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Abstract— This paper presents novel results on Perfect Re-
construction Feedback Quantizers (PRFQs), i.e., noise-shaping,
predictive and sigma-delta A/D converters whose signal transfer
function is unity. Our analysis of this class of converters is based
upon an additive white noise model of quantization errors. Our
key result is a formula that relates the minimum achievable
MSE of such converters to the signal-to-noise ratio (SNR) of
the scalar quantizer embedded in the feedback loop. This result
allows us to obtain analytical expressions that characterize the
corresponding optimal filters. We also show that, for a fixed SNR
of the scalar quantizer, the end-to-end MSE of an optimal PRFQ
which uses the optimal filters (which for this case turn out to be
IIR) decreases exponentially with increasing oversampling ratio.
Key departures from earlier work include the fact that fed back
quantization noise is explicitly taken into account and that the
order of the converter filters is not a-priori restricted.

Index Terms— Differential pulse code modulation, optimiza-
tion, quantization, sigma-delta modulation, source coding.

I. INTRODUCTION

The term Feedback Quantizer (FQ) refers to a class of
Analog-to-Digital converter architectures wherein a scalar
quantizer is placed within a linear feedback loop. Well known
examples of FQs include ∆-Modulators, DPCM converters [1]
and Sigma-Delta modulators [2]. The latter schemes have been
very successfully applied in a number of areas, including
audio compression [1], [3], oversampled A/D conversion [2],
[4], sub-band coding [5], digital image half-toning [6], power
conversion [7], and control over networks [8].

Fig. 1 depicts a general FQ configuration. In this scheme, Q
may take the form of a non-uniform or a uniform quantizer [9],
the latter being either dithered or undithered1 [10].

The filters A(z) and B(z) in an FQ system allow one to
exploit the predictability of the input signal so as to reduce
the variance of {v(k)}k∈Z. When compared with simple PCM
conversion, this flexibility allows one to use a scalar quantizer
with a smaller quantization step. The error-feedback filter
F (z) opens the possibility of spectrally shaping the effect of
quantization errors on the output. In this way, one can allocate
more of the quantization noise in the frequency bands where
it is less harmful from a user’s point of view. Accordingly,
it is convenient to use a frequency weighted error criterion,
via an error frequency weighting filter P (z), and to focus on

1In this case, the block Q in Fig. 1 represents the scalar quantizer including
the dither signals.

the frequency weighted MSE (FWMSE) (see discussion in [3],
[11]).

For the sake of generality, we consider the possible use
of a clipper before Q. This device limits the value of the
quantizer input signal v′ so that v′ = v if |v| ≤ s, and
v′ = v

|v|s if |v| > s, where s > 0 is the saturation threshold
of the clipper. This clipping technique can be used to keep
Q from overloading, which is helpful in reducing limit-cycle
oscillations (idle tones) in an FQ with high order filters, as
proposed in [4]. On the other hand, if we chose s to be
sufficiently large, then v′ = v, and the clipper has no effect
on the system.

If the characteristics of Q and the spectral properties of the
input signal x are known, then the design of an FQ converter
that minimizes the variance of ε amounts to choosing the filters
A(z), B(z) and F (z).

It is often desirable that a converter is transparent to
the system in which it is inserted. This corresponds to the
widespread paradigm in which the coding scheme adapts to
the application that employs it, without need to modify the
latter. A transparent converter is one whose signal transfer
function (i.e., the transfer function from input x to output x̃) is
unity at the frequencies of interest. The design of such Perfect
Reconstruction Feedback Quantizers (PRFQs) constitutes the
main topic of the present work. PRFQs are characterized by
the property that, in the absence of quantization effects, there
is no frequency weighted reconstruction error, i.e., P (z)x̃ =
P (z)x. If we denote the power spectral density (PSD) of x by
Sx(ejω), then it can be seen from Fig. 1 that the latter holds
if and only if

A(ejω)B(ejω) = 1, ∀ω such that Sx(ejω)P (ejω) 6= 0, (1)

Thus, in the design of an optimal PRFQ converter, only two
degrees of freedom are available: the filters F (z) and A(z)
(or, alternatively, F (z) and B(z)).2

To the best of our knowledge, existing results on optimal
filter design for PRFQ converters either consider finite order
filters [2], [12], [13], assume (or require) that the variance of
the signal y , F (z)n is much smaller than that of v [1],

2 We note that this reduction in the number of degrees of freedom (in
comparison with an FQ with no perfect reconstruction constraint) by no means
makes the design optimization problem easier to solve. Moreover, perfect
reconstruction constitutes an additional constraint that can not be added “a
posteriori”, i.e., after the optimization is completed.
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Fig. 1: Feedback Quantization system and frequency weighting filter.

[4], [14], [15], or have a heuristic component in the opti-
mization [2], [3], [13], [16]–[19]. The only explicit analytical
expressions currently available for the optimal performance
(and corresponding filter frequency responses) of a PRFQ
converter are those given in [14]. However, the assumption
of negligible fed back quantization errors used in [14] makes
these filters sub-optimal. Indeed, as we will show in the sequel,
there exist situations where the filters proposed in [14] yield
large fed back quantization error, even when a fine step scalar
quantizer is used. In these situations, not only is the main
assumption in [14] violated, but also an FWMSE much larger
than predicted can result due to excessive quantizer overload
(see, e.g., [2], [13]).

In the present work, we will show how to design optimal
PRFQ converters. For this purpose, as in [12], [14], [16]–[18],
we model the scalar quantizer as a linear device that introduces
additive white noise whose variance is proportional to that
of the signal being quantized. A key departure from [14],
however, is that we explicitly take into account fed back quan-
tization noise in the feedback loop. Our main contributions are:
i) We derive one-parameter equations that relate the minimum
achievable frequency weighted MSE to the signal-to-noise
ratio (SNR) of Q; ii) We show, within our model, that the
frequency weighted MSE in an optimal PRFQ where the SNR
of Q is fixed decreases exponentially with oversampling ratio;
and iii) We derive equations that characterize the optimal filters
for a PRFQ. Our results can be applied to any given number
of quantization levels, and to almost arbitrary input spectra
and frequency weighting criteria.

The remainder of this paper is organized as follows: In Sec-
tion II, we present our analysis model for PRFQ converters. In
Section III, we formulate the associated optimization problem.
Section IV presents a one-parameter characterization of the
solution. In Section V we discuss the main properties of an
optimized PRFQ. The case of oversampled FQ is analyzed in
Section VI. Section VII discusses the relationship to previous
results and highlights the importance of taking account of
fed back quantization noise. Section VIII presents simulation
results. Section IX draws conclusions. (For ease of exposition,
all proofs of our results are included in the Appendix.)

Preliminaries and Notation

We write “iff” as a short hand expression for “if and only
if”. The sets of all complex-valued square integrable and
absolutely integrable functions on [−π, π] are denoted by L2

and L1, respectively. Given f(ω), g(ω) ∈ L2, we adopt the

standard inner product 〈f, g〉 , 1
2π

∫ π
−π f(ω)∗g(ω)dω, where

(·)∗ denotes complex conjugation. We denote the correspond-
ing 2-norm as ‖f‖ ,

√
〈f, f〉 . We use z as the argument of

the z-transform. If F (z) is a transfer function, then we use
the short hand notation F to refer to the associated frequency
response F (ejω). If I is a set, then we write “a.e. on I” (almost
everywhere on I) for “everywhere on I , except on a zero
Lebesgue measure subset of I”. We use σ2

x to denote the vari-
ance of a given wide sense stationary (w.s.s.) random process
{x(k)}k∈Z, having PSD Sx(ejω). We recall that if x has zero
mean, then σ2

x , E
[
x(k)2

]
= 1

2π

∫ π
−π Sx(e

jω)dω = ‖Ωx‖2,
where Ωx is a frequency response satisfying

∣∣Ωx(ejω)
∣∣ =√

Sx(ejω) , ∀ω ∈ [−π, π]. For any functions f(ω) or F (ejω)
we write Nf and NF to denote the sets {ω ∈ [−π, π] : f(ω) =
0} and {ω ∈ [−π, π] : F (ejω) = 0}, respectively.

To simplify notation, we introduce the operator (·)∼1,
defined as follows:

F (ejω)∼1 =

{
F (ejω)−1 , ∀ω /∈ NF
\ , ∀ω ∈ NF ,

(2)

where F : C → R is any given function and \ denotes any
arbitrary and positive bounded value. For later use, we also
recall the following definition:

Definition 1 (Almost Constant Function): A function f :
[−π, π] → R is said to be almost constant iff

∫ π

−π

∣∣∣∣f(x)− 1
2π

∫ π

−π
f(ω)dω

∣∣∣∣ dx = 0. (3)

N

II. PRFQ CONVERTER MODEL

In this section we discuss some of the main aspects of
feedback quantization. We also describe the analysis model
and the constraints to be considered later in the search for the
optimal filters.

A. Feedback Quantizer Equations

We begin by presenting the equations that describe the
behaviour of the PRFQ shown in Fig. 1.

1) Quantization and Clipping Errors: From Fig.1, the
quantization error n is given by

n(k) , w(k)− v′(k). (4)

Every practical scalar quantizer has an associated constant
V > 0 such that, if |v′| > V , then Q is said to be
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overloaded. When the quantizer is not overloaded, then n(k)
is only granular quantization error, namely %(k), which can be
bounded as |%(k)| ≤ %max, ∀v′(k) ∈ R, for some 0 < %max <
2V (see, e.g., [9]). For example, if Q is a symmetric, uniform,
non-dithered quantizer with N levels and quantization interval
∆, then one needs V ≤ N∆/2 in order to obtain %max = ∆

2 .
In general, we can write

n(k) = %(k) + τ(k), (5)

where

τ(k) , v(k)′ − v(k)′

|v(k)′| min{V, |v′(k)|}

is the overload error. Clearly overload errors are bounded as
|τ(k)| < |v′(k)| ≤ |v(k)|, but they cannot be bounded by a
constant unless v′ is bounded.

As outlined in the introduction, the clipper in Fig. 1 can
be used to keep Q from overloading. For simplicity, we will
only consider here two possibilities, namely, that s = V , or
else s = ∞. The former choice guarantees that Q does not
overload, since clipping error, defined as

ϑ(k) , v′(k)− v(k), ∀k ∈ Z, (6)

takes place instead. More precisely, if s = ∞ we have that
ϑ(k) = 0, and τ(k) = v(k) − v(k)

|v(k)| min{V, |v(k)|}. If,
instead, s = V , then the latter revert to ϑ(k) = v(k) −
v(k)
|v(k)| min{V, |v(k)|} and τ(k) = 0. A key point in using
clipping is that, unlike overload errors, clipping errors are not
fed back into Q through F (z). This helps to avoid large limit-
cycle oscillations arising from the overload ofQ, see [4]. Since
such oscillations are not part of the analysis model we will
use, their occurrence could increase the FWMSE significantly
above the value predicted by the model.

Using the above definitions, and from Fig. 1, we can write

w(k) = v(k) + n(k) + ϑ(k), (7)

which reveals that w differs from v by the sum of the
quantization and clipping errors.

2) Transfer Functions: From Fig. 1 and (7) we have that

v = A(z)x− F (z)n, (8a)
x̃ = B(z)A(z)x+B(z)[1− F (z)]n+B(z)ϑ, (8b)
ε = P (z)B(z)[1− F (z)]n+ P (z)B(z)ϑ. (8c)

Notice that these equations are exact and require no as-
sumptions on the signals involved. From (8b) one can see
that A(z)B(z) corresponds to the signal transfer function
(STF), from x to x̃, of the converter. Similarly, the product
B(z)[1−F (z)] is the transfer function for quantization errors,
usually referred to as the noise transfer function (NTF) of the
converter3. The term [1−F (z)] will play a crucial role in the
derivation of the optimal filters in Section IV.

3In noise-shaping and Σ∆ literature, where B(z) is typically a unit gain,
the term NTF is normally used for 1− F (z).

3) Stability: We say that a PRFQ is Bounded-Input-
Bounded Output (BIBO) stable iff for any input sequence x
satisfying ‖x‖∞ ≤ xmax <∞ all the signals in the converter
are bounded.

If s = V or if Q has infinitely many quantization levels,
then |n| ≤ %max, ∀k ∈ Z, and thus all the other signals in the
converter are bounded. On the other hand, if s = ∞, then v
can be written as

v =
A(z)

1− F (z)
x− F (z)

1− F (z)
w. (9)

If the quantizer has a finite number of quantization levels, then
w is bounded. If F (z) is stable and 1 − F (z) is minimum-
phase, then it follows from (9) that v is bounded. This in turn
guarantees that n and all the other signals in the converter are
bounded (see (4) and (8)). Summarizing, if all the filters in
Fig. 1 are stable, and if 1− F (z) has no zeros on or outside
the unit circle, then the resulting PRFQ is BIBO stable.

