof the sam-  he impulse response dt as(t), then the band-limited

pling frame. This frame is made of translates of the time ghannon-Whittaker reconstruction schemelh (3) can be
reversed impulse response of the analysis filterSimi-  yeneralized to:

larly, the reconstruction process, which maps discrete tim
sequences into continuous time signals, can be seen as thg, () — Z ulkly(t — kr) = Z ulk] T, Vt € R (11)

synthesis operatoof a reconstruction frame. It is made ez ez
of translates of the impulse response of the reconstruction L .
filter R. Itis clear from Definitiolb (Appendix) that the reconstruc-

tion procesd(dl1) can be represented by the synthesis oper-

o _ _ _ _ _ ator ¥ associated with the fram@.. v}, .
Filtering and Sampling Consider the input signal in

the block diagram of Fidld3. Assume thatis known to TP =W, Tu=a

4 For completeness, we have included an introduction to basés 5 More precisely, ifB is the upper frame bound fo{T%, ¢},
frames in Hilbert spaces in an appendix. then||c||? < B||al|?, seelEh).



In this new settingy(¢t) becomes the generating function 2. Design of the mapping between signals in the sam-

for the principal shift invariant reconstruction spade = pling space and signals in the reconstruction space

spar{ T, } 4, Which is, in general, different from the (i.e., design of discrete-time processing, including

space of band-limited signéls guantization).

The sum in[(IlL) can be seen asnixed convolutiorfd], ) )

ie. In what follows, we will describe aspects of the separate
a(t) = (uxP)(t), VteR design of the sampling/reconstruction strategy and of the

quantization method. Some aspects of the joint design
which it takes a discrete time sequencand a continuous  problem will be discussed later in Sect[dn 8.

time functiony, yielding a continuous time functian
If the impulse responsey(t) is chosen such that 4 SAMPLING = AND RECONSTRUCTION
{Tsz/;}keZ is a Bessel sequence (and therefore a frame WITHOUT QUANTIZATION

for span{Tj.-1},.c,, seel(Bb) ), then? is a bounded op-  |n this section we discuss the effect that analysis and syn-
erator, and the outpui(t) = Yu € L? for all sequences thesis filters have on the reconstruction quality. We will
{ulk]}rez € . assume that the input and output spaces are given and will

neglect quantization effects. The implicit trade-off here
The Combined Sampling and Reconstruction Process between the quality of the reconstruction and the computa-
It follows from the above that the sampling (analysis) andtional complexity (and delay) incurred in the sampling and
reconstruction (synthesis) process can be stated as a steconstruction processes.

quence of operators between Hilbert spaces: 41 Types of Reconstruction

e Analysis: As concluded in Sectiofl 3, the ultimate sampling and re-
construction capabilities of a system are limited by the
O LP— 1%, c=da sampling and reconstruction spaces. These, in turn, are en-
tirely determined by the choice of analog filt&fandR, as
well as the sampling interval. This suggests that, when-
ever possible, the design 6fand R should focus mostly
on the sampling and reconstruction spaces that one wishes
T2 W, a=Uy to obtain. Further refinement can be achieved by careful
design of discrete-time filters which can be located right
after the analysis filtef and before the synthesis filtés,
see Fig[B. Interestingly enough, it has been shown that,
in general, the optimal mapping is obtained by making the
UO*: [2 W, a=Ud'a (12) sampling and reconstruction frames duals of one another
[B.[40]. To achieve this for a given analysis frame , one can
If the sequenceulk]},., is obtained by quantization of insert a discrete-time correction filter before the synithes

In particularc[k] = {(a, Tk, ), Vk € Z.

e Reconstruction:

Therefore, in the absence of quantization (i.ew[f] =
clk], Vk € Z), the complete process can be expressed as

{c[k]} ez, then [IR) becomes filter to make the synthesis frame the dual of the analysis
frame. Although, in general, the dual frame of some given
TQud*: [ — W, a=VQu(d*a) frame is not unique, there exists only one shift-invariant

dual frame (i.e., a unique correction filter) for each given
It is interesting to note that the above results allow oneshift-invariant frame[[400]. In what follows, we will con-
to determine the ultimate limitations and capabilities of a sider the following situation:
sampling and reconstruction system in terms of the Hilbert
spaces related to sampling rate and filters. More precisely, ® H is a non-separable Hilbert space (efg(R)).
the analysis and synthesis filters alone determine, respec-
tively, the largest class of signals that can be sensed (i.e.
the sampling space) and the largest class of signals that can
be generated (i.e., the reconstruction space). A rather re-
markable implication is that in the intermediate (discrete
time) stages one can only design the mapping between e W = span{Ty.v},., C H is the reconstruction
these spacebut not expand the sampling and reconstruc- space.
tion spaces themselves
As a consequence, the design of an AD conversion schemBepending on the relation between the input spacsam-
can be thought of as involving two aspects, namely: pling spaceS and reconstruction spad®’, we will con-
sider three types of reconstruction notions, namely: con-

choice of spaces).

e A C H is the space that contains all possible input
signals.

o S =5pan Ty}, ., C H is the sampling spade

7 Notice that bothS andV, being of countable dimension, can never
6 Note that this space is of countable dimension. be equal to an infinite, non-separable space sudfi.as




Consistent Reconstruction The first and most generally 4.2 Conditions for Consistent, Optimal and Perfect
attainable reconstruction goal is that @insistent recon- Reconstruction

struction first introduced in 1994 by Unser and Aldroubi, ynder the assumption that the sampling and reconstruction
see[T1]. A signal approximation is said to be consistent spaces satisfy thairect sum conditiof}
if it yields the same samples (observations) as the original

signal when re-injected into the system, i@.c W is a H=WaS", (13)

consistent approximation afe A if and only if necessary and sufficient conditions have been found in

d*a = P*a. order to make the sampling and reconstruction system
achieve consistent reconstruction and, as particularscase
optimal and perfect reconstruction as wEIN[IY, [40, 42].

For shift invariant frames and spaces, the direct sum con-
dition can be conveniently expressed in the frequency
(Fourier) domaif based on the functions

The idea of consistent reconstruction is depicted in
Fig.[.a); in this figureg is projected ontd/V alongS+,
the null space of, seel(ZD).

AvReR A2 T ()] e

Ay RoR, Ay 2 S @(%’9)‘2 (15)

keZ

~—

and thenull setsof A, and A4, denoted, respectively, as
@) (b) N(Ay) andN(Ay), where

Figure 4. a) Consistent reconstruction (oblique projegtio NHE{yER: f(y) =0}, f:R—R, (16)
b) MSE reconstruction (orthogonal projection). ) -
by means of the following proposition:

The notion of consistent reconstruction was first introdlice proposition 1 ([A0, Proposition 4.8]) Let v, ¢ € L?(R),
for Riesz bases ir[11], and then extended for frames inand assume tha{l},, ¢/} ., and {7, ¢} . are frame se-
[37,[19,[TB8[41["40] and142]. quences. Then the following are equivalent:

H 2 1
Orthogonal Reconstruction The second type of recon- ) LAR)=We s,
struction isorthogonal reconstructionalso called mini- (i) NV(A,) = N (A,) and there exists a constadt > 0
mum mean squared error (MMSE) reconstruction. It re- such that
quires additional conditions (see next section). In this
type of reconstruction, the system generates, for any input A< Zzﬁ(v i k:)qB* (v+ k)| Yy & N(Ay).
a € A, the outputs € W that minimizeg|a — al| ;., i.e.: e
7)

) _ - ) It is shown in [42] that, if the direct sum condition is satis-
Itis well known that this notion is equivalent to an orthogo- fied, thena € W is a consistent reconstruction of an input
nal projection of the signals od onto the output space/  , ¢ 7 ifand only ifa is theoblique projectiorof « ontoV
(see AppendiX’AT]1). The intuitive notion of orthogonal alongS™, the null space of (see AppendikZAII1). Such

projection is illustrated in Fid4.b). Note that theshown 4 projector, denoted by , is defined as
in this figure is, indeed, the closest pointitan the output

space.

a= argur)lglv la —wl 2.

