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Abstract

This thesis presents results on optimal coding and decatfinijscrete-time stochastic signals, in the
sense of minimizing a distortion metric subject to a corstran the bit-rate and on the signal transfer
function from source to reconstruction.

The first (preliminary) contribution of this thesis is theroduction of new distortion metric that
extends thenean squared errofMSE) criterion. We give this extension the nakiveighted-Correlation
MSE(WCMSE), and use it as the distortion metric throughoutliesis. The WCMSE iswaeightedsum
of two components of the MSE: the variance of the error corepbancorrelated to the source, on the
one hand, and the remainder of the MSE, on the other. The WCbASHEake account of signal transfer
function constraints by assigning a larger weight to déwiest from a target signal transfer function than
to source-uncorrelated distortion.

Within this framework, the second contribution is the sioutof a family of feedback quantizer
design problems for wide sense stationary sources usindditive noise model for quantization errors.
These associated problems consist of finding the frequessponse of the filters deployed around a
scalar quantizer that minimize the WCMSE for a fixed quansignal-to-(granular)-noise ratigSNR).
This general structure, which incorporates pre-, postd, f@edback filters, includes as special cases
well known source coding schemes suchpatse coded modulatiofPCM), Differential Pulse-Coded
Modulation(DPCM), Sigma DeltaXA) converters, and noise-shaping coders. The optimal frexyue
response of each of the filters in this architecture is fowsrdebich possible subset of the remaining
filters being given and fixed. These results are then applie/érsampled feedback quantization. In
particular, it is shown that, within the linear model usedtl éor a fixed quantizer SNR, the MSE decays
exponentially with oversampling ratio, provided optimétkfis are used at each oversampling ratio. If a
subtractively dithered quantizer is utilized, then theseanodel is exact, and the SNR constraint can be
directly related to the bit-rate if entropy coding is usexjardless of the number of quantization levels.
On the other hand, in the case of fixed-rate quantizatiorS MR is related to the number of quantization

levels, and hence to the bit-rate, when overload errorsegégible. It is shown that, for sources with
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unbounded support, the latter condition is violated fofisigtly large oversampling ratios. By deriving
an upper bound on the contribution of overload errors toated WCMSE, a lower bound for the decay
rate of the WCMSE as a function of the oversampling ratio isyébfor fixed-rate quantization of sources
with finite or infinite support.

The third main contribution of the thesis is the introductiof the rate-distortion functionRDF)
when WCMSE is the distortion metric, denoted by WCMSE-RDFe ptbvide a complete characteriza-
tion for Gaussian sources. The resulting WCMSE-RDF yieddspecial cases, Shannon’s RDF, as well
as the recently introduce®DF for source-uncorrelated distortiof®DF-SUD). For cases where only
source-uncorrelated distortion is allowed, the RDF-SUBxiended to include the possibility of linear-
time invariant feedback between reconstructed signal adercinput. It is also shown that feedback
gquantization schemes can achieve a bit-rate only 0.25&®itgple above this RDF by using the same
filters that minimize the reconstruction MSE for a quanti3&R constraint.

The fourth main contribution of this thesis is to provide aafeconditions under which knowledge
of a realization of the RDF can be used directly to solve eacagcoder design optimization problems.
This result has direct implications in the design of subbaoaters with feedback, as well as in the design
of encoder-decoder pairs for applications such as netwar&atrol.

As the fifth main contribution of this thesis, the RDF-SUD t8ized to show that, for Gaussian sta-
tionary sources with memory and MSE distortion criteriamp@per bound on the information-theoretic
causal RDF can be obtained by means of an iterative numeioakedure, at all rates. This bound is
tighter than0.5 bits/sample. Moreover, if there exists a realization of¢aasal RDF in which the re-
construction error is jointly stationary with the sourdeen the bound obtained coincides with the causal
RDF. The iterative procedure proposed here to obﬁh@D) also yields a characterization of the fil-
ters in a scalar feedback quantizer having an operatiotetinat exceeds the bound by less thaib4
bits/sample. This constitutes an upper bound on the opperdrmance theoretically attainable by any

causal source coder for stationary Gaussian sources Ur@BtSE distortion criterion.
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Chapter 1

Introduction

Design depends largely on constraints.
Charles Ormond Eames, Jr, United States Designer.