In addition, if A(z) and F (z) are stable, then the `∞ norm
of their impulse responses, namely A∞ and F∞, are bounded.
Thus, if there exists a bounded xmax > 0 such that |x(k)| ≤
xmax < ∞, ∀k ∈ Z, then a sufficient condition to ensure
τ(k) = ϑ(k) = 0, ∀k ∈ Z, is that V ≥ Vmin <∞, where

Vmin , A∞xmax + F∞%max. (10)

Thus, for a uniform quantizer with quantization interval ∆, it
suffices to have Vmin/∆ or more quantization levels in order
to avoid clipping or overload errors.

B. Assumptions

The assumptions associated with our PRFQ model are
described next.

1) Input Spectrum and Frequency Weighting: The error
weighting filter P (z) in Fig. 1 models the impact that re-
construction errors have at each frequency. This “performance
assessment” filter is application dependent, and is assumed to
be stable and given. The input signal {x(k)}k∈Z is a zero-
mean w.s.s. stochastic process4 with known PSD Sx(ω) =∣∣Ωx(ejω)

∣∣2 and finite power, i.e., ‖Ωx‖2 < ∞. In order to
simplify our subsequent analysis, we shall further restrict Ωx
and P (z) to satisfy the following:

Assumption 1: The product |ΩxP | is a piece-wise differen-
tiable function having at most a finite number of discontinuities
and satisfying

∣∣Ωx(ejω)P (ejω)
∣∣ < ∞, ∀ω ∈ [−π, π]. In

addition, |ΩxP | is such that one5 of the following conditions
holds:

i) There exists a constant gmin > 0 such that∣∣Ωx(ejω)P (ejω)
∣∣ > gmin, for all ω ∈ [−π, π], or

ii) ∃ω ∈ [−π, π] such that
∣∣Ωx(ejω)P (ejω)

∣∣ = 0. Fur-
thermore, if {Γi} denotes the set of non-contiguous
and non-overlapping intervals in [−π, π] such that∣∣Ωx(ejω)P (ejω)

∣∣ = 0 ⇔ ω ∈ ⋃
i Γi, then, for every

i, ∃ζi ∈ Γi such that
∣∣Ωx(ejω)P (ejω)

∣∣ is O(ω − ζi) as
ω → ζi. N

4This excludes, for example, sinusoids or constant inputs from the analysis.
5Notice that conditions i) and ii) can not be met simultaneously.
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We note that the above is a rather weak constraint, since
conditions i) and ii) include almost any product |ΩxP | of
practical or theoretical interest. In particular, condition i)
covers all the cases where the product Ωx(z)P (z) has no zeros
on the unit circle. In turn, condition ii) is satisfied if PΩx is
zero over any interval on [−π, π] having non-zero measure, or
if Ωx(z)P (z) is rational and has zeros on the unit circle.

2) The Quantizer: We shall focus our analysis on the effect
that granular quantization errors have on the FWMSE. For
this effect to closely represent the actual FWMSE, we need to
assume the following:

Assumption 2: The variances of overload and clipping
errors are negligible, i.e.,

σ2
τ ¿ σ2

n, if s = ∞ , or (11a)

σ2
ϑ ¿ σ2

n, if s = V. (11b)

N
In addition, and as stated in the introduction, we will adopt

an additive white noise model for n. This model is widely used
for the analysis and design of data converters (see, e.g., [1]–
[5], [12]–[14], [16]–[18], [20]–[22]), being usually described
as follows:

Assumption 3: The sequence of quantization noise
{n(k)}k∈Z is a zero-mean w.s.s. random process, uncorrelated
with the input of the PRFQ, and having constant PSD

Sn(ω) = σ2
n, ∀ω ∈ [−π, π],

where σ2
n is the variance of {n(k)}k∈Z. N

The above additive white noise model, although not exact, is,
in general a good approximation when a signal with a smooth
probability density function (PDF) is quantized with many
levels and negligible overload (in the sense of Assumption 2),
see, e.g., [2]. The model can be made exact, even for few
quantization levels, by utilizing a uniform scalar quantizer
with either subtractive or non-subtractive dither6, provided
quantizer overload does not occur, see [10]. As discussed
before, one way to achieve this is to use a quantizer with
a sufficiently large number of quantization levels, so as to
satisfy (10). In this case, if the quantization interval is ∆
and the dither sequence ν whitens n, makes n uncorrelated
to x when Q is not overloaded and is bounded as |ν(k)| ≤
νmax, then any number of levels greater than or equal to
(Vmin + 2νmax)/∆ will make Assumption 3 hold exactly. If
a smaller number of quantization levels are employed so that
V < Vmin, then the use of dither with the same characteristics
as before, together with clipping (i.e., setting s = V ), will also
make n satisfy Assumption 3 exactly.

Assumption 3 allows one to write the variance of {v(k)}k∈Z
as

σ2
v = ‖AΩx‖2 + σ2

n‖F‖2, (12)

see Fig. 1. This equation describes the effect of σ2
n on σ2

v

through the feedback path. However, if the scalar quantizer has
a finite and fixed number of quantization levels, then another
link between these two variances needs to be considered. In

6Here and in the sequel we assume the dither is such that n is white and
uncorrelated with x when Q is not overloaded.

order to model this relationship, we will use the fixed signal-
to-noise ratio model employed in, e.g., [12], [14], [16], [17],
[21]:

Assumption 4: For a fixed number of quantization levels,
the variance of quantization errors is proportional to the
variance of the signal being quantized, i.e., there exists γ > 0
such that

γ , σ2
v

σ2
n

. (13)

N
If no clipping is used (i.e., if s = ∞), then γ corresponds
exactly to the SNR of Q. If s = V , then γ is a good a
approximation of the SNR of Q when (11b) in Assumption 2
holds.

In our model, γ is assumed fixed and given. Strictly speak-
ing, γ depends on the PDF of {v(k)}k∈Z, on the number of
quantization levels of Q, and on how quantization thresholds
and levels are distributed along the dynamic range of Q.
In practice, for a given number of quantization levels, γ
should be chosen such that the dynamic range of Q is used
efficiently, whilst ensuring a low probability of quantizer
overload or clipping. For example, for the often cited uniform
quantizer with N levels and loading factor7 equal to 4 we
obtain γ = 3

16N
2 (assuming that {n(k)}k∈Z has a uniform

PDF and neglecting overload errors). We note that for large
N , and provided overload errors are negligible, a quadratic
relationship between N and γ holds for most types of scalar
quantizers (see, e.g., [9]). This is indeed the well known rule of
“6 [dB] reduction of quantization noise variance per additional
bit of quantizer resolution”.

In the sequel, we refer to the model of PRFQ determined by
Assumptions 2, 3 and 4 as The Linear Model. Summarizing,
the Linear Model is exact if the PRFQ uses a dithered
quantizer having enough quantization levels to avoid overload.
If not enough quantization levels are available and dither
is used jointly with clipping, then the model is exact in
predicting the effects of granular quantization errors, and
is a good approximation in predicting the total FWMSE if
Assumption 2 also holds. If the scalar quantizer is undithered,
has a small quantization interval (relative to σv′) and enough
quantization levels to avoid overload, then the Linear Model
can be expected to yield a good approximation of the total
FWMSE. Perhaps surprisingly, the Linear Model turns out to
predict with remarkable accuracy the FWMSE of an optimal
PRFQ when few quantization levels and clipping are used with
a loading factor big enough to satisfy Assumption 2, even
without dither, and even for a 1-bit quantizer. This can be
observed from the simulation results presented in Section VIII.

C. Optimization Constraints

The filters A(z), B(z) and F (z) in Fig. 1 are design
choices. We shall restrict the search for the optimal filters to
those satisfying the following constraint:

Constraint 1:
1) A(z) and B(z) satisfy (1).

7The loading factor corresponds to the ratio between half the dynamic range
of Q and the standard deviation of its input.
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2) A(z) and B(z) are stable.
3) F (z) is stable and strictly causal (i.e., limz→∞ F (z) =

0). N
As foreshadowed in Section I, the first constraint enforces
perfect reconstruction. As discussed in Section II-A.3, the
stability constraints on A(z), B(z) and F (z) are a necessary
condition for the converter to be BIBO stable. The additional
requirement on F (z), namely strict causality, is needed for
the feedback loop in Fig. 1 to be well defined (see, e.g., [2,
Chap. 4]). Notice that we will not a priori require 1 − F (z)
to have zeros only inside the open unit disk. Instead, we will
show that the latter property arises naturally from the solution
of the design optimization problem.

An additional constraint on F (z) arises from the value of
γ, as explained next. The ratio between the variances of v and
n imposed by the feedback can be obtained by dividing (12)
by σ2

n, yielding

σ2
v

σ2
n

=
‖AΩx‖2
σ2
n

+ ‖F‖2. (14)

One can see from the above that if ‖F‖2 > γ, then any
pre-filter or scaling of the quantization intervals of Q will
yield σ2

v > γσ2
n, thus making large overload (or clipping)

inevitable. This would increase overall distortion, and if no
clipping is used, may lead to large limit-cycle oscillations. We
thus conclude that the use of feedback imposes the following
constraint:

Constraint 2:

‖F‖2 < γ.

N
If the above constraint is met, then σ2

n can be found by
substituting (13) into (14). This gives

σ2
n =

‖AΩx‖2
γ − ‖F‖2 . (15)

III. OPTIMAL PRFQ DESIGN

Given the model described in the previous section, we can
now evaluate the quantity that we aim to minimize, namely, the
frequency weighted mean squared error (FWMSE). From (8c),
and Assumptions 2 and 3, it follows that the FWMSE is
given by σ2

ε = σ2
n‖(1 − F )BP‖2. Thus, in view of (15), the

minimization of the FWMSE in the Linear Model can be stated
as follows:

Optimization Problem 1: For given γ, and for given Ωx
and P satisfying Assumption 1, find the frequency responses
F , A and B satisfying Constraints 1 and 2 that minimize

σ2
ε =

‖AΩx‖2‖(1− F )BP‖2
γ − ‖F‖2 . (16)

N
The following proposition allows us to further reduce the

number of unknowns in (16) by characterizing the optimal
A(z) for a given choice of F (z).

Proposition 1: For any F (z) satisfying Constrains 1 and 2,
the infimum of the achievable FWMSE is given by

σ2
ε inf |F =

〈|1− F | , |ΩxP |〉2
γ + 1− ‖1− F‖2 . (17)

The filters that achieve the infimum, namely Ainf (z) and
Binf (z), satisfy

|Ainf | , κ

√
|P | |Ωx|∼1 |1− F | , (18a)

|Binf | , 1
κ

√
|P |∼1 |Ωx| |1− F |∼1

, (18b)

where κ > 0 is an arbitrary real constant. If
∣∣Ωx(ejω)P (ejω)

∣∣
satisfies condition i) in Assumption 1, then Ainf (z) and
Binf (z) can be chosen stable; else, if

∣∣Ωx(ejω)P (ejω)
∣∣ sat-

isfies condition ii) in 1, then one can achieve an FWMSE
arbitrarily close to σ2

ε inf |F with causal and stable filters A(z),
B(z) such that

∣∣A(ejω)
∣∣ = A[ε](ω) ,





εB , ∀ω ∈ IεB

1/εA , ∀ω ∈ IεA∣∣Ainf (ejω)
∣∣ , ∀ω /∈ IεA ∪ IεB ,

(19a)
∣∣B(ejω)

∣∣ = B[ε](ω) ,
(
A[ε](ω)

)−1

, (19b)

a.e. on [−π, π], where

IεB , {ω ∈ [−π, π] :
∣∣Binf (ejω)

∣∣ > 1
εB
} ∪ NP ,

IεA
, {ω ∈ [−π, π] :

∣∣Ainf (ejω)
∣∣ > 1

εA
} ∪ NΩx ,

by making εA, εB → 0. N
As a consequence of Proposition 1, the optimal PRFQ design
problem reduces to that of finding the filter F (z) which
minimizes σ2

εmin|F in (17).
It is convenient to rewrite equation (17) more compactly by

introducing the following change of variables:

f(ω) ,
∣∣1− F (ejω)

∣∣ , ∀ω ∈ [−π, π], (20a)

g(ω) ,
∣∣Ωx(ejω)P (ejω)

∣∣ , ∀ω ∈ [−π, π]. (20b)

Substituting (20) into (17) allows us to rewrite the infimal
FWMSE for a given choice of f as

σ2
εmin|f = D(f) , 〈f, g〉2

γ + 1− ‖f‖2 . (21)

We next translate the restrictions on F (z), stated in Con-
straints 1 and 2, into equivalent constraints on f . For this
purpose, we note that, by definition, f needs to satisfy f(ω) ≥
0, ∀ω ∈ [−π, π], and that, since ‖F‖2 = ‖F − 1‖2 − 1 (see
the proof of Proposition 1 in the Appendix), Constraint 2 is
satisfied iff ‖f‖2 < γ + 1. In addition, a stable and strictly
causal F (z) (i.e., one satisfying Constraint 1) always leads to
a function f , see (20), which satisfies8

0 ≤
∫ π

−π
ln f(ω)dω <∞. (22)

This result follows directly from Jensen’s formula [23] (see
also the Bode Integral Theorem in, e.g., [24]).