EwsL:H’_’W, EwsLh:’UJ,

Perfect Reconstruction The third, and most demanding whereh = w + v, withw e W,v € §*

notion is that operfect reconstructiori.e., The following defines the concept oblique dual frame

a=a,Vac A and establishes its relation with the oblique projector:

As will be shown below, depending on the spagess and  Lemma 1 (from [40, Lemma 3.1]) Assume thaf f }, .,
W, perfect reconstruction can still be possible, even, forand {gx},., are Bessel sequences i and letS =
example, for non band-limited signals]43] L0} 27]. spa{gr ey, W = Span fr},c,. Assume that{ =
In the remainder of this section we will describe conditions )y ¢ S*. Then the following are equivalent:
on the sampling and reconstruction method which ensure—;—— , _ _
that each of these notions can be achieved S+ is the null space of, see[[dD) in Appendix. The expression
: H = F @& G means thatF N G = {0} and that everyh € H can be

8 It is worth mentioning, that Ogawa in his 1986 wofk][23] atiga  decomposed ag + g, wheref € F, g € G, see, e.g.[44, Def. 3.4.11,

referred to this concept as the-observation propertgof a finite sequence ~ page 99].

of samples), deriving mathematical expressions for theired synthesis 10 Here, and in the sequel) denotes the Fourier transform gf
method. defined by (v) = [0 (t)e=2"Vdt .




a) w=7 (W, gr)fr, VweW.
b) Eysih =3 crn(h, gx) fr, Yh € H.
C) Eswih =73 1cz(h, fr)gr, Vh € H.

just before or just after the analysis filter. With such an
arrangement, and provided Conditions (i) and (ii) in
Theorenfdl are satisfied, the system will yiptfect
reconstructiorfor all inputsa € Y and consistent
reconstructiorior all inputsa € L?, as required.

Furthermore, if the above three equivalence conditions are

satisfied, thedgx } .., is an oblique dual frame dff. } .,
onS and{ fi},cz is an oblique dual frame ofgy. } .., on
W.

From LemmdlL one can see tha®* becomes an oblique

projector if and only if{ ¢y}, ., is anoblique dual frame
of {1} ez I S.

Although, as with the conventional case considered in Def-
inition[d (see AppendikAl4), the oblique dual frame within
a given space is not unique, the shift-invariant obliqud dua

frame of a shift invariant framis unique [40]. This means

e Conversely, from the reciprocity of oblique dual
frames (I8) also allows one to obtain the oblique dual
frame for{T%. ¢}, ., onW for a giveny. This can be
achieved by inserting a continuous (or discrete) time
correction filter with transfer functio® 4, () defined
in (T9) betweenS and R. Notice that this correction
filter does not alter the space associated to the stage
in which it is inserted, i.e., if the impulse response
of an/) is q¢>1/)(t)a thensp—an{TkT(¢ * q¢¢)}keZ =
m{TkT(b}keZ'

that, once reconstruction and sampling spaces are define@from the previous results it follows that, if the direct sum
there exists a unique analysis filter that makes the analysifld) and duality [18) conditions are met, then necessary
frame the oblique dual of the reconstruction frame. Con-and sufficient condition for each type of reconstruction can

versely, there exists a unique reconstruction filter thatstu

the reconstruction frame into the dual of the analysis frame

be stated as follows:

An expression in the Fourier domain for the oblique dual conditions for Perfect Reconstruction Perfect recon-

frame condition in terms of the frequency responses of thestryction only for all inputs: € W is possible, without
analysis and reconstruction filters is given[inl[40, Theoremany further requirement

4.3], which, by virtue of Propositidd 1, can be rewritten as

follows:

Theorem 1. Let ¢,¢ € L*(R) and assume that

Conditions for (MSE) Reconstruction (Orthogonal Pro-
jection) If, additionally, S = W, thenE,,s. becomes
an orthogonal projector ontd, i.e., Eyys:. = Py, see

{Thrb}ep, @nd {Tr ¢}, are frame sequences, span- AppendixfAI1. This guarantees that the output signal

ning the closed spacé4’ andS, respectively. IfL.?(R) =
W @ S+, then the following holds:

(i) There exists a unique functiahe S such that

w="> " (w, Tir ) Tart)h, Yw € W;

keZ

(i) This unique function) € S is given in the Fourier
domain by|

o(v) A

= 0BG (k) iy ¢ N (Ay)
! ity € N(Ay)

(18)

Remark 1. In relation to (IT8), we note that:
e The function)(v) in 3)is 1-periodic.

e The result infI8)allows one to obtain a shift invariant
oblique dual frame fo{ T}, ., onS for a giveng

by inserting a continuous or discrete-time correction

filter Q 4., with transfer function

183

A ()
Qop(7) = )’

11 [@8), * denotes the complex conjugatedaf

Vv eR (29)

will be the best approximation il for the input signal
a € H,i.e., itwill minimize ||a — al| -.

Conditions for Consistent Reconstruction (Oblique
Projection) Consistent reconstruction will be achieved
for all a € L? without further requirements.

5 QUANTIZATION

Quantization is the process of translating analog values in
values which belong to a finite set. The representation of
analog samples with infinite accuracy would require an in-
finite number of bits. Quantization allows one to achieve
a controlled approximate representationirdinite analog
values, which in turn can be represented with a finite num-
ber of bits. Hence, the main purpose of analog to digital
conversion is to compress data, whilst aiming to obtain the
best possible approximation of the analog signal. This is to
be achieved within data-rate constraints and according to
some fidelity criterion, i.e., “making most out of a little”.

As already mentioned in Secti@nP.3, the quantizers to be
discussed in this paper belong to the family of generalized
scalar quantizers, see Definitith 1. As such, quantizers
generate an output sequenfgkl}, ., whose values are
constrained to belong to a setaf elements (se€X6)) , the
guantization alphabdt/, now formally defined as:
wi €R (20)

U £ {M17M27" '7Mnu}7



Traditionally, quantization has been analyzed only in erm Thus, the distortion depends on tember of bits per sam-
of discrete-time performance, usually looking at the MSE ple B as

between input samples and quantized samples. Denot-

ing the input and output sequences of the quantizer as B 0_2 2B %2 _oB

{c[k} o, and{ulk]} .. the MSE is given byfc — u%: D=2 =2 forlargel.  (24)

e — ulle: > (clk] = ulk] )’ (21) " Non-Uniform Quantizer For a given number of bits per
ez sample, the distortio® can be further reduced if the prob-