There exist but two classes of problems in politics: those
which solve themselves and those which have no solution.

Randn Barros Luco, former Chilean president (1910-1915).

My biggest problem is what to do about
all the things | can’t do anything about.

Ashleigh Brilliant, British Cartoonist.

1.1 Background and Motivation

Many engineering applications require the storage andimngsion of signals so that small distortion
occurs whilst utilizing a limited number of bits. The acheevent of this goal has been one of the
fundamental objectives in signal processing researcle shrebeginnings of the “Digital Era” [1-5].

The mathematical characterization of the trade-off betwidelity and data-rate constitutes the
essence of what is known as Rate-Distortion Theory [6]. Tdwendlations for this theory were laid
by Claude Shannon in [7, 8]. Shannorese-distortion functior(RDF), denoted by?(D), specifies the
minimum bit-rateR required for a given amount of distortidnthat can be achieved anyconceivable
source coding systenk(D) has been characterized, to different degrees, for seperahbility density
functiong(PDFs) and for several distortion metrics [6,9-11]. By fa best understood case of this rate-
distortion trade-off is that which occurs when the sourc&éussian and mean squared error (MSE) is

used as the distortion metric. In this case, for a disciiete-Gaussian stationary random soufgék) }
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8 CHAPTER 1. INTRODUCTION

with power spectral densitfPSD) S, (e’“’), the minimum achievable rate for a given distortibn> 0

is given by the well knowmeverse water-filling equatiofs[6, 9]

1 1 [Su(e®)
w:Sx (eiw)>0
1 T .
D= o /min{@,SX(ew)} dw, (1.1b)
™

wheref > 0 is a scalar parameter commonly referred to as the “watei’levéne relation between

rate, distortion and water level can be easily appreciatdidd example illustrated in Fid-1-(a). In that

—z(k)

w X(k) < é
(b)

A
<
—

£
S~—

Figure 1.1: (a): Graphical representation of the water-filling equations (1.1). The distortion
is represented by the colored area under the plot. (b): Backward test-channel realization of
R(D).

figure, the distortiorD is given by the area under the water legedr the plot ofS, (e’*), whichever is
lower. In turn, only the portion of, (e’*) standing above the water level contributes to the rate, s ca
be seen fromX.19.

Another equally important question in rate-distortionahes finding arealizationfor the rate distor-
tion function for a source. A realization of a rate-distontfunctionR (D) corresponds to a probability
assignment between sourcand its reconstructed approximatigisuch that the distortion i® and the
mutual informatiod betweenx andy equalsR(D). For a discrete-time Gaussian stationary source with

PSDS, (e’*) and using MSE as the distortion metri¢( D) is realized if the optimal reconstruction error
{z(k)} = {y(k)} — {x(k)}
is a Gaussian stationary process independent of the o{ytptit}, with PSD

S,(e’) = min {0, Sx(e’)} . (1.2)

1These equations were first derived by Kolmogorov for comtirastime Gaussian sources in [12].
2The notion of mutual information is formally introduced ie@ion2.3.20f this thesis.
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From the above argument it can be seen that the realizatiB(0j can be represented byest channel
such as the one shown in Fig.1-(b). Since the additive noisgz(k)} is assumed independent of any
other signaknteringthe channel, the arrows point to the left. (Recall that tlierenust be independent
of the output.) Such flow of signals, which may at first sighgreecounterintuitive, is an indication of
the fact that Shannon'’s rate-distortion function cannaadized causally. This implies that, in practice,
infinite delay from source to reconstruction would be reggiito achievé R(D).