On the other hand, as we shall see in Section IV, if
Assumption 1 holds, then the optimal f within the set of

8Notice that (22) dictates a fundamental trade-off in the noise-shaping
capabilities of feedback quantizers, namely, that one can remove noise from
one frequency band only at the expense of increasing it on another. This is
also known as the “water bed effect”. We discuss further implications of (22)
in Section VII.
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functions described by (22) and the requirement ‖f‖2 < γ+1
turns out to be piece-wise differentiable on [−π, π], has at
most a finite number of discontinuity points, and satisfies

1
2π

∫ π

−π
log f(ω)dω = 0, and (23a)

0 < fmin ≤ f(ω) ≤ fmax <∞, ∀ω ∈ [−π, π]. (23b)

Under these conditions, it is always possible to find a stable
and strictly causal filter F (z) such that

∣∣1− F (ejω)
∣∣ ap-

proximates f(ω) arbitrarily well on [−π, π], as stated in the
following lemma:

Lemma 1: Suppose that f is piece-wise differentiable on
[−π, π], that it has at most a finite number of discontinuity
points and that it satisfies (23). Then, for every ε > 0, there
exists a (finite order) rational, strictly proper and stable F (z)
such that ‖f − |1− F | ‖ ≤ ε. N

Using the above results, Optimization Problem 1 can be re-
stated as follows:

Optimization Problem 2: For given and known γ > 0 and
for g satisfying Assumption 1, find

f? , arg min
f∈C1∩C2

D(f), (24)

where D(f) is as in (21) and

C1 ,
{
f : R→ R+

0 : ‖f‖2 < γ + 1
}
,

C2 , {f : R→ R+
0 : 0 ≤

∫ π

−π
ln f(ω)dω <∞}.

N
The optimizer f? characterizes the optimal feedback filter, say
F ?(z), via (20) (see also Lemma 1). In the following section,
we will show how to solve this optimization problem.

IV. SOLUTION OF THE PRFQ OPTIMIZATION PROBLEM

It would be desirable to provide an explicit analytical
solution to Optimization Problem 2. Unfortunately, and as will
become apparent in the discussion below, developing a closed
form solution, for arbitrary functions g, appears infeasible.
Nevertheless, we can provide a one-parameter characterization
of the optimal function f? in (24) as follows:

Theorem 1: For any given g = |ΩxP | satisfying Assump-
tion 1, and for any γ > 0, the function f? in (24) belongs to
the one-parameter family of functions {fα}α>αc , where

fα(ω) , θ(α)√
g(ω)2 + α + g(ω)

, ∀ω ∈ [−π, π]. (25a)

and

θ(α) , exp
(

1
2π

∫ π

−π
ln

(√
g(ω)2 + α + g(ω)

)
dω

)
. (25b)

Here, αc , max{0, αK}, is the lower bound of feasible α’s,
and αK , if it exists, is the unique scalar such that ‖fαK‖2 =
γ+ 1. If such a scalar doesn’t exist, then we choose αK = 0.
N

Note that the above result provides an explicit analytic
expression for f?, once the optimal α, defined as

αopt , arg min
α∈(αc,∞)

D(fα), (26)

has been found, i.e., f? = fαopt . Expression (25a) also gives
insight into the structure of f?.

Theorem 1 can be used to develop an efficient algorithm
to solve Optimization Problem 2. The key point is that
substitution of (25a) into (21) changes the search space from
the infinite-dimensional set C1∩C2 to the real interval (αc,∞).
More precisely, Optimization Problem 2 is turned into the
simpler problem of finding the minimizer of the single variable
non-convex scalar function

Φ(α) , D(fα) =
〈fα, g〉2

γ + 1− ‖fα‖2 , α > αc. (27)

We will show next that the global minimizer of Φ(α), i.e.,
αopt, (and hence the solution of Optimization Problem 2) is
unique. Furthermore, αopt can be obtained by finding the root
of a scalar, convex, and monotonically decreasing function.

Theorem 2: Let g = |ΩxP | satisfy Assumption 1, and
suppose that g is not almost constant, see (3). Then, for any
γ > 0, the parameter αopt defined in (26) satisfies

γ + 1 = e
1
π

R π
−π

ln
h√

g(ω)2+αopt +g(ω)
i
dω /

αopt. (28)

On the other hand, if g is almost constant, then any α ∈
(αc,∞) is optimal. N

Theorem 3: The right hand side of (28) is a convex
and strictly decreasing function of αopt. Furthermore, the
following holds

lim
α→0

e
1
π

R π
−π

ln
h√

g(ω)2+α+g(ω)
i
dω /

α = ∞, (29)

lim
α→∞

e
1
π

R π
−π

ln
h√

g(ω)2+α+g(ω)
i
dω /

α = 1 . (30)

N
Thus, γ and αopt are related through a bijective function.
Moreover, it follows from Theorems 2 and 3 that, for any
g satisfying Assumption 1, and for any γ > 0, the global
minimizer of (27) exists and is unique9. In addition, these
results guarantee that αopt can be easily found by solving (28),
via, for example, the bisection algorithm [25], or any other
convex optimization method [26].

We can now express f? and the minimum achievable
FWMSE, namely D?, in terms of g, γ and αopt. Indeed, com-
bining (28) and (25a) with (21) yields (after some algebraic
simplification), that

D? , min
f∈C2∩C1

D(f)

=
1
4π

∫ π

−π

(√
g(ω)2 + αopt − g(ω)

)
g(ω)dω,

(31a)

whilst the associated optimal feedback filter is characterized
via:

f?(ω) =

√
γ + 1
αopt

(√
g(ω)2 + αopt − g(ω)

)
, (31b)

∀ω ∈ [−π, π], see (20). Note that applying (49b) (see the Ap-
pendix) to the above it follows that f?(ω) <

√
γ + 1 , ∀ω ∈

9If g is almost constant, then αopt is not unique. Nevertheless, in this
case, the minimizer of D(f) is unique. (It is f(ω) ≡ 1, see the paragraph
immediately after (78) in the proof of Theorem 1 in the Appendix.)
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[−π, π]. Thus, as expected, Constraint 2 is satisfied. Notice
also from (31b) that if |ΩxP | satisfies Assumption 1, then f?

satisfies the conditions of Lemma 1.
It can be seen from (31a) that D? is a monotonically

increasing function of αopt. In view of Theorem 3, this
implies that, as expected, D? is monotonically decreasing with
increasing γ. As a consequence, the converse of Optimization
Problem 1, namely, finding the optimal filters and minimum
required SNR of Q for a given target distortion, can be solved
by using (28) and (31). Moreover, since the right hand side
of (31a) is a concave, monotonically increasing function of
αopt, this parameter can be easily found by using standard
iterative algorithms, as in the original optimization problem.

It is also interesting to note that (28) and (31a), which relate
γ and D? via the parameter αopt, have a structure akin to the
well known reverse water-filling equations (see, e.g., [27, pp.
108-123], and [28]). The latter characterize the rate-distortion
function for Gaussian sources.

To summarize, we have given an explicit analytic expression
for the optimal |1− F | and D, once αopt has been determined.
Furthermore, we have shown that the parameter αopt always
exists, is unique, and can be easily found using simple
numerical methods.

In the following sections, we will provide additional insight
into the consequences of these results, as well as into some
properties of optimal PRFQs,

V. PROPERTIES OF OPTIMAL PRFQ

In the sequel, we say that a PRFQ is optimal or optimized
if its filters A(z), B(z) satisfy (19) for negligibly small values
of εA and εB , and F (z) is such that

∣∣1− F (ejω)
∣∣ = f?(ω),

a.e. on [−π, π], with f? as defined by (24).

A. The Effect of the SNR of Q
It follows from Theorems 2 and 3 that, for any given ΩxP

satisfying Assumption 1, fα in (25a) describes the family of all
noise shaping characteristics that are optimal for some γ > 0.

As we will show, adjusting α from 0 to ∞ (equivalently,
γ from ∞ to 0) allows one to undergo a smooth progression
from “full” noise-shaping to no noise-shaping, in an optimal
manner. An example of this progression is shown in Fig. 2.
Note in this figure how |1− F | (solid lines) approaches a unit
transfer function as γ (the quantizer SNR for which α = αopt
in the figure), becomes smaller (and αopt gets larger). It can
also be observed that |1− F | approaches the inverse of |ΩxP |
as γ is increased. Such asymptotic convergence does indeed
take place in general, as the following theorem shows:

Theorem 4: For any g = |ΩxP | satisfying Assumption 1,
the functions fα(ω) defined in (25a) converge uniformly to

f∞(ω) , 1 (32)

as γ → 0. Similarly, for any function g satisfying condition i)
in Assumption 1, the functions fα(ω) defined in (25a) converge
uniformly to

f0(ω) ,
[
e

1
2π

R π
−π

ln g(ω)dω
]
[g(ω)]−1 (33)

as γ →∞. N
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Fig. 2: Progression of fα(ω) (solid lines) for
α ∈ {0.01, 1, 100}. In this example, Ωx(z)P (z) =
z4−0.3549z3−1.313z2+0.1723z+0.5776

z4−1.223z3+0.8192z2−0.196z

Note that f∞ in (32) corresponds to the choice of no feedback
(F (z) = 0), which reduces the PRFQ to a PCM converter. In
view of (30), this no-noise shaping scenario is asymptotically
optimal as γ → 0. In turn, f0 defined in (33) corresponds to
the full whitening feedback filters proposed in [1], [14], [15].
From (29) and (33), f0 is optimal iff γ → ∞. See also the
discussion in Section VII.

B. Signal Spectra

1) The Output of the Quantizer: By looking at Fig. 1 and
using Assumption 3, we find that the PSD of {w(k)}k∈Z in
an optimized PRFQ is given by Sw(ω) = |Ωx(ω)A(ω)|2 +
σ2
nf

?(ω)2, ∀ω ∈ [−π, π]. Applying (18) to the latter result
yields

Sw(ω) = f?(ω)
[
κ2g(ω) + σ2

nf
?(ω)

]
, ∀ω ∈ [−π, π].

(34)
Comparing (15) and (16), it is easy to see that σ2

n =
D(f)/‖fBP‖2. If B(z) satisfies (18), then we have σ2

n =
κ2D(f)/〈f, g〉. With the choice f = f?, and using (31)
and (28), we conclude that the variance of the quantization
noise in an optimized PRFQ is given by10

σ2
n =

κ2

2

√
αopt
γ + 1

=
κ2

2
e

1
2π

R π
−π

ln
h√

g(ω)2+αopt −g(ω)
i
dω
.

(35)

Substitution of this expression into (34) yields
Sw(ω) = κ2f?(ω)

2

[√
g(ω)2 + αopt + g(ω)

]
, ∀ω ∈ [−π, π],

where (25a) has been used. Substitution of (49a) and (28)
into this expression leads to

Sw(ω) =
κ2f?(ω)αopt

2[
√
g(ω)2 + αopt − g(ω)]

=
κ2

√
(γ + 1)αopt

2
,

(36)

10Note from (35) that if σ2
n is fixed, then the value of κ is no longer

arbitrary. This ensures that (13) is satisfied.
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which is independent of ω. Therefore, under Assumptions 3
and 4, the output of the quantizer in an optimized PRFQ is
white. This suggests that near optimal coding of the quantizer
output can be achieved with a memory-less entropy coder.

2) The Frequency Weighted Reconstruction Error: The
PSD of the frequency weighted reconstruction error is given
by Sε(w) = σ2

n

∣∣f(ω)B(ejω)P (ejω)
∣∣2 , ∀ω ∈ [−π, π]. Sub-

stitution of (18) into the above yields Sε(ω) = σ2
n

κ2 g(ω)f(ω).
Applying (35) to the latter we obtain

Sε(ω) = 1
2

(√
g(ω)2 + αopt − g(ω)

)
g(ω), ∀ω ∈ [−π, π].

(37)
Thus, we conclude that the frequency weighted quantization
error in an optimized PRFQ is not white. This fact stands in
stark contrast to the conclusions reached when the FQ filters
are optimized without the perfect reconstruction constraint (1),
see, e.g., [22]. It also differs from the result obtained when the
feedback filter is optimized ignoring fed back quantization
error, as in [14] and [15]. Note that, as γ is made larger,
ε not only becomes smaller, but its PSD asymptotically
approaches11 a constant function over the frequencies {ω :∣∣Ωx(ejω)P (ejω)

∣∣ > 0}.