We will next briefly discuss the simplest realization of the ability density function (PDF) of the analog samples is
generalized scalar quantizer in FIg. 3: the zero-memoryknown. This can be achieved by utilizing a non uniform
scalar quantizer. Its performance will be analyzed in termsquantization step. Any form of non-uniform gquantization
of the MSE as defined inC{P1). Other realizations of can be accomplished by placing complementary non linear
the generalized scalar quantizer, such as quantizatidn witelements before and after a nearest neighbour quantizer.
memory (by means of feedback) and quantization with The first block is acompressagrand its transfer function
memory and “preview”, will be analyzed in Sectiofls 6 ¢ (x) is a monotonically increasing function satisfying
and[T, respectively. For a more comprehensive analysis of
guantization see, e.gl, 45,1161 17]. ¢(-C)=-C, €C)=C, €0)=0
5.1 Scalar Quantization The complementary block placed after the quantizer is
Scalar quantization is also referred to zsro-memory  calledexpanderand has a transfer functiefi—".
quantization, since each analog sample is quantized ignoradapting an expression first derived [n.J47], one has that,
ing previous or future samples. Scalar quantizers patitio for a non uniform quantizer with a large number of quanti-
the real line into a set ofy disjoint and consecutive inter- - zation levels, compressor characterigficz) and without

valsI = {l1,...,ln}, Ii € R. A unique scalar from  overload, the MSE due to quantization is given by

U is associated to each interval In usually satisfying

wi € l;,i = 1,...,ny. Depending on the choice of the ) Xmaz

partition intervals, either a uniform or a non-uniform soal Dy = M 9—2B fx () d (25)
. . . 3 @ 2

quantizer is obtained. (€ (2)]

min

Uniform Quantizer The simplest scalar quantizer is the wheref, (z) is the PDF of the analog samples &idx) £
nearest neighbour uniform quantizer introduced in Sec-dcg/dz_ The no overload assumption implie€ < X,
tion [Z7, where the partition of the input space (the reaIandew < C, and thatfx(z) = 0, V2 ¢ [Xmin, Xmas)-
line) is given by [1) and the elementsdfsatisfy Notice that forg” () = 1 (i.e., with a uniform quantization
i1,y —1 step), [Zb) becomeE{R4).

Y Clearly, minimization ofD« in 8) requires a compressor
Defining the positive constangéxtreme outputvalug/ and  curve% matched to the PDF of the input signal. The opti-

Pit1 — pi = A,

extreme input valué’ as mal compressor characteristc’ is given by the solution
to
M = —p = pn, (22) de* (z
C 2 M+A/2 (23) dz(  — o[ (26)
the quantizer is said to leverloadedf the input|z| > C.  Wherea is a constant such that(C') = C. When the solu-

If the probability density function of the analog samples is tion of (Z8) is inserted intd{25), the MSE without overload
smooth and the quantization step is small enough, then thand for largeB is found to be
quantization error can be approximately modeled as a ran-

dom variable with uniform distribution overA /2, A /2] y [ Xmasz/o
(see [46] for precise conditions), and the mean squared er- Dy = 9 [Fxn (l,)]l/i% de % 2728 (27)
ror between the input and the output. = Qy(x) of the 12 Ny

quantizer is given by the distortion measure:

DAE [(I ~ Qu(2))?] = A%/12 whereos? and fx, (z) are the variance and the normalized
' PDF of an individual input analog sample, respectively. In
where E.X] denotes the expected value of the random vari-"élation to [2), it must also be pointed out th@t(see
ableX. 3) ) must be made several times larger theor the no-
In terms of the number of bits utilized to represent each®Verioad assumption anid{27) to be valid. For more details
sample, we first note that about the derivation and applications of this and other re-

sults related to scalar quantization, see, €.gl, [48] aad th
A=202"8 references therein.



5.2 Oversampling In this diagram[/(Z) andC(z) correspond, respectively,

It is possible to further reduce the reconstruction MSE, 0 the Z-transforms of the analog samples sequeniée}
while keeping the quantization step constant, by increasin 81d the quantized output sequenpe(k]} depicted in
the sampling frequency above the Nyquist frequefigy Fig.[3. Thus, _the q_uantlzer_contalneq in .the dashed line
This technique is calledversampling For oversampling ~ "ectangle in Fig[l5 is a particular realization of the gen-

ratior £ 1/(7fy) not too large, the mean square error is eralized scalar quantizer in F. 3. The fiItngl(z)_ in-
reducedas~, i.e., cluded at the end of the chain in Fig. 5 can be considered as

part of the reconstruction stage in Hi§j. 3. The teifi{s’)
D, = Dyr— ! (28) and D(Z) in Fig.[d correspond to the Z-transforms of the
discrete-time signals in each of the respective nodgs.)
whereD; is the MSE whem = 1 [&7]. Notice thatthiscan is the Z-transform of the error introduced by the scalar
also be seen as a particular case of the resilience propeguantizer, i.e.N(z) = U(z) — E(z). From Fig.[}, the
ties of redundant frame expansions discussed in Appendiexpression for the outpuf(z) is found to be
AH (see also, e.g.[ IBZ149]). However, as the sampling

frequency is increased, quantization noise becomes more U(z) = Hy(2) [C(2) + N(2)]. (29)
and more correlated and the decrease rat®,0fdimin- Thus, the filtered outpub(z) satisfies

ishes. Furthermord),. asymptotically approaches a lower,

strictly positive limit. The biggen is, the higher this limit D(z) = C(2z) + N(z) (30)

becomes. A larger quantization step also causes the de- . . . -
crease rate oD, to depart from[(28) “sooner” asis in- The kt_ey o th(ta n0|steh redu%:_ngtl_ Cag.?b'“t'es (_)Ifr;chef_ﬁred_lctlve
creased[47]. quantizer rests on the prediction filt&f, (z). This filter is

The reconsiruction error can be further reduced, forde3|gned to minimize the variance of the prediction error

a given oversampling ratio, by the use of feedddck E(2) = Hy(2)C(2) + [1 — Hy(2)]N(2), (31)
Furthermore, feedback A/D converters yield a MSE that

decreases steadily ass increased. Thus, one can obtain See Fig[b. It is common to assume that the quantiza-
an arbitrarily low MSE, for a given\, by sampling fast ~ tion noise is uncorrelated to any of the signals in the loop

enough. These converters are briefly described in the neB1]"1. Thus, H,(z) is chosen so as to reduce the contri-
section. bution of C(z) to E(z) in ). By doing so, the variance

(energy per sample) of the analog sequence that enters the

quantizer is reduced. This in turn allows one to reduce the
6 AD CONVERTERS WITH FEEDBACK quantization step\ in the embedded scalar quantizer, with-

Quantization schemes that use feedback can be groupedt _increasing the number ofqugntization levels needed to
into two main families: predictive quantizerand noise ~ avoid overload. Thus, by reducing a measure of the term
shaping quantizersExamples of the first type are thelta ~ 11»(2)C(2) in @), one is also reducing the quantization
modulatoranddifferential pulse code modulat¢DPCM) noise contribution, and the MSE is reduced accordingly.
(see, e.g.[T50]). The popul&A (sigma-deltd converter Of course, how much distortion reduction is achieved will
see, e.g.[T1], belongs to the latter type. _uIti_mater depend on how_predictable th_e sequefngk] }