Part of the applicability of rate-distortion theory sterrm the fact that knowledge of the RDF, for a
given source and distortion metric, can be used as a gu@glidesign rate-distortion efficieahcoder-
decoder(ED) systems, see [13] and the references therein. Indbedyater-filling equationsl(1)
naturally suggest practical coding paradigms such as aunb-boding and transform coding [13, 14].
Moreover, knowledge of the realization of an RDF can, in gipte, be utilized as the key to solve
optimal source-coder design situations [15]. Unfortulyathis doesn’t seem to be the case for most
practical ED design problems. In fact, a number of limitati@sually arise in practice that preclude the
use of the RDF and its realization to aid in the design of EDspaAs a consequence, not only can the
performance of an ED system significantly depart fr&fD), but also a designer, if aiming for rate-
distortion efficiency, will have to solve an (often difficuttonstrained optimization problem. A brief list

of these practical limitations includes:
1. the analytical intractability of meaningfdistortion metrics
2. signal transfer function constraints
3. architectural limitations
4. quantization and entropy coding constrairasid
5. delay.

Each of these limitations is briefly discussed below.

1.1.1 Distortion Metrics

It is often the case that the most meaningful distortion iogfior the application of interest make the
analytic derivation of the corresponding RDF a formidabtegven impossible, tad19,20]. This is the

case of, for example, elaborate distortion metrics based perception models of human hearing and

3Notice that, in this thesigp achievemeans to construct an ED pair that attains an operatiomaté@i( D) when the distortion

is D, which is more restrictive thato realizea rate-distortion function.
4Except, in some cases, at asymptotically high rates, spe[#65-18].
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vision [20—-23]. The opposite situation occurs with the MS&attion metric. MSE is highly amenable
to analytical manipulation, but fails to adequately ddseperceived distortion in applications such as
image processing [23]. An example of this fact is illustcabe Fig. 1.2. In this figure, the perceived
degradation in image quality produced by linear distor{lomw-pass filtering in images (b) and (e)) is
clearly more significant than that due to additive noise uretated to the original picture (images (c)

and (f)). Nevertheless, the MSE in (b) is equal to the MSE jnTbe same applies to images (e) and (f).

(d) Original (e) MSE = 36.6 (f) MSE=36.6

Figure 1.2: Comparison between the perceived effect of parallel and uncorrelated distor-
tions. (a), (b): Original images; (b) and (e): Low-pass filtered versions (Gaussian blurring);

(c) and (f): Uniformly distributed white noise uncorrelated to the original image added.

1.1.2 Signal Transfer Function Constraints

A number of applications impose constraints on the trarfsfiection from source to the reconstructed
output. This situation arises, for example, when the outiptite decoder is added to the output of one or

more other decoders that generate correlated versions séthe source. Typical examples can be found
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in sub-band coders [24-28] and in parallel quantizatiorswds [29—31]. Although, in these cases, the
signal transfer functions of all ED pairs could, in prin@pbe optimized globally, there are situations in
which the design must be carried out in a modular fashions mappens, for example, when the globally
optimal design is unknown, or when the other parallel enco@eoder pairs have been pre-designed and

cannot be modified.

Another scenario in which the signal transfer function oE&nhpair is important is when the decoded
output is fed-back to the encoder input (together with offignals) through an external feedback loop.

As an illustration, consider a simple networked controteys as depicted in Fid..3. In this scheme,

=

Controller

Decoder Encoder

\

Rate-Constrained Digital Link

Figure 1.3: A simple networked control system. r, d and t represent reference, disturbance,

and plant output signals, respectively.