VI. OVERSAMPLED FEEDBACK QUANTIZATION

It is well known that oversampling (i.e., sampling a band-
limited continuous-time signal at a frequency above its Nyquist
rate) allows one to achieve a smaller MSE error for a given,
fixed number of quantization levels. For instance, the MSE
of simple scalar quantization (without feedback) is known to
decrease as λ−1, see [29], where λ is the oversampling ratio,
given by

λ , Sampling Frequency
Nyquist Frequency

.

In turn, it has been shown in [4] that feedback quantizers can
attain an MSE that is O(λ−2(m+1)) as λ→∞, where m is the
order of the feedback filter (see also recent work in [20]). From
a rate-distortion viewpoint, the inversely polynomial error
decay of this error estimate is "too slow" to compensate for
the increase in the overall bit-rate due to oversampling (which
is proportional to λ). To be more precise, let us consider a
scalar quantizer with N = 2b quantization levels, where b
denotes the quantization resolution in bits per sample. If the
additional bit-rate caused by oversampling was utilized instead
to increase N , then the MSE would decay as O(2−2bλ), i.e.,
exponentially12.

A faster decay of the MSE of oversampled FQ with λ
can be achieved by selecting a different feedback filter (with
possibly different order) for each oversampling ratio. An
example of such a family (of 1-bit Σ∆ converters) was given
in [31]. Here, the continuous-time reconstruction error can be

11Substitution of (49a) into (37) yields Sε(ω) =
αopt

4
2g(ω)√

g(ω)2+αopt +g(ω)
. Thus, Sε(ω) < αopt/4 for all ω ∈ [−π, π],

and Sε(ω) → αopt/4 as αopt → 0+, ∀ω such that g(ω) > 0.
12Strictly speaking, this only holds for signals whose PDFs have finite

support. Indeed, it has been shown that for several infinite support PDFs, the
MSE of uniform quantization decreases asymptotically with b not faster than
(ln 2)2/a b

2
a 2−2b, where a > 0 is a constant independent of b, see [30].

uniformly bounded by λ−ρ log λ, where ρ > 0 is independent
of λ. This bound guarantees an MSE that decays with λ as
O(λ−2ρ log λ), which is faster than any inverse polynomial,
but still far from exponential. Based on this result, the family
of 1-bit Σ∆ converters reported in [32] achieve an MSE that
is O(2−0.14λ), i.e., exponentially decaying with increasing λ.
Notably, the results in [31] and [32] were obtained using an
exact, deterministic model of quantization.

We will next show that, within the Linear Model, if the
optimal infinite order filters characterized in Section IV are
used for each value of λ, then one can achieve an exponential
decay of D? with the oversampling ratio, provided γ is kept
constant.

If the input sequence {x(k)}k∈Z is obtained from sampling
a band-limited analog signal, oversampling would cause g
(defined in (20)) to vary with λ. To capture this effect, we
replace g by the family of functions gλ, defined as

gλ(ω) ,
{√

λ g1(λω) , if |ω| < ωc,

0 , if ωc ≤ |ω| ≤ π.
(38)

In (38), g1 denotes the square root of the PSD of the frequency
weighted input without oversampling, and ωc , π

λ . Notice
that ‖gλ‖2, that is, the total power of gλ (in units of variance
per sample), remains constant for all λ ≥ 1. This ensures a
uniform comparison basis for the distortion figures.

We can now make explicit the dependence of D? on γ and
λ by writing

D?(K,λ) , min
f∈C2∩C1
g=gλ

D(f) = min
f∈C2∩C1

〈f, gλ〉2
K − ‖f‖2 , (39)

see (21), where

K , γ + 1 =
σ2
w

σ2
n

(40)

corresponds to the output-SNR ofQ. Interestingly, it is possible
to establish a precise “exchange” formula for K and λ.
Indeed, in terms of minimal achievable distortion, the effect
of increasing oversampling is equivalent to an exponential
increase in the output-SNR of Q. This is shown in the next
theorem:

Theorem 5: Under the Linear Model described in Sec-
tion II-B, for any function g1(ω), and for any K > 1, λ ≥ 1,
the minimum achievable FWMSE satisfies:

D?(K,λ) = D?(Kλ, 1). (41)

N
If we assume that γ depends exponentially on the number
of bits per sample, then Theorem 5 suggests an FWMSE that
decays exponentially with λ, provided the Linear Model holds
and that optimal filters A(z), B(z) and F (z) (characterized
by (18), (25a) and (28)) are employed for each λ. The
following simple example illustrates this idea:

Example (Flat Weighted Input Spectrum) Consider an input
signal {x(k)}k∈Z and a weighting filter P (z) such that |ΩxP |
is constant ∀ω ∈ [−π, π], without oversampling. For this
setup, the optimal F (z) for our model of PRFQ is F (z) ≡ 0
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(f(ω) ≡ 1), i.e., a PCM converter. From (21), the minimum
FWMSE without oversampling (i.e., with λ = 1) becomes

D?(K, 1) =
σ2
xP

γ
=

σ2
xP

K − 1
,

where σ2
xp , ‖ΩxP‖2. To analyze oversampling behaviour of

D? in this case, we apply Theorem 5 to the above expression.
This gives that D?(K,λ) = σ2

xP

Kλ−1
, and, thus,

σ2
xPK

−λ ≤ D?(K,λ) ≤
(

σ2
xP

1−K−1

)
K−λ (42)

for all λ ≥ 1. Note that, to achieve (42), F (z) needs to be
synthesized according to (31b) and (20). Therefore, for this
example, the MSE of an optimized PRFQ with fixed γ exhibits
an exponential decay with the oversampling ratio (since, by
definition, K > 1).

If we further assume K to depend on the number of bits
per sample b as K = 3

1622b + 1 (which would correspond to
Q being a uniform quantizer with many levels and operating
with a loading factor of 4), then (42) becomes

σ2
xP 2−[log2(

3
16+2−2b)+2b]λ ≤

D?(K,λ) <
(

σ2
xP

1−K−1

)
2−[log2(

3
16+2−2b)+2b]λ.

(43)

The term log2(
3
16 +2−2b) in (43) is negative for all b ≥ 1. This

implies that the decrease of D? with λ, although exponential,
is slower than 2−2bλ. Thus, the use of oversampling in this
case is rate-distortion inefficient. In particular, taking b = 1,
and supposing that Assumptions 3 and 4 hold, we obtain
from (43) that D?(K,λ) is lower and upper bounded by
terms proportional to 2−0.807λ. For loading factor values of
6, 10 and 20, the exponent in the latter expression changes to
−0.41λ, −0.1635λ and −0.0426λ, respectively. N

The next theorem shows that the exponential decay of the
FWMSE obtained in the example above can be extended to
arbitrary (band-limited) input signals and frequency weighting
criteria.

Theorem 6: For any K > 1 and function g1(ω) satisfying
Assumption 1, the following holds:

D?(K,λ) ≤ K2αopt(K, 1)
4(K − 1)

K−λ, ∀K > 1, ∀λ ≥ 1, (44)

where αopt(K, 1) denotes the optimal α for λ = 1. N
Thus, under the Linear Model, we have that the FWMSE

of an optimized PRFQ decays exponentially with λ.
Remark 1: We recall that Theorem 6 is exact within the

Linear Model described in Section II-B. Here it is convenient
to present some further observations regarding the validity of
that model when the oversampling ratio tends to infinity, for
different implementations of a PRFQ.

1) As already mentioned in Section II-B, if x is bounded
and a sufficiently large number of quantization levels
to avoid overload is used together with dither, then
the Linear Model is exact. Nevertheless, there is no
guarantee that the number of necessary quantization
levels to avoid overload remains constant as λ increases.
If such number increases with λ, then γ can only be kept

constant by increasing the number of quantization levels
in the quantizer.

2) If the number of quantization levels is insufficient to
avoid clipping/overload errors, and if dither and clipping
are used with a fixed loading factor, then there exists a
certain finite value of λ beyond which Assumption 2
is violated. This arises from the fact that, for any
fixed loading factor, the effect of clipping errors in the
output does not decay with λ, thus becoming the dom-
inant component in the FWMSE for sufficiently high
oversampling ratios. Further reduction of the FWMSE
would then require one to balance clipping and granular
quantization errors by increasing the loading factor. If
the number of quantization levels is fixed, this would
necessarily reduce the value of γ, clearly increasing the
component of the FWMSE due to granular quantization
errors13. Nevertheless, if clipping and dither are used
(with s = V ), then the Linear Model and Theorem 6
is exact in describing the FWMSE due to granular
quantization errors. N

VII. THE IMPORTANCE OF TAKING ACCOUNT OF FED
BACK QUANTIZATION NOISE

If one tried to optimize the filters of a PRFQ neglect-
ing fed back quantization noise, i.e., by trying to minimize
‖AΩx‖2‖(1−F )BP‖2

γ (compare to (16)), then one would obtain
a (sub optimal) feedback filter, namely F0(z), which satisfies

|1− F0| = ηxP |ΩxP |−1
, (45a)

where

ηxP , e
1
2π

R π
−π

ln|Ωx(ejω)|P (ejω)dω, (45b)

provided |ΩxP | > 0, ∀ω ∈ [−π, π] (see (87) in the proof of
Theorem 1). This corresponds to the result obtained in [14],
which was restricted to the cases where γ À ‖F0‖2. For
the case Ωx(ejω) ≡ 1, the noise transfer function magnitude
|1− F0(z)| is also equivalent to that derived in [15]. The latter
is optimal in the sense of minimizing the ratio σ2

ε /σ
2
n, but not

in the sense of minimizing σ2
ε for a fixed quantizer SNR γ.

As shown in Theorem 4, f?, in general, does approach
f0 = |1− F0| as γ → ∞. One can then expect F0 to
be near optimal in situations where γ À ‖F0‖2, see (16).
The latter is often satisfied at high bit-rates (i.e., when many
quantization levels are available). However, for any given
number of quantization levels, it is easy to find practical
situations where ΩxP is such that ‖F0‖2 is comparable to
(or greater than) γ. More precisely, from (22), and recalling
that ‖F − 1‖2 = ‖F‖2 + 1 (see Appendix B), one can show
that, if |ΩxP | < m over a set of frequencies in [−π, π] with
measure Γ, where m is some positive scalar, then

‖F0‖2 ≥
(ηxP
m

)Γ/π

− 1. (46)

13 As an extension of the results presented in this section, the authors have
recently derived an asymptotic decay rate of the FWMSE with λ that includes
the effect of clipping errors. For Gaussian inputs, this asymptotic decay rate
is faster than any inverse polynomial. These results are beyond the scope of
the current paper.
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This means that a large ‖F0‖2 is obtained for any product
ΩxP whose magnitude becomes significantly small (in relative
terms) over certain frequency bands. (An example is included
in Section VIII below.) A direct consequence is that, for
these cases, and in view of (16), trying to match |1− F | to
ηxP |ΩxP |−1 will yield a performance far from optimal, also
increasing the risk of incurring large limit-cycle oscillations if
no clipping is employed (see, e.g., [2], [13]).

The (possibly unbounded) increase of ‖F‖2 as |1− F |
approaches ηxP |ΩxP |−1 was already observed in [12]. Sev-
eral heuristic solutions have been proposed since then (see,
e.g., [2], [3], [13], [15], [17], [18]). In contrast to these
approaches, the method derived in the present work allows one
to characterize the true optimal filters, by explicitly taking into
account ‖F‖2 in the cost functional to be minimized (see (16)).
Our method not only guarantees that ‖F‖2 < γ, but also yields
the actual optimal filters. Our proposal also has the advantage
of being applicable to arbitrary input spectra and frequency
weighting functions, regardless of how small the quantizer
SNR γ may be, within the scope of validity of the Linear
Model.

VIII. SIMULATION STUDY

To illustrate our results, we have designed the filters of a
PRFQ aimed at digitally encoding audio signals in a psycho-
acoustically optimal manner. The details of the simulation
model, as well as the results of both the simulations and the
numerical optimizations are given below.

A. Simulation Setup

The PSD of audio signals was modeled as unit-variance
zero mean white Gaussian noise filtered through Ωx(z) =
0.09315

(
z+0.6773
z−0.8588

)
. The magnitude of the frequency response

of Ωx(z) is depicted in Fig. 3 (solid line). The frequency
weighting filter P (z) considered had a frequency response
magnitude which approximated the psycho-acoustic curve
derived in [3, Table 1], thus modeling the sensitivity of human
hearing to noise14. The corresponding frequency response is
plotted with dotted line in Fig. 3 (the sampling frequency is
44.1 [kHz]). The resulting g = |ΩxP | for these Ωx and P (z)
is also shown in the same figure (dashed line). For this choice
of g, and in view of (46), one could expect the norm of a full
whitening feedback filter to be very large. This is indeed the
case: ‖F0‖2 = 2.2×1011. Thus, the sub-optimal feedback filter
characterized by (45) requires the use of a scalar quantizer with
at least 18 bits in order to become feasible (see Constraint 2).