The following is a basic description of the main character-iS: I-€-, On the autocorrelation ¢¢[x]}. It will also depend
istics of both converter families, based mainly on the ap-On how well the prediction filtef, (=) is able to capture

proach proposed i [52]. In the sequel, the quantizationtiS Predictability ,
process is modeled as additive noise, corresponding to thi has been showr[52] that the MSE of the scheme in
quantization error of a scalar quantizer. Fig.[d decreases with the oversampling ratio not “faster”

thanr—(m») wheren,, is the order of the filtef, (). If

6.1 Predictive Quantizers an additional ideal low pass filter with cut-off frequency
The general form of a predictive quantizer is shown in fv/2is placed aftetd, ' (z) (see Fig[b), then the MSE is
Fig.[. reduced at most as (?"»*1). A common choice off,,(z)
is of the form(1 — z=1)"».
ScalarQuantlzer Note that the predictive quantizer in FI§. 5 can reduce dis-
: Ne | tortion even if signals are sampled at Nyquist frequency, as
; - E@) 4-/{\ "U(2) long as the input analog samples are correlated. If the input
Cle)— U ' H,'(z) >D(2) samples are uncorrelated (white noise), then the predictiv
P : guantizer is unable to yield any MSE reduction at all. It
: 1— Hy(2) is the increase in the autocorrelation of the input samples

: : produced by oversampling which allows for the®"» be-
haviour in the MSE reduction rate.
Figure 5: A predictive quantizer

13 Other analysis methods of quantization noise consider rsore
phisticated spectral and probabilistic models (see, [&8,[54]), as well
12 Here we begin to see control theory impacting signal pracgss as non-linear deterministic models (see, elal [5h5658]7,




6.2 Noise- ShapingX A Quantizers) robustness of the resultant system. Indeed, if properly de-

The second main category of feedback quantizers correSigned, feedback converters allow one to achieve high ac-
sponds to the noise-shaping quantizers suck AsA/D curacy quantization despite the use of inaccurate building

converters, first proposed by Inose and Yasudaih [59]. ondlocks (such as the scalar quantizer itself, which can be

possible form to represent a noise shaping quantizer is dedllowed to have a very coarse and uncertain quantization
picted in Fig[5. Again(’(z) andU (z) correspond, respec- step). This makes feed_bac_k quantizers the preferred choice
tively, to the Z-transforms ofc[k]} and{u[k]} in Fig.[@. ~ for many practical applications.

The noise shaping quantizer within the dashed line rectanlt should also be noted that the above mentioned decay

gle in Fig.[B is a particular realization of the generalized rate of the MSE with increasing oversampling ratio is
scalar quantizer in Fiff 3. not fast enough to be rate-distortion efficient. Indeed,

oversampling AD converters require, in general, a higher

Tttt TTTTTTTTTTTAT I ST data-rate than a system with finer quantization and no
Scalar Quantizer! . . . . .

! oversampling to achieve the same distortion. This can

N
}{(,i) be seen by noting that, for feedback converters, the MSE
20U U(z) decays only polynomially with increasing the oversam-

with increasing the bits per sample (i.e., reducihy as
O(272B), i.e., exponentially. Nevertheless, recent results
""""""""""""""" show that theL>* norm of the reconstruction error in
Figure 6: A noise-shaping quantizer. YA converters can be reduced &+ "), k > 0, by
selecting for each oversampling ratio an appropriate noise
From this figure, it is easy to see that the outpift) is ~ Shaping filter from an infinite set of filters164]. Following
given by a different approach, quantization schemes based on
U(z) = C(z) + Hp(2)N(2) (32)  threshold crossings exhibit a reconstruction MSE that
decays exponentially with increasing oversampling ratio

where the noise shaping filtéf,, (z) constitutes a degree of [65,[68], and are thus rate-distortion efficient.
freedom in the design process. Sif¢e:) is band-limited,

and because of oversampling, it is generally convenient to
chooseH,, (z) to be a high-pass filter, see, e.@.][51]. With 7 MOVING HORIZON QUANTIZATION
this choice, the quantization noise is attenuated withén th ) )
signal band whilst increased outside of it (see Hg. 7). This/nterestingly, control theory can be used to design the gen-
compensatory increase in the off-band quantization neise i ralized scalar quantizerin FIg. 3. More precisely, sifee t
unavoidable, as determined by the Bode integral theoren®utPut of the quantizer is constrained to belong to a finite
[60] 4. Because of the frequency shaping of the quanti-2/Phabet of values, the situation can be regarded as a con-
zation noise, most of its energy can be suppressed by lo©! Problem with input constraints. This point of view mo-
pass filtering/(z), leaving only the in-band portion of the tivated us to applMoving Horizon OptimizatiofMHO)
quantization noise. By doing so, it is verified [A]52] that toqls to achleve a more effectlye_ noise shapmg quantizer.
the MSE decays by increasing oversampling ratio at most! Nis paradigm useblodel Predictive Controlwhich has
asr—(2m+1) wheren,, is the order of the noise shaping Proved to be a powerful tool for dealing with constrained
filter H,(z). Most common choices foH,(z) have the ~ SyStemsi6/7.61.68. 60.10.163]. The quantization scheme
form (1 — z=1)" / P(z), whereP(z) is an FIR filter. SO obtalr_1ed, namedulti Step Optlma! Convertg(lMSOC)
[[77], typically outperforms-A quantizers, while embed-
Spectral Density ding the latter as a particular case. We will present next
| Quantization Noise | some of the fundamental principles behind the MSOC. The
| Hn (&7)N (&) Signal Band | remainder of this section has been basically adapted from

(1.

7.1 Noise Shaping Quantization as an Optimization
Problem

: pling ratio, as? O(r—(27+1))  while the MSE decreases

A more general formulation to analyze the discrete-time
v performance of noise shaping quantization can be derived
from the block diagram depicted in Fig. 8.
Figure 7: Quantization Noise Shaping. In Fig.[@, {c[k]} and{u[k]} represent, respectively, the in-
put analog samples and the quantized output sequence. The
As in control systems, one of the beneficial aspects of usimotivation for quantization noise-shaping has been incor-
ing feedback in analog-to-digital converters is the insezh

|
|
|
|
|
|
i
T
™

-T —Wmazx Wmazx

15 |f z is a variable that tends to some limit ap@r) is a positive
14 Note thatH,, (z) in @2) corresponds to the closed loop sensitivity function, the expressiofi(z) = O(g(x)) means that there exists a finite
of the system in Fid6 (see, e.d..[61] 62 63]). constantA such that f(z)| < Ag(x) for all values ofz.




ulk] Finite Horizon Formulation A practical conversion

: h scheme, suitable for online applications, must operate se-

Gggzlr:rllzed Discrete-Time Error quentially, evaluating a restricted number of decisiori-var

Quantizer Frequency Weighting Filter ables and considering a moderate number of future values
d:)f c. For this purpose, it is convenient to characterize

as the output in a state space representatidiof

[K])
[K].

Figure 8: Scheme to generate the frequency weighte
quantization error sequeneg, [-].

zlk + 1] = Az[k] + B(c[K]
e, k] = Cxlk] +  c[k]

- (36)
porated by introducing a frequency weighted reconstruc- -

tion error sequence, denoted by This relation follows directly from{34). IL{36); € R" is

the state vector. Note that, due to the Markovian structure
of @8), at timek = ¢ the impact of the past trajectories of

¢ andu on future values oy, is exactly summarized by
means of the@resentstate x[k].

Given the above, we next replace the infinite horizon cost
function [3%) by thdinite horizon cost:

e (k] = Ha(2) (c[k] —ulk]), keZ, (33)

compare to[{7).
In @3), H, is a stable, causal, linear, time-invariant filter,
which can be characterized Vih

Hy(z) 21+ C(2I — A)"'B, (34) +N-1
Vn(0) 2 a"Pr+ Y (en,[k]). (37)
whered € R™" B ¢ R"¥!, ¢ € R'*” andn € N =t

is the state dimension, i.e. the order of the filtéy. This ] o ]
filter can, e.g., represent the typical low-pass filterzeid N @&4), IV € N determines the prediction horizon afds

in oversampled conversion, see e[@l [72], in order to deci-& 9iven positive semidefinite matrix.
mate the converter output. In audio applications it makes/Vith @ given and known current state valti¢] (see [3b)),

sense to choosH, as a psycho-acoustic model of the hu- Vn is a measure of the filtered distortien, over the pre-

man hearing, compare also with work In]73] 74]. diction horizon plus a measure of tfimal state, z[¢ +
The performance of the quantization process in Fig. 8 wil N]. These predicted quantities are formed based upon the
be evaluated by the measure model [3B). _ _
The finite horizon cosVy (¢) proposed in[[37) takes into
VA Z[eHd k)2 (35) account only a finite numbeY of constrained values. The

value of N determines the computational complexity re-
quired for the minimization oV (¢). This should be com-
The costlV/ pena”zes the distortion introduced in the con- pared with the infinite number of decision variables in the
version process in a frequency-selective manner. original costV. Using a finite horizonV also reduces the

If the generalized scalar quantizer in FIg). 8 is designed to'@quired pre-viewing of to N — 1 samples. SinceV is a
minimize the performance meastie then its quantized design parameter, it can be chosen so that the minimization
outputu will approximate the input, while the un-filtered ~ ¢an be carried out on-line.

quantization errorg — u, will tend to have a spectrum sim-

ilar to that of the inverse of the filteil ;. Thus, the method Moving Horizon Approach As noted above, the opti-
will shape the quantization noise spectrum, just asihe  mizertoVy (¢), sayu}, contains a feasible output sequence
converter discussed in Sectidn 6 does. for time instants! < k£ < ¢+ N — 1. Thus, in princi-
Unfortunately, minimization of” by using expressiofi.(B5) ple, one could think of an implementationblocks where

is not possible in practical applications, due to the com-the minimization is carried out every sampling instants.
plexity of solving the associated combinatorial optimiza- Unfortunately, the last few elements @f depend only on
tion problem. Furthermore, in the general case, an optimah small window of the filtered distortiom;;,. To improve
guantizer would need tpre-viewthe entire signat. This performance, the multi-step optimal converter utilizelyon
is clearly unsuitable for on-line applications. thefirst element ofi}, sayu*[¢] € U. It becomes thé-th
element of the converter output sequence, by setting:

kEZ

7.2 Multi Step Optimal Converter

In order to obtain a more practical method to minimize the ull] — u*[f] (38)
cost in [39), it is convenient develop a recursive conver-

sion method, which can be implemented on-line. For thatltis also utilized to update the state accordindid (36), i.e
purpose, we will first introduce a cost measure over a fi-
nite horizon, to deploy later the conceptrobving horizon
approximation see[[68].

z[l + 1] = Az[l] + B (c[f] — u*[{]). (39)

At the next sampling instant, this new state value is used

16 Here, and in the remainder of this paperdenotes the forward 1O minimiz? the cost/n (_g + _1), yield_ing ull + 1.]- This
shift operatorzv[k] = v[k + 1]. procedure is repeatedi-infinitum As illustrated in Fig[P




for the caseV = 3, the prediction horizon of the criterion of how sampling-reconstruction strategies interact with a
Vn (k) moves (slides) forward as increases. The pastis given quantization method in terms of the resulting, over-
propagated forward in time via the state sequendus,  all reconstruction error. Furthermore, most literatura-an
yielding a recursive scheme. lyzes the performance of quantizers in terms of how close
The resultant architecture defines the MSOC. It constituteghe input analogsamplesare approximated by the out-
an analog-to-digital converter architecture which optiesi  put, quantizedsamples and not by comparing the ana-
the frequency weighted conversion distortion, based uporog, continuous-time underlying signal entering the sys-
Model Predictive Control principles. tem against the analog, continuous-time reconstructed sig
) nal that comes out of the reconstruction stage of the sys-
Horizonatt tem. Accordingly, performance is most often measured by
e the ¢2 norm of the sample approximation error, sgd (21).
Similarly, traditional works on sampling and reconstruc-
ult - 1}\ tion theory build their analysis based first upon ideal, non-
l quantized samples, incorporating later the effect of quant
| i i i ' —sk zation viewed as the corruption of ideal samples by white
-1 ¢ £+1 £+2 additive noise. Although it has been shown that this white-
Horizonat/ +1 noise model of quantization is indeed accurate for small
I ' U gquantization steps and input samples whose PDF satisfies
ulf] —_ \ certain rather weak requirements, it is certainly not accu-
ull — HW rate, for example, when quantization steps are large, or
when feedback structures are deployed. As presented in
] Sectiongb anfll 7, it is often the case that quantization noise
is deliberately made non-white by the quantizer so as to
minimize a frequency weighted measure of the reconstruc-
tion error.
) ) _ Within the setup depicted in Fif] 3, we aim to present in
Interestingly, it has been shown thatthe MSOC with=1 ;5 section some results and additional insight related to
andP = O reduces to th&A converter, se¢ [T1]. However, he joint problem of designing systems that make use of

itis easy to see that, in general, larger valuesNqurovide  {he pre-filtering, sampling, quantization and reconstouct
better performance, since more data is taken into acco“%aradigrﬁﬂ.

in the decision process of allocating scalars frorno the
elements in the sequenee In fact, one can expect that, 8.1 Decomposition of the Reconstruction Error

if Vis chosen large enough relative to the time scale Ofrpg Hjlbert spaces model of the sampling and reconstruc-
Hg, then the effect ofi[(] on ey, [j] for j > £+ N willbe o process described in Sectih 3 leads to a somewhat
negligible and the performance of the MSOC will approach jyia| but nevertheless important result: it allows for a
that obtained if the infinite horizon measure Bfl(35) were gecomposition of the final reconstruction MSE between
to be minimized directly (which, for the reasons explained o analog input and the analog output (see Fig[B)
abovg, is impracticgl). This asymptotic behaviour has beerys 4 sampling-quantization-reconstruction system into tw
experimentally confirmed, see [71]. . terms. The first term corresponds to the error due to the
In summary, the prediction horizali allows the designer «gnaces mismatéhi.e., the non coincidence of input and

to trade-off performance versus on-line computational ef-, 1t signal spaces. The second error term comes from the
fort. Interestingly enough, excellent performance caerft - geyiation of the discrete-time processing (both linear and
be ach|eveq with relatively sm_all horlzon§ (see, e@l_,)[,?l] non-linear) from the optimal mapping between input and
thus rendering the scheme quite easy to implementin pracsiput vectors in the sampling and reconstruction spaces,

tical cases. respectively. The following proposition formalizes this
Another advantage of the MSOC when compared to thegyegs-

YA converter resides in that the matdxin @4) can be
designed to ensurgability like properties of the MSOC,

CS1 0 041 642 43
Figure 9: Moving horizon principle = 3.

Proposition 2. Let(:) € L? be the impulse response of

see([71]. the reconstruction filter?, such that{Ty,}, ., is frame
for W £ span{T}.1},,, and letr be the sampling inter-
8 SAMPLED-DATA QUANTIZATION val. Then, the mean square reconstruction error between

any input signale € L? and an approximatiom € W

Given that digital signal processing systems have to inter ,
g gna’p gsy generated by the reconstruction stage can always be de-

act with the real, physical world, the design of a quan-
tization scheme should take into account the sampling
(Contmuous to dlscrete-tlme) and reconstruction (dmre framework, such as sparse representationd 145, 76], neaflreconstruc-

to continuous-time) stages k_)etween Whiph it is tq be in-¢on [57,[32], sub-band codind 77 P01 78,1 36] and threstwhssing
serted. Unfortunaly, there exists only partial undersitggnd  quantization[[65.66], are not discussed here.