In the simulations, Q was chosen to be a uniform mid-rise
quantizer with quantization interval ∆ = 1. Several values
of γ were considered for the simulations, calculated as γ =

3
(O.F.)2 22b, where b ∈ {1, 2, . . . , 16} and where O.F. , N∆

2σv

denotes the loading factor. Two different loading factors were
considered: 4 and 6. The latter choice yields a slightly lower γ
than the usual loading factor of 4. However, this regime has the
benefit of making overload errors smaller and more infrequent.

14The coefficients of P (z) can be found at http://msderpich.no-
ip.org/research
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Fig. 3: Frequency response magnitudes for Ωx(z) (solid line),
P (z) (dotted line) and g(ω) =

∣∣Ωx(ejω)P (ejω)
∣∣ (dashed line).

As the simulation results will show, for our choices of Ωx and
P , this more conservative loading factor yields lower overall
distortion when b takes values above 6 bits per sample.

For each b (and corresponding two values for γ, one for
each loading factor), the filters of the converter were designed
according to the following:

1) The parameter αopt was calculated by numerically solv-
ing (28).

2) The optimal |1− F |, |A| and |B| were obtained
via (31b) and (18).

3) These functions were then approximated15 with rational
IIR transfer functions A(z), B(z) (of order 7) and F (z)
(of order 15).

4) An appropriate value for the parameter κ in (18) was
chosen via κ2 = 2σ2

n

√
K
αopt

, see (35), assuming σ2
n =

1/12 (recall that ∆ = 1 for all the simulations). This
ensures that σ2

v = γσ2
n.

For each combination of b and O.F., the resulting PRFQ
converter was simulated utilizing two different architectures.

1) Non Overloading Q: This scheme is as depicted in
Fig. 1, with Q having (virtually) infinitely many levels.
Thus |n(k)| ≤ ∆

2 for all k (neither clipping nor overload
errors occur).

2) Overloading Q and Clipped n: Here, Q has N = 2b

levels, which yields a scalar quantizer with a finite input
dynamic range [−N ∆

2 , N
∆
2 ]. As a consequence, any

value |v(k)| > N ∆
2 would overload Q (if s = ∞)

or produce clipping error (if s = V ). To avoid large
limit-cycle oscillations, this variant was simulated using
clipping (i.e., s = V ).

Each simulation with the non-overloading PRFQ comprised
100, 000 samples. For the overloading converter, five 100, 000
samples simulations were performed for each combination of
O.F. and b.

15The optimization routines utilized are based upon the Matlab optimization
toolbox and can be found at http://msderpich.no-ip.org/research.
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B. Results

The results of the numerical optimizations and the simula-
tions are discussed next.

1) Comparison between D? and the Rate-Distortion Func-
tion: The information theoretic lower bound (see [28]) for
the FWMSE associated with the given source {x(k)}k∈Z and
filter P (z) is plotted in Fig. 4 (solid line). This corresponds
to Shannon’s quadratic Distortion-Rate function D(R) when
R = b. As the bit-rate is increased, the gap between D?

and this absolute lower bound decreases to approx 7.5 [dB]
for O.F. = 4 and 11 [dB] for O.F. = 6, at b = 16. This
difference can be attributed to the rate-distortion inefficiency
of the uniform scalar quantizer16. On the other hand, the larger
performance gap observed at lower bit-rates can be attributed
to the perfect reconstruction constraint.17 Recall that, at low
bit rates, the achievement of Shannon’s rate-distortion function
demands the suppression of relatively less significant bands
of the PSD of the input signal (see, e.g., [27], and [28]). This
linear distortion, which a PRFQ cannot achieve, is more severe
at lower bit-rates. Thus, the performance gap increases as b is
reduced.

2) Non Overloading Q: The FWMSE of this converter
variant is presented in four of the plots in Fig. 4, with labels
beginning with “σ2

ε opt. PRFQ, Non Overloading”. These
differ in the loading factor, and in the meaning of b in each
case. For the plots whose labels do not have the ending
“E.C.” (entropy coding), b is simply the number utilized to
generate the value γ = 3

(O.F.)2 22b for which the filters were
optimized. The plots whose labels end in “E.C.” correspond
to the same simulations, but for each point the value of b is
the scalar entropy of the quantized output of the converter. It
can be seen in Fig. 4 that the FWMSE obtained for the non
overloading Q without entropy coding is remarkably close to
the theoretical value D? predicted by (31a). More importantly,
even for bit-rates as small as b = 2, each observed ratio σ2

v/σ
2
n

deviates from its nominal value of γ by less than 2%. (For
the extreme situation b = 1, the observed σ2

v was slightly
lower than predicted, while σ2

n was 55% higher than 1/12
due to the highly non-uniform PDF of the resulting sequence
{n(k)}k∈Z.) It can also be seen that the scalar entropy of the
quantized output of the PRFQ in these cases is very close to
Shannon’s R(D) function for a given distortion. This agrees
with the observation that the output of Q in an optimized
PRFQ is white, see the comment at the end of Section V-B.1.
The difference between these quantities is bigger for lower
values of b, for the same reason discussed in Section VIII-B.1
above.

3) Overloading Q: For the overloading PRFQ using an
O.F. of 4, the FWMSE diminished along with the corre-
sponding D? for b ∈ {1, . . . , 6}. However, the measured

16From Shannon’s Rate-Distortion function for memoryless Gaussian
sources, the maximum SNR for a bit-rate b is 22b. The SNR (neglecting
overload errors) for a uniform scalar quantizer with loading factor O.F. is
given by 3

(O.F.)2
22b. Thus, the theoretical performance gaps for O.F. = 4

and 6 are 10 log10(3/16) = 7.3 [dB] and 10 log10(3/36) = 10.8 [dB],
respectively.

17The quadratic Gaussian rate-distortion function with the constraint that
the end-to-end distortion is uncorrelated to the source has recently been
characterized in [33].

FWMSE varied very little for b ≥ 7, staying several dB
higher than D? over that range of bit-rates. This performance
degradation can be attributed to clipping errors. The fact that
overload errors become noticeable only for high bit rates
(many quantization levels) might seem, at first, surprising.
However, this phenomenon can be easily explained by noting
that the size of the tails of the PDF of {v(k)}k∈Z that
fall outside the dynamic range of Q remains approximately
constant in relation to N∆ = 2b∆ for all b. (This is a direct
consequence of the loading factor rule.) In contrast, granular
(non-overloading) quantization error is proportional to ∆2

(which is held constant in the simulations). Therefore, the
ratio between clipping and granular quantization errors grows
approximately as 2b and clipping errors become dominant for
sufficiently high bit-rates.

Because of the reduced occurrence (and magnitude) of
clipping errors, the optimized PRFQ with overloading Q
and O.F. = 6 exhibits an FWMSE smaller than that of
its counterpart with O.F. = 4 for b ≥ 7. Furthermore,
this more conservative loading factor allows the converter
to perform almost exactly as predicted by our analytical
expression for D?.18

4) Comparison with PCM: The theoretical FWMSE of
a PCM A/D converter, denoted by DPCM , can be found
from (16) by making A(z) ≡ B(z) ≡ 1 and F ≡ 0, which
gives DPCM = ‖Ωx‖2‖P‖2/γ. For the chosen input PSD
and frequency weighting filter, and calculating γ as 3

1622b, the
value of DPCM varies with b as shown in Fig. 4 (dotted line).
As seen in this figure, the gap between D? and DPCM , for
each value of O.F., gets smaller as the bit-rate decreases. This
agrees with the fact that the optimal PRFQ approaches a PCM
converter as γ → 0, see Section V-A. It can also be seen in
Fig 4 that the optimized PRFQ with overloading and O.F. = 6
exhibits an improvement of 32 [dB] over PCM at b = 16.
Equivalently, in order to obtain the same FWMSE as that of
PCM at 16 bits, the PRFQ converter with O.F. = 6 requires
less than 12 bits. At lower bit-rates, the improvement of the
optimal PRFQ over PCM is also significant. For example, the
overloading PRFQ with O.F. = 4 and b = 2 has a lower
FWMSE than the PCM converter with b = 4, thus achieving
a data rate compression of 50% (see Fig. 4).

IX. CONCLUSIONS

This paper has studied perfect reconstruction feedback
quantizers based on an additive white noise model for quanti-
zation errors. We have derived results that relate the minimum
frequency weighted MSE and the signal-to-noise ratio of the
scalar quantizer embedded in the converter. We have also
provided closed form expressions for the optimal frequency
responses of the filters in the converter and have derived
several properties of optimal PRFQs. In particular, we have
shown that the optimal frequency response magnitudes of the
filters are unique, that the frequency weighted errors of an
optimal PRFQ are non white, and that consecutive samples of

18There exist several results on the optimal balance between overload and
granular error variances for stand-alone scalar quantizers (see, e.g., [30] and
the references therein). However, for feedback quantizers the question seems
to be open.
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b [bits/sample]

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shannon’s D(R) function, with R=b

D* for O.F.=4, analytical

D* for O.F.=6, analytical

σ2
ε
 opt. PRFQ, Non Overloading, O.F.=4, experimental

σ2
ε
 opt. PRFQ, Non Overloading, OF=6, experimental

σ
ε
2 opt PRFQ, Overloading, O.F.=4, experimental

σ2
ε
 opt. PRFQ, Overloading, O.F.=6, experimental

FWMSE PCM, O.F.=4, analytical
σ2

ε
 opt. PRFQ, Non Overloading, OF=6, experimental, E.C.

σ2
ε
 opt. PRFQ, Non Overloading, O.F.=4, experimental, E.C.

Fig. 4: Frequency weighted MSE for b ∈ {1, . . . , 16}.

the output sequence of the scalar quantizer are uncorrelated.
We have also shown that, within our model, the frequency
weighted MSE of an optimal, oversampled PRFQ, decreases
exponentially with oversampling ratio.

APPENDIX

A. Preliminary Results
The following preliminary results are necessary to prove

the theorems stated in the previous sections. We begin by
introducing the following definition:

Definition 2 (Similarly/Oppositely Functionally Related):
We say that two functions φ, ψ : [a, b] → R are similarly

functionally related iff there exists a monotonically increasing
function G(·) such that φ(x) = G(ψ(x)), for all x ∈ [a, b],
and write φ ↑↑ ψ. Similarly, if there exists a monotonically
decreasing function G(·) such that φ(x) = G(ψ(x)), for all
x ∈ [a, b], we say that φ and ψ are oppositely functionally
related, and write φ ↑↓ ψ. N

Theorem 7: 19 If φ, ψ : [a, b] → R are similarly function-
ally related, then

[b− a]
∫ b

a

φ(x)ψ(x)dx ≥
∫ b

a

φ(x)dx
∫ b

a

ψ(x)dx. (47)

19This theorem is related to the variant of Tchebyshev’s Integral Inequality
given in [34, Theorem 236]. It departs from the latter in that the integrands
must be functionally dependent, which allows us to state necessary and
sufficient conditions for equality.

If φ and ψ are oppositely functionally related, then the in-
equality in (47) is reversed. In either case, equality is achieved
iff ψ (and therefore φ) is almost constant. N

Proof: We will examine the difference between the right
and left hand side in (47). We obtain
∫ b

a

φ(x)ψ(x)dx− ψ

∫ b

a

φ(x)dx =
∫ b

a

φ(x)
[
ψ(x)− ψ

]
dx,

where ψ , 1
b−a

∫ b
a
ψ(x)dx. Note that we have divided both

sides by b−a. Suppose φ ↑↑ ψ. (The proof for φ ↑↓ ψ proceeds
in a similar way.) Then there exists a monotonically increasing
function G(·) such that φ = G(ψ), and a value φ0 such that
φ(x) > φ0 ⇐⇒ ψ(x) > ψ and φ(x) < φ0 ⇐⇒ ψ(x) < ψ.
It then follows that∫ b

a

φ(x)
[
ψ(x)− ψ

]
dx ≥

∫ b

a

φ0

[
ψ(x)− ψ

]
dx = 0,

with equality iff∫

ψ>ψ

[ψ(x)− ψ ]dx = 0 =
∫

ψ<ψ

[ψ(x)− ψ ]dx,

i.e., iff ψ (and therefore φ as well) is almost constant.
Proposition 2: Define

p(ω) , r(ω)− g(ω) (48a)

q(ω) , r(ω) + g(ω) (48b)

r(ω) ,
√
g(ω)2 + α , (48c)
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with α > 0 and g ∈ L1, g : [−π, π] → R+
0 . Then, the following

results hold:

p(ω) =
α

q(ω)
, (49a)

p(ω)2 ≤ α, ∀ω ∈ [−π, π], (49b)

p(ω) ≤ α

2g(ω)
, ∀ω ∈ [−π, π]. (49c)

1
2π

∫ π

−π
ln(q(ω))dω ≤ ln

(√
g 2+α + g

)
. (49d)

where g , 1
2π

∫ π
−π g(ω)dω. Equality in (49b) is obtained iff

ω is such that g(ω) = 0.
Proof: (49a), (49b) and (49c) follow directly by algebraic

manipulation. In order to show (49d), we define the functions

Q(x) ,
√
x2 + α + x; W (x) , ln(Q(x)), (50)

where α > 0 and x ≥ 0. We have that d2W (x)
dx2 = −x(x2 +

α)−3/2 ≤ 0, and thus W (x) is a concave function. Then,
applying Jensen’s inequality, we obtain 1

2π

∫ π
−πln(q(ω))dω =

1
2π

∫ π
−πW (g(ω))dω ≤ W

(
1
2π

∫ π
−πg(ω)dω

)
, which leads di-

rectly to (49d).
Proposition 3: Define fα(ω) as in (25a), with g satisfying

Assumption 1. Then, if ∃ζ ∈ Ng such that g(ω) is O(ω − ζ)
as ω → ζ, the following holds:

lim
α→0+

‖fα‖2 = ∞.