17 Other approaches to the joint problem which fall outsides thi



composed as follows As described in Sectidn 4.2, the generation of the optimal
output Py o can be accomplished by applying the pre-

~12 2 ~112
la—allf. =lla = Byalle +[[lPwa—alz, (40)  fame operator associated with{7},, ¢}, ., to the se-

whereP)y a is the orthogonal projection af onto. quence of scalar%(TkﬂL, a)} ,l.e.
kEZ
Proof. Definew £ a — Py, a. Then we can write Pya=0Va, VYael?
lla — a||2L2 ={a—w—Pya,a—w— Pya) where U* is the analysis operator associated to

{TszZ}}k . the canonical dual frame of7}, ¢}, ;
S

_ (see Definitiol7 in the Appendix). We will denote this
Since(a — Py a) € W+, and because € W, we have  optimal, un-quantized sequence of samples by
that(a — Pyy a,w) = 0 (seel@D)), andT40) follows.
0 v = (e 2 {Trdh )} . (@3)

Corollary 1. From PropositioR, it follows that for any

a € L?, choice of quantization scheme and/or discrete
time processing, the continuous time reconstruction error
is lower bounded by

=lla— Pwalj: —2{a — By a,w) + ||z

It is clear from the above that any quantization algo-

rithm that attempts to minimize the continuous time error

| Py o — @l|3. needs to be able, in the first place, to obtain

thetargetsequence:® in @3). From the results presented
lla — dHQm > |la — Py a||2L2 (41) in SectionZP, this implies that the first necessary condi-

tion for the feasibility of optimal quantization is that sam

We emphasize that the lower bound [0(41) correspondsyjing and reconstruction stages be matched for orthogonal

to the minimum continuous-time error attainable #yy  (\SE) reconstruction.

discrete-time scheme, once the output space is given, evefie now suppose that the quantizer has access tthen

if and no quantization is applied to the samples. the problem of optimal quantization is that of choosing the

From Propositior[]2, it is clear that the performance of pptimal quantized sequeneg, defined as

discrete-time processing (e.g., discrete-time filtering a

quantization) should be evaluated in terms of the second uw*=arg min |[Pya-— \IquQLz (44)

term of the right hand side ofT#0), that is, tfi& norm ulk €W, VhEZ

of Py a — a. In relation to the design of quantizers, this The solution tol[24) requires one to solve a continuous-time
gives rise to the question of what information is needed bygptimization problem with discrete-time, quantized deci-

. ) P ~112 . . . . .
a generalized scalar quantizer to minimjz8y a — al|7..  sion variables. It is shown i [r9] that this can be con-
We have addressed this questior[in [79]. A summary of theyerted into an equivalent discrete time optimization prob-
analysis and results therein is presented below. lem. More precisely,
8.2 Optimalit 2 ° 2
prmaTy | P o = Wl = 9 (u® = )72

As noted above, the reduction of the continuous time MSE o o
. . . S ={(U(u—u®), U(u—u’)) (45)

by discrete-time processing takes place by minimizing the . ) 5

second term on the right hand side [0fl(40). For the general = (u—u®, U (u—u’))e

system under study (see FIg. 3), the signal to be approx- w2 9 - .
imated is actually: convolved withh, € L?, the impulse The operatol™W: (% — (" is characterized by th@ram

) matrix (see [[8D, sec. 3.5]) of the reconstruction frame,
response off: g ) 4
which is defined element-wise as

a(t) £ (axh)(t), VteR, (42) o\ = (Tt Tt o, k€
gk \LgTVs LkT 2, )

as shown in Fid0. ) . . _ . .
Defining)\ as the impulse response®f the approximation This matrix allows one to re writd_(!5) in matrix notation

of o generated by the system becomes as
a(t) 2 (uxp)(t), VicR 1Pw o = W[}, = (i — @) Gy (i — i@°)  (46)
where is now redefined as the impulse response of thewhere« and«® are the vector representations of the se-
filter W £ HR,i.e.. guences: andu®, respectively.
. The direct consequence bf{46) is that a quantizer can deter-
P(t) = (Axh)(t), VteR, mine the optimal output sequence without full knowledge

of the inter-sample behaviour of the impulse responses of
the reconstruction filter. Indeed, quantization perforoan
can be measured by thveeighted/? norm implicitly de-
fined in [4®). Note that the design of an optimal quantizer
W £ span{vy} ey is not possible without knowledge of the matf,,.

see, FiglIl0. The impulse responséiofdetermines the re-
construction framg. }, ., which spans the reconstruc-
tion Hilbert space
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Figure 10: The sampling, quantization and reconstructiatesn from Fig[B revisited. Impulse responses and frame
operators are shown for each filter.

8.3 Moving Horizon Conversion In the following, we will briefly describe how concepts sur-
rounding sampling and quantization translate into the de-

In general, minimization of{46) would require one to eval- '
sign of these types of control systems.

uate it for every sequendgu[kl}, ., , ulk] € UVk € Z,
that can be generated by the quantizer. This optimization

programme, however, becomes intractable for sufficientlySampling and Reconstruction In the design of a sam-
long sequences. Given the similarity bf{46) aid (35), onepling/reconstruction scheme for a control system, tradi-
can use the ideas introduced in Seclibn 7 and optimize ovetional reconstruction criteria should be complementeti wit

a short moving horizon of samples. Details can be found inmore appropriate performance notions. Indeed, reconstruc
[B11,[79], where a sampled-data multi step optimal converteition quality is only of secondary importance. The main
is proposed. Preliminary results show that, interestingly objective is measured at the plant output. In particular, as
significant distortion reduction is obtained even when con-shown in [88[5] for NCS's, open loop performance mea-
verting non band-limited signals. Indeed, since the focussures should be replaced by closed loop ones. This can
is on the reduction of the total continuous-time reconstruc be achieved through consideration of frequency weighted
tion error, if the sampling rate is lower than the Nyquist measures such d9 (7).

rate, the resultant converter will attempt to reduce noy onl

quantlz_atlon_ noise, but also aliasing noise. Furthernawe, Quantization Interestingly, the noise shaping ideas de-
the horizon is ma_de Iarger_, the output of the convert_er aPscribed in SectionEB-8 can also be applied to control sys-
proaches the optimal feasible output sequence, defined ifms where signals are quantized: see, &.9., [70]. For exam-
@2). ple, when focusing on the design of controllers for plants

with quantized inputs, a key point resides in realizing that
9 APPLICATIONS TO CONTROL the AD-conversion scheme of Fig. 3 is related to a quan-
In previous sections of this work we have illustrated that tized control system with plarff: The plant inputu[k] is
the power of feedback can be used in the design of AD-0 be chosen such thatthe plant outlit(¢) tracks the ref-
conversion schemes. In particular, we have shown in Secérénce signala(t). Thus, performance can be measured
tions7 andB that careful deployment of elements of ModelVia the frequency weighted error signaj (t), see ) and
Predictive Control may lead to high-performance conver-&lSo (35).
sion techniques. The purpose of the present section is t&etails on how to apply principles of Moving Horizon
highlight the role played by sampling and especially quan-to NCS’s can be found, for example, in[84]. It is inter-
tization in feedback control applications. gsting to note that _the framewor!( can also be enriched to
Efficiency in data representations plays a central role jn an incorporate dynamic scheduling into NCS's. The resultant
control system where parsimony aspects need to be takefi€thodology can be regarded as incorporating sampling

into account. Thus, quantization and sampling are worth@nd quantizatiorn demancand is, thus, highly efficient
investigating, for example, in the following situations: from a data representation perspective, 5ek [84].