Proof: The interval [−π, π] can be partitioned into two
disjoint sets H , {ω : g(ω) > δ} and I , {ω : g(ω) ≤ δ} by
utilizing an arbitrary "threshold" δ > 0. Then, substituting (48)
into (25a), we obtain

‖fα‖2 =
1
2π

∫
I p(ω)2dω + 1

2π

∫
H p(ω)2dω

e
1
2π

R
I

ln p(ω)2dω

e
1
2π

R
H

ln p(ω)2dω
. (51)

Using (49b) and (49c), we have that
√
α ≥ p(ω), ∀w ∈ I;

α

2δ
≥ p(ω), ∀w ∈ H. (52)

Substituting of (52) into (51) we obtain

‖fα‖2 ≥
1
2π

∫
I
p(ω)2dω

α
|I|
2π

(
α
2δ

) |H|
π

=

[
(2δ)

|H|
π

2π

] [∫
I p(ω)2dω

α
|H|
2π +1

]
, (53)

where |H| and |I| denote the Lebesgue measures of H and I,
respectively.

We will next show the divergence of the last expression on
the right hand side of (53) as α → 0+. For this purpose, we
consider two scenarios, characterized by |Ng|, the Lebesgue
measure of Ng .
• Case i): |Ng| > 0. Since p(ω)2 = α, ∀ω ∈ Ng , and
Ng ⊆ I for any δ > 0, we can obtain from (53) that

‖fα‖2 ≥
[

(2δ)
|H|
π

2π

][∫
Ng
p(ω)2dω

α
|H|
2π +1

]

=

[
(2δ)

|H|
π

2π

] [ |Ng|α
α
|H|
2π +1

]
=

[
(2δ)

|H|
π

2π

]
|Ng|
α
|H|
2π

,

which clearly tends to ∞ as α→ 0+.

• Case ii): |Ng| = 0. The conditions of the proposition
ensure the existence of scalars ε > 0, L < ∞ such that
g(ω) ≤ L |w − ζ|, if |ω − ζ| < ε. This implies that for
any δ > 0 there exists µ ∈ (0, ε) such that [ζ, ζ+µ] ⊂ I
and g(ω) ≤ L |w − ζ| , ∀ω ∈ [ζ, ζ + µ]. Applying this
result, and noting that p ↑↓ g, we have

∫

I
p(ω)2dω ≥

∫ ζ+µ

ζ

p(ω)2dω

≥ I(α) ,
∫ µ

0

(
√
L2x2 + α − Lx)2dx

= µα+ 2
3L

[
L3µ3 + α3/2

]
− 2

3L

[
L2µ2 + α

]3/2
.

After substituting the above inequality into the right hand
side of (53), choosing δ > 0 small enough so as to
ensure20 |H| > π, it is easy to verify that

lim
α→0+

‖fα‖2 ≥ lim
α→0+

[
(2δ)

|H|
π

2π

]
I(α)

α
|H|
2π +1

= ∞.

This completes the proof.

B. Proof of Proposition 1

From the fact that F (z) is stable and strictly causal, we have
that ‖F‖2 = ‖1−F‖2−1. Therefore, the denominators of the
right hand side terms of (16) and (17) are equal. Denote the
numerator of the right side term of (16) as N , ‖ΩxA‖2‖(1−
F )PB‖2. Applying Cauchy-Schwartz inequality we get

N ≥ 〈|ΩxA| , |(1−F )PB|〉2
= 〈|ΩxP | |AB| , |1−F |〉2 = 〈|ΩxP | , |1−F |〉2,

(54)

where the last equality in (54) follows from (1). Sub-
stituting the last term on the right hand side of (54)
into (16) yields (17), which is obtained iff equality holds
in (54). In turn, equality in (54) is achieved iff |ΩxA| =
κ2 |(1− F )PB| , a.e. on [−π, π], for arbitrary κ2 ∈ R+.
This equation, when combined with (1) and (2), leads directly
to (18).

In order to prove the second part of the proposition, we
note that for any εA, εB > 0, the functions A[ε], B[ε] ∈ L2,
and A[ε](ω), B[ε](ω) > 0, ∀ω ∈ [−π, π]. As a consequence,
one can always find causal, rational and stable filters A(z)
and B(z) satisfying (19). Secondly, the difference between
σ2
ε inf |F and σ2

ε when
∣∣A(ejω)

∣∣ and
∣∣B(ejω)

∣∣ satisfy (19) is
given by

σ2
ε − σ2

ε inf |F =
N [ε] −Ninf
γ − ‖F‖2 , (55)

where N [ε] , ‖ΩxA[ε]‖2‖P (1 − F )B[ε]‖2 and Ninf ,
‖ΩxAinf‖2‖P (1− F )Binf‖2. Defining

eA(ejω) , A[ε](ω)−
∣∣Ainf (ejω)

∣∣ ,
eB(ejω) , B[ε](ω)− ∣∣Binf (ejω)

∣∣ ,

20This is always possible since |Ng | = 0.
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and f(ω) as in (20), we can write

N [ε] −Ninf

= ‖Ωx(|Ainf |+ eA)‖2 ‖fP (|Binf |+ eB)‖2
− ‖ΩxAinf‖2‖fPBinf‖2

= ‖ΩxAinf‖2
(
‖fPeB‖2 + 2〈|P |2 f2 |Binf | , eB〉

)

+ ‖fPBinf‖2
(
‖ΩxeA‖2 + 2〈|Ωx|2 |Ainf | , eA〉

)

= N
1
2
inf

[
‖fP eB‖2 + ‖ΩxeA‖2 + 2〈|P |2 f2 |Binf | , eB〉

+ 2〈|Ωx|2 |Ainf | , eA〉
]
.

Each of the terms above can be upper bounded as follows

‖fP eB‖2
(a)

≤
∫

IεA

∣∣P (ejω)
∣∣2 f(ω)2ε2Adω

+
∫

IεB

∣∣P (ejω)
∣∣2 f(ω)2

∣∣Binf (ejω)
∣∣2 dω

(b)

≤ ε2A‖fP‖2 +
∫

IεB

∣∣P (ejω)
∣∣ ∣∣Ωx(ejω)

∣∣ f(ω)dω

(c)

≤ ε2A‖fP‖2 + ε2B‖Ωx‖2/κ2.

‖ΩxeA‖2
(d)

≤
∫

IεB

∣∣Ωx(ejω)
∣∣2 ε2Bdω

+
∫

IεA

∣∣Ωx(ejω)
∣∣2 ∣∣Ainf (ejω)

∣∣2 dω
(e)

≤ ε2B‖Ωx‖2 +
∫

IεA

∣∣Ωx(ejω)
∣∣ ∣∣P (ejω)

∣∣ f(ω)dω

(f)

≤ ε2B‖Ωx‖2 + ε2A‖fP‖2κ2.

〈|P |2 f(ω)2 |Binf |, eB〉
(g)

≤
∫

IεA

∣∣P (ejω)
∣∣2 f(ω)2

∣∣Binf (ejω)
∣∣ εAdω

(h)

≤ ε2A‖fP‖2.

〈|Ωx|2 |Ainf | , eA〉
(i)

≤
∫

IεB

∣∣Ωx(ejω)
∣∣2 ∣∣Ainf (ejω)

∣∣ εBdω
(j)

≤ ε2B‖Ωx‖2

In the above, (a) follows from the fact that
∣∣eB(ejω)

∣∣ ≤ εA, ∀ω ∈ IεA , and (56a)

−
∣∣Binf (ejω)

∣∣ < eB(ejω) < 0,∀ω ∈ IεB . (56b)

(b) follows from the fact that
∣∣P (ejω)

∣∣2 ∣∣1− F (ejω)
∣∣2 ∣∣Binf (ejω)

∣∣2

=
∣∣Ωx(ejω)

∣∣2 ∣∣Ainf (ejω)
∣∣2

=
∣∣P (ejω)

∣∣ ∣∣Ωx(ejω)
∣∣ ∣∣1− F (ejω)

∣∣ ,
(57)

∀ω ∈ [−π, π], see (18), and from IεA ⊂ [−π, π]. Inequality
(c) follows from the fact that

∣∣Ωx(ejω)
∣∣ < ε2Aκ

2
∣∣P (ejω)

∣∣ f(ω), ∀ω ∈ IεA ; (58a)∣∣P (ejω)
∣∣ < ε2Bκ

−2
∣∣Ωx(ejω)

∣∣ f(ω)∼1, ∀ω ∈ IεB , (58b)

which is readily obtained from (18) and (19). Inequality (d)
follows from

∣∣eA(ejω)
∣∣ ≤ εB , ∀ω ∈ IεB

, and (59a)

− ∣∣Ainf (ejω)
∣∣ < eA(ejω) < 0, ∀ω ∈ IεA

. (59b)

Inequality (e) is due to (57) and to the fact that IεB
⊂

[−π, π]. Inequality (f) stems from (58). Inequality (g) follows
from (56), while (h) follows from the fact that

∣∣Binf (ejω)
∣∣ ≤

εA, ∀ω ∈ IεA
. Inequality (i) stems from (59), while (j)

follows from the fact that
∣∣Ainf (ejω)

∣∣ ≤ εB , ∀ω ∈ IεB
.

Therefore,

N [ε] −Ninf

≤ N
1/2
inf

[
(3 + κ2)‖fP‖2ε2A + (3 + κ−2)‖Ωx‖2ε2B

]
,

which completes the proof. ¥

C. Proof of Lemma 1

Define the partition −π = ω0 < ω1 < · · · < ωp = π, where
{ωi}p−1

i=1 correspond to the discontinuity points (if any) of f .
Since f is piece-wise differentiable, its first derivative over all
open intervals (ωi, ωi+1), i ∈ {0, . . . , p − 1} is bounded by
a constant 0 ≤ S < ∞. For each m > S, we define the set
Rm, consisting of all continuous functions h : [−π, π] → R+

satisfying

1
2π

∫ π

−π
log h(ω)dω = 0, (60a)

fmin ≤ h(ω) ≤ fmax, ∀ω ∈ [−π, π], and (60b)∣∣∣∣
d

dω
h(ω)

∣∣∣∣ ≤ m, ∀ω ∈ [−π, π]. (60c)

For each m, the function

hm , arg min
h∈Rm

‖f − h‖. (61)

is the element in Rm “closest” to f . From (23b), and from
the fact that f is piece-wise differentiable, it follows that for
every ε0 > 0, there exists a bounded T ≥ S such that

‖f − hm‖ ≤ ε0, ∀m > T. (62)

(Indeed, it is easy to obtain the bound ‖f(ω) − hm(ω)‖ ≤
(fmax − fmin)2p/m). Notice that if f had no discontinuity
points and if m ≥ S, then hm ≡ f (see (60c)), yielding
‖f − hm‖ = 0.

Since hm(ω) is continuous and piece-wise differentiable,
its Fourier series converges uniformly over [−π, π]. Thus, for
every ε1 > 0, there exists an N -th order (where N < ∞ is
odd and depends on ε1) rational transfer function HN (z) (the
Z-transform of the coefficients of the N−1

2 -th partial sum of
the Fourier series of f ) such that

∣∣hm(ω)−HN (ejω)
∣∣ < ε1, ∀ω ∈ [−π, π]. (63)

HN (z) can be written as HN (z) = G1z
−N+1

2
∏N
i=1(z − ci),

where G1 ∈ R. Thus, the transfer function

H ′
N (z) , HN (z)

G1

|G1|z
−N−1

2

N∏
i=1,

|ci|>1

ci
|ci|

(
c∗i z − 1
z − ci

)
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is clearly biproper, stable, minimum-phase and such that∣∣H ′
N (ejω)

∣∣ =
∣∣HN (ejω)

∣∣ , ∀ω ∈ [−π, π], with the first value
of its impulse response being

χ , lim
z→∞

H ′
N (z) > 0.