e when signals need to be transmitted over a digital net-
work, i.e., in Networked Control Systems (NCSF) [3, 10 CONCLUSIONS
[82,[4]; This paper has reviewed basic results and methods related
to the process of sampling, quantization and reconstmctio
e when plant inputs need to be quantized (e.g., relayof scalar signals. With the introduction of a frame theareti
feedback, on-off control, digital control, or also due viewpoint, three notions of sampling and reconstruction
to the presence of a human operafar)[70]; have been discussed. We have described several gen-
eralized scalar quantization schemes, and have showed
e in large scale systems, such as those related to miningpow control theory has contributed to signal processing
operations and supply chain management. theory. Furthermore, we have given insights into the joint



problem of sampling, quantization and reconstruction, andt is easy to verify that
have outlined how these stages interact. Finally, we have N
examined the role played by sampling and quantization in (B,wyr =0, VBEW™, Vw € W. (50)

control systems.

A APPENDIX

A.1 Background on Hilbert Spaces, Riesz Bases and
Isomorphisms

Definition 2 (Hilbert Space) Let W be a vector space
with an inner product(,-),y and the induced norm
Il = +/(,-)w. If such a space is complete under its
norm then it is eHilbert Space

Definition 3 (Riesz Basis) A sequence of vectors (func-
tions) {¢r } ek, K C Z, in a Hilbert spacéV is a aRiesz
basisfor W if and only if W = span{¢. } .o, ' and there
exist two constant8 < m < M < oo such that|

Z clk]vx,

keK

2
Veel? mellz < <M el (47)

w

This and other equivalent definitions can be foundir [80
Theorem 3.6.6] .

Remark 2. From Definitior B one can observe that:

e The elementgy, in (@) are orthogonalf and only if
m = M andorthonormalf and only ifm = M = 1.

e The lower bound irf@34) is equivalent to saying that
{¥x } ez, is aset of linearly independent vectors.

e The higher bound in @d) guarantees that
> wek clk]vr will be bounded for any choice of
ce .

A.1.1 Orthogonal Projection

If W C H is a Hilbert space, then thHsest approximation

in W (in the sense of the norfn|,, = \/(-,-)» ) of any
h € H is given by theorthogonal projectiorof & onto W,

denoted byP)y h, and defined as the operator

Py :H—W; Pyh#£arg miwglv [h—wll, (48)
we

The orthogonal projection from a Hilbert spagé onto
W C H implicitly defines thenull spaceof W:

Wt 2 {heH: Pyh=0}. (49)

18 The span of a set of vectors is the vector space consistintj of a
possible linear combinations of the set. The closed spattewiasspan,
of a set of vectors, is thelosureof the span of these vectors. Open and
closed spans of a finite set of vectors are equal. Howevepka and
closed spans of an infinite set of vectors are in generalrdiffe The
closure of the span becomes mandatory in such cases, sibegtldpaces
are closed spaces.

19Throughout this sectiork C Z.

If {vx},cx, IS an orthonormal basis 0¥, then the orthog-
onal projection operator can be explicitly written as

Pyh=> (hvg)nvk, VheH (51)
keK

Orthogonal projection permits elegant solutions to some
otherwise complex optimization problems in functional
analysis. This makes Hilbert spaces and operators a natural
framework for studying the problem of efficient sampling
and quantization.

A.1.2 Isomorphism

A fundamental property of Hilbert spaces and operators is
that they are able to define a precise form of equivalence
between two different Hilbert spaces. It is callsdmor-
phism two different Hilbert spaces aisomorphicif they
have the same dimensi#®h An isomorphism is indeed any
linear invertiblé!| operator from one space onto the other.
Of particular interest for our analysis are the isomorplsism
'between any separable Hilbert spade ¢ L? (function
space) of dimensiofK|, whereK C 7, andR/®I (Euclid-

ian space). Such an isomorphism can be stated by consid-
ering any orthonormal basis ¥, namely{v;}, .y, and
constructing the associated analysis operator

T W= REL TR £ {(w, V)W } pex (52)

The analysis operatdf* defined in [BR) is amnitary iso-
morphism This means thahe respective images iR/¥!
throughY* of any group of vectors iV preserve their re-
spective norms and relative orientatigne.

(YTw1, Twa)pe = (w1, wa)w (53)

This remarkable property of isomorphic spaces allows one
to study the relation between elements of a Hilbert space by
looking at their images throudhi*in another, more conve-
nient Hilbert space. Actually, one can argue that all digita
signal processing (including digital control) is made poss
ble because of the existence of isomorphism between signal
spaces and subspacedaf

A.2 lllustrative Example

Some of the basic concepts of Hilbert spaces of signals and
bases presented so far will be illustrated by the following
simple example.

Let W be the space of all real valued function§&) satis-
fying the following conditions:

e w(t) is continuous.

e w(t)=0,Vt¢ I£]0,37].

20 For the case of infinite dimensional spaces, all separatseesp
(i.e., spaces with infinite but countable dimension) arenisiphic.
21 Hence the need for both spaces to have equal dimension.



. 037 w?(t)dt < oo, Vs € S (i.e.,w(-) is square inte-  Consider now the case of a functidit), ¢ € R, that be-

grable ovetl). longs to a spacé( C L?, such thady C H andh ¢ W.
An example of such a function is shown in Higl 12.a).

e The derivatives ofu(t) are constant over any of the
openintervalg, = (kr, kT +7),k =0,1,2. H H W

Fig. 1 a) shows three functionsy (t), w(t), ws(t) that h(t) ”2#_____
belong to this space. h Loz

(Pw h)(t)

t
37

R2 0 T 27

do T * w1
sy L
t V (a) (b) (©)
T . : o
~5_ L1, Figure 12: a) Orthogonal projection onté C H. a) Func-

dy :I<S7U1> 4 tion h(t) belongs toH. b) Relative positions betweén

do = (5,v2) v1, vy and Py, h represented in an isomorphic Euclidian
(@) (b) (c) space. ¢) Orthogonal projectionft) onto}V in function
representation.

0 T 2T

Figure 11: Example of a functional space, an orthonormal
base and a unitary analysis operator. a) Functionsws . . o .
andws; belong to the Hilbert spack/; b) The functions ~ The magnitudes and relative directionsholith respect to
’ R 2 .
v1, v € S constitute an orthonormal basis #4r; c) Image ~ @n orthogonal basis farV such as{vi };,_; are shown in

of the functionsw;, w, andws in R? through the analysis the 3 dimensional representation of Higl 12.b). Here it can
operatory™, be seen that is outside)V but has a non zero orthogonal

projection ontoV. This orthogonal projection is the clos-
With the addition of the standai? inner product, defined est vector (h in W, in accordance W'IHIZ_S)’ a_md IS given
a<d by &1). Consequently, the best approximation (inZZn

sense) of, in W is, expressed as a function of time

oo

(wy,wa) 2 = / wy(t)wa(t)dt, YweW  (54) (Pw h)(t) = (h,v1) 2 v1(t) + (h, v2) 2 V2(t)

- FigurelTI2.c) shows a plot ¢y ) (t).
W becomes a Hilbert space. The inner prod[ict (54) aIsoA

defines a norm iny, given by -3 Frames
N Despite the computational convenience of bases, one
w2 = V{(w, w) 2 often needs to study spaces generated by a set of linearly

dependenvectors (over-complete basis). The concept of
frames, introduced by Duffin and Schaffer][85], allows one
to analyze such cases. Situations with over-complete bases

. __arise in practice not only by chance. It has been shown that
rameters, such as, for example, the values of the funcﬂonaﬁe redundancy of frames is beneficial, for it can reduce

evaluated at and27. A basis for a Hilbert space of di- . . .
mension two contains two elements. Figkt® 11.b) shows éhe effect of errors in the expansion coefficients, §eé [39]

pair of orthonormal functions,, v in YW which form an and Appendl_m. The definition and some properties of
. frames are given next.

orthonormal basis forV.