Define H̃N (z) , 1
χH

′
N (z), so that limz→∞ H̃N (z) = 1 and

∣∣∣H̃N (ejω)
∣∣∣ =

1
χ

∣∣HN (ejω)
∣∣ , ∀ω ∈ [−π, π]. (64)

With the choice F (z) = 1− H̃N (z), we have

‖f − |1− F |‖ =
∥∥∥f − |H̃N |

∥∥∥ ≤ ‖f − hm‖+
∥∥∥hm − |H̃N |

∥∥∥
≤ ε0 + ε1 +

∥∥∥hm − |H̃N |
∥∥∥ . (65)

We now proceed to upper bound the last term in the above
inequality. From (63) and (64), we have that
∥∥∥hm − |H̃N |

∥∥∥ ≤ ‖hm − |HN |‖+
∥∥∥|HN | − |H̃N |

∥∥∥

≤ ε1 +
∣∣∣∣1−

1
χ

∣∣∣∣ ‖HN‖ = ε1 +
|χ− 1|
χ

‖HN‖.
(66)

From Jensen’s formula (see, e.g., [23]), and since H ′
N (z) is

stable and minimum phase, we obtain

logχ =
1
2π

∫ π

−π
log

∣∣H ′
N (ejω)

∣∣dω. (67)

Recalling from (60a) and (61) that 1
2π

∫ π
−π log hm(ω)dω = 0,

we can write (67) as

logχ =
1
2π

∫ π

−π
log

(∣∣HN (ejω)
∣∣

hm(ω)

)
dω

=
1
2π

∫ π

−π
log

(
hm(ω) + e(ω)

hm(ω)

)
dω,

(68)

where e(ω) ,
∣∣HN (ejω)

∣∣− hm(ω). From (63), we have that

|e(ω)| =
∣∣hm(ω)−

∣∣HN (ejω)
∣∣∣∣ ≤

∣∣hm(ω)−HN (ejω)
∣∣ ≤ ε1.

Thus, choosing ε1 < fmin, the last integral in (68) can be
upper and lower bounded as

log
(
fmin − ε1
fmin

)
≤ 1

2π

∫ π

−π
log

(
hm(ω) + e(ω)

hm(ω)

)
dω

≤ log
(
fmin + ε1
fmin

)
.

It then follows from (68) that

1− ε1
fmin

≤ χ ≤ 1 +
ε1
fmin

⇐⇒ |χ− 1| ≤ ε1
fmin

Substituting the latter into (66), we obtain
∥∥∥hm − |H̃N |

∥∥∥ ≤ ε1 +
ε1

fmin − ε1
‖HN‖

≤ ε1 +
ε1

fmin − ε1
(‖f‖+ ε0 + ε1),

(69)

where the last inequality stems from (62) and (63). Substitu-
tion of (69) into (65) yields

‖f − |1− F | ‖ ≤ ε0 + ε1 +
ε1

fmin − ε1
(‖f‖+ ε0 + ε1).

(70)

Since ‖f‖ is bounded, and from (23b), it follows from (70)
that for any ε > 0, one can always choose sufficiently large
(bounded) values for T (see (62)) and N (see (63)) so that
ε0 and ε1 are small enough to yield ‖f − |1− F | ‖ < ε. This
completes the proof. ¥

D. Proof of Theorem 1

Denote the squared norm of f? (see (24)) via copt , ‖f?‖2,
and define the set of all the f ∈ C2 having the same norm as
f? by Mcopt

, {f ∈ C2 : ‖f‖2 = copt}. Define

B0 ,
{
f ∈ C2 :

∫ π

−π
ln (f(ω)) dω = 0

}
⊂ C2. (71)

It is easy to show21 that f? must belong to B0. From this,
and since {B0 ∩Mcopt

} ⊂ {C2 ∩ C1}, it follows that f? =
arg minf∈B0∩Mcopt

D(f). Minimization of D(f) subject to
f ∈ B0 ∩Mcopt can be stated as the following problem22:

minimize : J(f) ,
∫ π

−π
f(ω)g(ω)dω, (72)

subject to : i) M(f) ,
∫ π

−π
f(ω)2dω = copt, (73)

ii) H(f) ,
∫ π

−π
ln(f(ω))dω = 0. (74)

The problem described by (72)-(74) falls within the category
of isoperimetrical problems, well known in variational calcu-
lus (see, e.g., [35] and [36] ). The standard solution of these
problems is based upon the fact that any f that extremizes J
(see (72)) needs to satisfy

∂

∂f
L(f(ω)) = 0, ∀ω ∈ [−π, π], (75)

where the Lagrangian L(f(ω)), in our case, is given by

L(f(ω)) , f(ω)g(ω) + λ1f(ω)2 + λ2 ln(f(ω)) (76)

and λ1 and λ2 are the Lagrange multipliers, to be found
by enforcing (75) and the constraints (74). Substitution
of (76) into (75) yields g(ω) + 2λ1f(ω) + λ2f(ω)−1 =
0, a.e. on [−π, π], or, equivalently,

f(ω) =

{
β

(
±

√
g(ω)2 + α − g(ω)

)
, if λ1 6= 0,

−λ2
g(ω) , if λ1 = 0,

(77)

a.e. on [−π, π], where the scalars

α , −8λ1λ2, β , 1
4λ1

(78)

21If f? was such that 1
2π

R π
−π ln f(ω)dω = Ψ > 0, then f ′ = fe−Ψ ∈ B0

would clearly yield a smaller D in (21), thus contradicting the optimality of
f .

22 As will become evident in the derivation, the additional constraint
f(ω) ≥ 0, ∀ω ∈ [−π, π], imposed by the definition of f (see (20)) turns
out to be non-binding.
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are such that the constraints in (74) are met.
We note that for the trivial case in which g is almost constant

(see Definition 1), f? is also almost constant. Applying this to
constraint i) in (74) yields that, for this case, f? is such that
f(ω) ≡ 1. Thus, the remainder of the proof addresses only
the cases in which g is not almost constant.

In order to find f?, we will next discard the possible
solutions of (77) which do not correspond to global minimizers
of D(f) in C2 ∩ C1. The unique remaining function, which is
obtained with α > 0 and β > 0 in (77), will characterize the
solution of Optimization Problem 2.

The Case λ1 6= 0: Fore this case, substitution of (77)
into (74) yields that β needs to satisfy

|β| = exp
(
− 1

2π

∫ π

−π
ln

∣∣∣±
√
g(ω)2 + α − g(ω)

∣∣∣dω
)
, (79)

so that β can be obtained explicitly from α. Note that α can
not be zero in the above expression, otherwise β would be
undefined. From this, the feasible23 sign combinations for α,
the ± sign before the square root, and β in (77) are:

a) β < 0, −√ , α 6= 0;

b) β < 0, +√ , α < 0;

c) β > 0, +√ , α > 0.

We will next show that only option c) characterizes the
optimum.

Discarding Option a): We show next that any solution
obtained by applying option a) in (77), say fa, yields a
greater FWMSE than the choice f(ω) ≡ 1. In relation to the
numerator on the right hand side of (21), we have:

〈fa, g〉 =
1
2π

∫ π
−π (

√
g(ω)2 + α + g(ω))g(ω)dω

e
1
2π

R π
−π

ln(
√
g(ω)2+α+g(ω))dω

(a)
>

1
2π

∫ π
−π

(√
g(ω)2 + α + g(ω)

)
g(ω)dω

1
2π

∫ π
−π

√
g(ω)2 + α + g(ω)dω

(80)

(b)
>

1
2π

∫ π
−π

√
g(ω)2 + α + g(ω)dω 1

2π

∫ π
−π g(ω)dω

1
2π

∫ π
−π

√
g(ω)2 + α + g(ω)dω

=
1
2π

∫ π

−π
g(ω)dω = 〈1, g〉.

Inequality (a) above stems from Jensen’s inequality. Inequality
(b) follows by applying Theorem 7 to the numerator of (80),
together with (48) and the fact that

√
g(ω)2 + α ↑↑ g(ω).

Both inequalities are strict since g is not almost constant (see
Theorem 7 and Definition 1).

On the other hand ‖fa‖2 ≥ ‖1‖2 = 1. From the above, it
follows that V (fa) > V (1) (see (21)), discarding, for all non
A.E. flat g, the global optimality of the solutions associated
to Option a).

Discarding Option b): The candidate solutions are now
characterized by options b) and c) only. Applying (49a) to (77)
and (79), these solutions take the form

fα(ω) , θ(α)√
g(ω)2 + α + g(ω)

, (81)

23There exist other four sign combinations, which yield f(ω) < 0, ∀ω ∈
[−π, π], i.e., inadmissible solutions.

where θ(α) is as defined in (25b), with α ∈ [αmin, 0)∪(0,∞)
and α ≥ αmin, where

αmin , − min
ω∈[−π,π]

g(ω)2.

We will discard the optimality of option b) by showing that, if
α ∈ [αmin, 0), then D(fα) > D(f0), if ‖f0‖2 < K, or else
‖fα‖2 > K, where K and f0 are as defined in (40) and (87),
respectively. For this purpose, define the function

C(α) , M(fα) = ‖fα‖2 =
θ(α)2

2π

∫ π

−π
q(ω)−2dω, (82)

with q(ω) as defined in (48). Differentiation of C(α) yields

dC

dα

=
θ(α)2

2π


 1

2π

π∫

−π

dω

q(ω)r(ω)

π∫

−π

dω

q(ω)2
−

π∫

−π

dω

q(ω)3r(ω)


 ,

(83)

where r(ω) =
√
g(ω)2 + α (see (48)). Application of Theo-

rem 7 to (83) yields

dC

dα
≤ 0, ∀α ∈ [αmin,∞), (84)

with equality iff g is almost constant. In turn, option b) is
feasible iff αmin < 0, i.e., only if minω∈[−π,π] g(ω)2 > 0.
We then have from (81) that fα → f0 uniformly as α → 0.
Thus

lim
α→0

C(α) = C0 , ‖f0‖2. (85)

Combining this result with (84), and considering g to be non
almost constant, we obtain

C(α) > C0, ∀α ∈ (αmin, 0). (86)

If ‖f0‖2 < K, then (85) and (86), combined with the fact
that 〈f0, g〉 = minf∈B0∩C1〈f, g〉, yield V (fα) = 〈f,g〉2

K−C(α) >
〈f0,g〉2
K−C0

= V (f0), for all α ∈ (αmin, 0). Thus, if ‖f0‖2 <
K, then option b) is not globally optimal. If, on the other
hand, ‖f0‖2 ≥ K, then (86) implies that ‖fα‖2 > K for all
α ∈ (αmin, 0). In this case, sign combination b) would be
infeasible. It thus follows that sign combination b) cannot be
globally optimal.

The Case λ1 = 0: For the case λ1 = 0, substitution of (77)
into constraint ii) in (74) yields

f(ω) = f0(ω) ,
exp

(
1
2π

∫ π
−π ln g(x)dx

)

g(ω)
, a.e. on [−π, π].

(87)
Notice that f0 = |1− F0|, i.e., the optimal noise shaping
frequency response magnitude in the absence of fed back
quantization noise (recall (45)). This is not surprising, since
taking λ1 = 0 amounts to removing constraint i) (which
restricts the power gain of fed back quantization noise, see
Fig. 1).

We will discard this option and its associated solution f0 by
showing that f0 is either infeasible or that there exists α > 0
such that D(fα) < D(f0).
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If g did satisfy the second condition of Assumption 1, then it
is easy to show that f0 and D(f0) would not be well defined24.
Else, if g satisfies the first condition of Assumption 1, we have
g(ω) > 0 for all ω ∈ [−π, π]. This implies that fα converges
uniformly to f0 as α→ 0+, and thus

lim
α→0+

D(fα) = D(f0). (88)

Recall that D(fα) = Φ(α), see (27), and write

Φ(α) =
N(α)2

K − C(α)
, α ∈ (αc,∞), where (89)

N(α) , 〈fα, g〉 =
θ(α)
2π

∫ π

−π

g(ω)
q(ω)

dω (90)

and C(α) is as defined in (82). The continuity of Φ(α) stated
in (88) implies that if dΦ

dα < 0 at α = 0, then f0 can not be
the minimizer of D(f). We next show that this is indeed the
case. Differentiation of (89) with respect to α gives

dΦ
dα

=
2N(α) [K − C(α)] dNdα +N(α)2 dCdα

[K − C(α)]2
. (91)

Differentiating (90) we get

dN

dα
=
θ(α)
4π

×

 1

2π

π∫

−π

dω

q(ω)r(ω)

π∫

−π

g(ω)
q(ω)

dω −
π∫

−π

g(ω)
q(ω)2r(ω)

dω


 (92)

and, therefore, dN
dα

∣∣
α=0

= 0. Substitution of this into (91),
together with the fact that 0 < N(0) <∞ and that dCdα |α=0 <
0 for a non almost constant g, yields that

dΦ
dα

∣∣∣
α=0

< 0, (93)

thus discarding the optimality of f0.
As a result, the global optimum is characterized sign com-

bination c), i.e, by (81) with α > 0. Finally, the uniqueness of
αK follows directly from (84). This completes the proof. ¥

Proof of Theorem 2

Since the functions N(α), C(α) and are continuously
differentiable ∀α ∈ (αc,∞), so is Φ(α). We therefore have
that if

lim
α→α+

c

dΦ
dα

≤ 0 and lim
α→∞

dΦ
dα

≥ 0, (94)

then αopt, the minimizer of Φ(α), needs to satisfy

dΦ
dα

∣∣∣
α=αopt

= 0. (95)

We will first elaborate upon (95) to derive (28). Then we will
prove that (94) holds.