Figure[Il.c) shows the images of, w2, w3, v1 andwvs

through the analysis operat®i* (see [BR) ) inR*. As ex-  pefinition 4 (Frame) A sequencey}, . of elementsin

pected, the images of thg orthonormal fungti@mandvz a Hilbert spacéV is aframefor W if there exist constants
are orthonormal vectors iR®. How “close” isw; tows 4 B > ( such that

in their space’s norm?. Since the analysis operatois
a unitary isomorphism betweéty andRR?, we have, from Allw|? < Z [(w, )P < Bllwl|®, YweW (55)
&) = |

[wi — wa|72 = | Twr — YTws ||l =

It is easy to show thalV is a two-dimensional space.
This can be intuitively verified by noting that any func-
tionw € W is completely determined by exactly two pa-

((wr,v1) = (w2, v1))? + (w1, v2) — (wa,v2))”
) o o ) The largest numbed and smallest numbés that satisfy
i.e., [lwy — wel| 2 is given by the Euclidian distance be- ©g) are calledrame bounds Some important remarks
tweenT "w; and T ws. about frames are:

22 since all the signals considered here are real, and for dase o . .
tation, we will write the inner products 62 and in¢2 without complex o If {1x},cx is a frame for a Hilbert spackV, then
conjugation of one of the arguments. Span{z/)k}keK =W.



e Aframeis said to béghtif one can choosd = B as Remark 3. The analysis operato¥* is theadjoint of ¥,
frame bounds. If A=B=1, itis calledRarseval frame i.e., it satisfiesw, ¥c) = (V*w,c), Ve € R(¥*), Vw €

. w
o If a frame ceases to be a frame when an arbitrary ele-
ment is removed, it is called axact frame An exact

frame is equivalent to a Riesz basis. Definition 7 (Dual Frame) Let {x. },.x be a frame for a
, . , Hilbert spacelV. Another frame folV, namely,
o Aframe{yy}, i inwhich |y | = 1forallk e Kis o satispfies Yilgitnex
called anormalized frame
o If the elements of a normalized frame are linearly in- w=Y (wgi)s, VweW (57)
dependentthed < 1 < B (see[[39]). kel

¢ A frame with linearly dependent elements is said to be's said to be alual frameof {yy } i IN W

redundant

As can be seen i {b7), a dual frame provides an explicit
method for representing any signal € W in terms

of coefficients (samples), from whicly can be exactly
recovered through the synthesis frafng. }, .-

e The upper frame bound® of a frame {4y}, is
greater thamaxyex ||[¢r]*.

Theredundancyf a frame with|K| vectors for a spacke/

is defined as the ratio Definition 8 (Frame Operator) The frame operatoof a

» K] frame {1y}, i is defined as

 dimW

Itis easy to show that, for a normalized tight frames A,

whereA is the lower frame bound ifL(b5).

Another important property of the elements of a frame

{¥x} ek is that they are also Bessel sequengee., they

satisfy Lemma 2 (from [80, Lemma 5.1.5]) Let {9}, . be a
frame with frame operato$ and frame boundd, B. Then

Z clklir

r

StH—H, Sh=UVh=> (hy)ye (58)

keK

2

the following holds:
< BHC”?% Ve € 0?2 (56) e following holds

keK w (i) Sis bounded, invertible, self-adjoint, and positive.
whereB is the upper frame bound ii{55). (i) {S™"¢1},, is aframe with bound8~', A~'. The
From remarR and the above properties, orthogonal bases  frame operatorfor{S L) } is g1
kSrez
are a special type of Riesz basis, whilst Riesz bases are ex-
act frames. Thus, by basing our analysis on frames, one is _
also including orthogonal and Riesz bases as special caseSince|¥w|* = (Sw, w), one can derive from Lemni 2 ,
&3) and[(Bb) that:
A.4 Frames and their Operators
LetH be a Hilbert space, and’ = span{ty, } o € H- Alwll < [[Swll < Bw] (59)
B w|| < ||S7 w|| < AT ||w| (60)
Definition 5 (Synthesis Operatar)Thesynthesigor pre-  The frame operator defined iB{58) is of particular impor-
frame) operator for a frame{t)y. }, o is defined as tance for the problem of sampling and reconstruction, since
it provides an explicit way to obtain a dual frame (€4 (57)).
UM, ke = Z c[k] ¥ More precisely, withS as defined in[{38), i{vr }, .k is a

kER frame for)V, then the frame S~ 'y }, _, is a dual frame

Since every frame sequence is a Bessel sequenc&{$ee (56Dr {Ur}pex INW, ie.
the synthesis operator for a frame with frame bouAd®

is bounded, with operator norfh|| = B, i.e., B is the w = Z(w,S‘lwkwk, Yw e W (61)
minimum constant such thic|},, < B | ¢||7 , Ve € 2. keK

and
Definition 6 (Analysis Operator) The analysisoperator w=> (w,¢x)S "k, YweW (62)
for a frame{+.}, i is defined as keK

The frame{S—lwk}keZ is called thecanonical dual frame
of {¢r},ex IN W. This is a reciprocal relation, i.e.,

{¥x} ek 1S the canonical dual O{S*lwk in W as
well.

U H— (2, U*h= 1 V) b ek

}keZ



A.5 Noise Reduction by Redundancy of the Frame

If the frame coefficientd (w, 1r) } i in @) were con-
taminated by additive noisgk], £ € K, then the recon-
struction formula[{&2) would yield a reconstruction error

we 237 ((w, i)+ ek]) S —w =3 e[S

keK kekK
(63)

Early referencesto the fact that the redundancy of the frame
reduces the reconstruction error were provided[id [24], [9]
whilst proofs can be found i [82] and139]. Due to the im-
portance of this property of redundant frames, we present
next an adaptation of the result [n]32], which is also illus-
trative of the importance of the frame bounds.

(5]

(6]
[7]
(8]

(10]

Proposition 3. Let{¢},.x be a frame of unit-norm vec-

tors with frame bound8 < A < B, and lete[k], k € K [11]
be a sequence of independent random variables with mean
zero and variance. Then the mean square valueafin

®3) satisfies (12]

(13]

Proof. If e[k], k € Kis a sequence of independent random [14]

variables with zero mean and variance we have

[15]
2

E{llwel2] = B || eldls ™| | =0 Y570l g
keK kekK

(64) 7

From [&D) one can derive that [18]
B2 luxl* < [[S™ e |” < A7 [li])®

which simplifies to [19]

B2 < || || < A2 (65)

(20]

becausg ..}, i is @ normalized frame. CombininQ164)

with ®&3) gives the result. O [21]

Corollary 2. If the frame in Propositiolld3 is also tight, [22]

then

(dim W) o2
r

E [Jlwel ] 23]
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