From (91), one can see that dΦ
dα = 0 iff K = C(α) −

N(α)

2
dN
dα

dC
dα , provided dN

dα 6= 0 and dC
dα 6= 0. If g is not almost

24Or else, if we extend the support of the function ln(·) by defining ln(0) =
−∞, then we obtain ηxP = 0. This would imply f0(ω) = 0 for all ω such
that g(ω) > 0. Thus, since f0 must belong to C2, the integral of ln f0(ω) over
the remaining frequencies needs to be infinite. Since ln(x) < x, ∀x ∈ R+,
this implies that ‖f0‖2 = ∞ (infeasible) and D(f0) = ∞.

constant, then this is guaranteed (apply Theorem 7 to (92)
and (83)). Else, if g is A.E. flat, then fα(ω) = 1 ∀ω ∈
[−π, π], ∀α ∈ [αmin,∞), and all α ∈ (αc,∞) are optimal.
Thus, for a non almost constant g, we have

K = θ(α)2×


∫ π
−π

dω
q(ω)3r(ω)

∫ π
−π

g(ω)
q(ω)dω −

∫ π
−π

dω
q(ω)2

∫ π
−π

g(ω)
q(ω)2r(ω)dω∫ π

−π
dω

q(ω)r(ω)

∫ π
−π

g(ω
q(ω)dω − 2π

∫ π
−π

g(ω)
q(ω)2r(ω)dω


 ,

(96)

where q(ω) and r(ω) are as defined in (48). Application of
the identity 1

q(ω)2 = 1
α

(
1− 2 g(ω)

q(ω)

)
, (which follows from (48)

and (49a)) to the numerator on the right hand side of (96)
yields (28).

Now we will prove (94).
The Sign of limα→α+

c

dΦ
dα : Since αc = min{0, αK}, this

limit needs to be analyzed for two possible scenarios, depend-
ing on whether or not αK is positive.

• The Case αK ≤ 0 For this case, αc = 0, so we
need to prove that limα→0+ dΦ/dα < 0. From Propo-
sition 3 it follows that the first condition in Assump-
tion 1 (g(ω) > 0 ∀ω ∈ [−π, π]) must necessarily hold
in order to obtainαK ≤ 0. Thus, Φ(α) and its first
derivatives are continuous. Therefore, in view of (93),
we get limα→0+

dΦ
dα = dΦ

dα

∣∣
α=0

< 0.
• The Case αK > 0. For this case, we need to prove that

limα→α+
K
dΦ/dα < 0. Rewrite (91) as

dΦ
dα

=
N(α)

K − C(α)

[
2dNdα +

N(α)dCdα
K − C(α)

]
. (97)

From (92), it easy to see that dN
dα ≤ θ(α)

2α , ∀α ≥ 0. On
the other hand, from (49d), and given that g ∈ L1 and
α > 0, we conclude that θ(α) is bounded. Thus, dN

dα is
bounded. From this, and recalling that dC

dα ≤ 0, ∀α > 0,
it is clear from (97) that there a value for α greater than
αK under which K−C(α) is small enough to render dΦ

dα
negative. Therefore, limα→αK

dΦ/dα < 0.

The Sign of limα→∞ dΦ
dα : Substitution of (92) and (83)

into (91) yields

dΦ
dα

=
N(α)

[K − C(α)]2

[
2S(α)

dN

dα
+N(α)

dC

dα

]

= U(α)× (98)
[
S(α)


 1

2π

π∫

−π

dω

q(ω)r(ω)

π∫

−π

g(ω)
q(ω)

dω −
π∫

−π

g(ω)dω
q(ω)2r(ω)




+ T (α)


 1

2π

π∫

−π

dω

q(ω)r(ω)

π∫

−π

dω

q(ω)2
−

π∫

−π

dω

q(ω)3r(ω)




]

= U(α)


 1

2π

π∫

−π

dω

q(ω)r(ω)

π∫

−π

h(ω)
q(ω)

dω −
π∫

−π

h(ω)
q(ω)3r(ω)

dω


 ,
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with

h(ω) , S(α)g(ω)+ T (α)
q(ω) ; (99a)

U(α) , N(α)θ(α)
2π[K−C(α)]2 ; (99b)

S(α) , K−C(α); (99c)

T (α) , N(α)θ(α). (99d)

Direct application of Theorem 7 to (98) allows one to conclude
that

h(ω)
q(ω)

↑↓ 1
q(ω)r(ω)

=⇒ dΦ
dα

≥ 0. (100)

Since q(ω) = Q(g(ω)), h(ω) = H(g(ω)) and r(ω) =
R(g(ω)), where

Q(x) , R(x) + x;

R(x) ,
√
x2 + α ;

H(x) , S(α)x+ T (α)/Q(x)

are continuous functions, we have from (100) that

d

dg
H(g)
Q(g) ×

d

dg
1

Q(g)R(g) < 0 =⇒ dΦ
dα

≥ 0. (101)

Since clearly d
dg

1
Q(g)R(g) < 0, it is only left to determine the

sign of

d

dg

(
H(g)
Q(g)

)
=

d

dg

(
[Sg + TQ−1]Q−1

)

= SQ−1 + [2TQ−1 + Sg] ddg (Q
−1)

= SQ−1 − [2TQ−1 + Sg]
( g
R

+ 1
)
Q−2

= (SQ[R− g]− 2T ) /(Q2R)

= (S − 2T/α)α/(Q2R).

It follows directly from the last equation that the sign of
d
dg (H/Q) corresponds to the sign of S(α) − 2T (α)/α.
Thus, (101) translates into

S(α)− 2T (α)/α > 0
⇐⇒K − C(α)− 2N(α)θ(α)/α > 0 (102)

=⇒dΦ
dα

> 0,

see (99). From inequality (49d), the left hand side of (102) is
lower bounded as

K −
(√

g 2/α+ 1 + g/
√
α

)2 [
1 + 2 g

√
α

]

≤ K − C(α)− 2N(α)θ(α)/α,

where g = 1
2π

∫ π
−π g(ω)dω. From this inequality, and since

K > 1 and g <∞, it is clear that limα→∞(S(α)−2T (α)) >
0. It then follows from (102) that limα→∞ dΦ

dα ≥ 0.
Thus (94) holds, and αopt needs to satisfy (95) and (28).

This completes the proof. ¥

E. Proof of Theorem 3

Monotonicity: Denote the right hand side of (28) as
k(α) = θ(α)2/α. Then we have

dk

dα
=
θ(α)2

α2

(
1
2π

∫ π

−π

α

q(ω)r(ω)
dω − 1

)

= −k(α)
1
2π

∫ π

−π

g(ω)
r(ω)

dω < 0,
(103)

wherein (49a) has been used. This proves the second claim in
Theorem 3.

Convexity: Differentiation of (103) yields
d2k
dα2 = k(α)

[(
1
2π

∫ π
−π

g(ω)
r(ω)dω

)2

+ 1
4π

∫ π
−π

g(ω)
r(ω)3 dω

]
, which

is clearly positive for all α > 0. This shows that the right
hand side of (28) is a convex function, proving the first claim
of the theorem.

Limits: In order to show that the limits (29) and (30) in
Theorem 3 hold, we write k(α) as

k(α) = θ(α)2/α

= exp


 1
π

π∫

−π
ln

[√
g(ω)2 + α + g(ω)√

α

]
dω


 .

(104)

We will first prove the validity of limα→0+ θ(α)2/α = ∞.
Clearly, if g(ω) > 0 for all ω ∈ [−π, π] (condition i) of
Assumption 1), then the right hand of the above equation tends
to ∞ as α → 0+. If this wasn’t the case, then the second
condition of Assumption 1) must be satisfied, and therefore the
conditions of Proposition 3 are met. Applying Proposition 3
and the fact that θ(α)2/α > ‖fα‖2 (see (81)), it follows that
k(α) tends to ∞ as α→ 0+. This proves the validity of (29).

In order to show that limα→∞ k(α) = 1 (i.e., (30)) holds,
we first note from (104) that θ(α)2/α ≥ 1 for all α > 0. On
the other hand, applying (49d), we obtain

θ(α)2/α ≤
(√

g 2 + α + g

)2

/α, (105)

where g , 1
2π

∫ π
−π g(ω)dω. Since g < ∞ (as required by

Assumption 1), the right hand side of (105) clearly tends to 1
as α→∞. Therefore, limα→∞ k(α) = 1. ¥

F. Proof of Theorem 4

In view of Theorem 3, it suffices to proof the limits for
α→ 0+ and α→∞, respectively. The uniform convergence
of fα to f0 as α → 0 if g(ω) > 0 ∀ω ∈ [−π, π] was already
shown in the proof of Theorem 1. In order to show that fα
tends uniformly to f∞ as α→∞, we write

fα(ω) =

exp

(
1
2π

π∫
−π

ln
[√

g(x)2+α+g(x)√
α

]
dx

)
√
α

√
g(ω)2 + α + g(ω)

. (106)

If g(ω) < ∞, ∀ω ∈ [−π, π], then
√
g(ω)2+α+g(ω)√

α
tends

uniformly to 1 as α→∞. Applying this result to (106) yields
that fα tends uniformly to 1 = f∞ as α→∞. ¥



19

G. Proof of Theorem 5

From (28) and (38) we have

K = exp


 1

2π

ωc∫

−ωc

ln

[√
g(ω)2 + αopt + g(ω)√

αopt

]2

dω




= exp


 1

2π

ωc∫

−ωc

ln

[√
λg1(ω)2 + αopt +

√
λ g1(ω)√

αopt

]2

dω


 .

With the change of variable u = λω, this becomes

K = exp
(

1
2πλ

∫ π
−π ln

[√
g1(u)2+αopt/λ+g1(u)√

αopt/λ

]2

du

)
. Thus,

by writing αopt as the function αopt(K,λ), we conclude that
αopt(K,λ) = λαopt(Kλ, 1). Substituting the latter and (38)
into (37) we obtain

D?(K,λ)

=
1
4π

ωc∫

−ωc

[√
gλ(ω)2 + αopt(K,λ) − gλ(ω)

]
gλ(ω)dω

=
1
4π

π∫

−π

[√
g1(u)2 + αopt(Kλ, 1) − g1(u)

]
g1(u)du

= D?(Kλ, 1).

This completes the proof. ¥

H. Proof of Theorem 6

Applying (49c) to (37) one can write

D?(K, 1) ≤ αopt(K, 1)
4

=
(K − 1)αopt(K, 1)

4
D?h(K, 1)

≤ Kαopt(K, 1)
4

D?h(K, 1),

where D?h(K, 1) , 1
K−1 is the minimum FWMSE corre-

sponding to g1(ω) ≡ 1 when λ = 1. Substitution of (49a)
into (28) yields

Kαopt(K, 1)

= exp

(
1
2π

∫ π

−π
ln

(√
g(ω) + αopt(K, 1) + g(ω)

)2

dω

)
.

Since αopt(K, 1) is monotonically decreasing (see Theo-
rem 3), it follows that Kαopt(K, 1) decreases with increasing
K. Since K > 1, this leads directly to D?(Kλ, 1) ≤
GD?h(Kλ, 1), ∀λ ≥ 1, where G , Kαopt(K,1)

4 is independent
of λ. Applying Theorem 5 to both sides of the latter inequality,
we obtain D?(K,λ) = D?(Kλ, 1) ≤ GD?h(Kλ, 1) =
GD?h(K,λ). Since D?h(K,λ) corresponds to the minimum
FWMSE for a constant g, by virtue of (42) we have that
D?h(K,λ) ≤ K−λ/(1 − K−1). Substitution of this into
the last inequality yields D?(K,λ) ≤ G

1−K−1K
−λ. This

completes the proof. ¥
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