let us assume that the reference signahd the disturbance signélarewide-sense stationarfv.s.s.)
processes, and that the controller, plant, encoder andideaoe modeled as LTI systems. Suppose that
the controller has been designed, in some optimal semiieout taking into accounthe effect of an
ED pair in the feedback path. This is indeed the case in maagtipal situations, either because the
feedback path was originally a transparent, noise-lesegfiak, or because the joint optimal design of
controller and encoder-decoder is an open problem [32hifnsituation, if an ED pair is inserted in the
loop, as shown in Figl.3 then its associated signal transfer function will afféet tynamic behaviour
of the entire closed loop system. This may severely alteadyo properties such as rise times, settling
times, and overshoot. It can also have an impact on the Hestige rejection capabilities of the closed
loop control system. More importantly, the open-loop sldrensfer function of the ED pair should not
have a negative impact on the stability of the closed loopesys This requirement may be particularly
restrictive for unstable plants. In this situation, it igesf reasonable to design the ED pair so that it
exhibits a unit signal transfer function. In this case, tiiair will not affect the dynamical properties

intended in the original closed-loop design.
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1.1.3 Architectural Limitations

All digital source coding systems are based upon some foiguaiftization, usually in combination with
other blocks, such as filters. In this thesis we restrichétta to cases where all these other blocks are
linear. In addition, when the source is an infinite-lengtid@m process, we will consider, apart from the
quantizer, only linear blocks which are also time-invari@l). Excluding non-linear processing from
our analysis leaves aside techniques such as those basedsistent estimates, see. e.g. [33—-36], encod-
ing paradigms based on matching pursuit [36, 37], and gitosin which all the processing around the
quantizer is linear but possibly time-varying [38—41]. &istbeen shown in [33—36] that non-linear tech-
nigues provide improvements in the reconstruction acquathe cost of additional complexity, when
compared to linear methods. However, encoding schemesd biasa linear pre-and post-processing of
signal samples around a quantizer are widely used in peadtie to their relative computational simplic-
ity.

When all the processing stages around the quantizer aigr lovdy three degrees of freedom are
available, namely: (i) to act on the signal before the quantitiee@r pre-processinyg (ii) to act on the
signal after the quantizer (linepost-processing and (iii) to re-inject the output signal (possibly lingar
processed) to the input of the quantizZien€ar feedback These three degrees of freedom are illustrated

in Fig. 1.4 This architecture includes, as special cases, scalab&umt source coding schemes such

Reconstruction
post-
processingh y

DECODER

Source

% » pre-
processing

guantization

feedback

ENCODER

Figure 1.4: The three degrees of freedom in any scheme that combines quantization with

linear processing blocks: pre-processing, post-processing, and feedback.

assigma-delta(>XA) converters [42, 43]nulti stage noise shapind/1ASH) modulators [44, 45], noise
shaping quantizers [46—49], delayed-decision or “lookaati feedback quantizers [50-54] and DPCM
converters [55, 56], as well as subband coders such asdramsbders [57, 58] and filter-banks [28, 59—
61].

There exist design situations in which one or more of the alirgrees of freedom is not avail-
able. For example, if an audio encoder is to be designed &odsrd compact-disc players, the signal

processing associated with play-back is fixed, and thus twdydegrees of freedom are available: pre-
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processing and feedback. As another example, considertaalggensor with quantized, discrete-time
output. In such a device, the physical variable of interabtreach the input of the (internal) quantizer
through some transfer function (different from unity), @vby the dynamic properties of the transducer
within the sensor. This transfer function, which can be sefinear pre-processing, cannot be mod-
ified (unless, of course, internal transducer reconfigomat viable). This leaves only two degrees of
freedom available for the design of encoder and decodeel&tion to any particular situation, we refer
to constraints on the degrees of freedom available to thignimsof the ED system aarchitectural
limitations.

It is natural to expect that any architectural limitatiorlwsidversely affect the best achievable per-
formance of an ED system. This raises other questions suctHasv much will the best achievable
performance be affected if any of the three degrees of fre@dmot available?” “What is the impor-
tance of feedback?”, “Is feedback always necessary fongity”? More generally, this motivates the

search for the fundamental performance limitations assediwith architectural limitations.

1.1.4 Quantization and Entropy Coding Constraints

Quantization is the process of mapping continuous ammitudnbers (or vectors) into a finite or count-
able set of values. Without the use of other processingpvegtantizers are superior in rate-distortion
efficiency, when compared to scalar quantizers [62]. Néedess, the computational complexity of
implementing vector quantization is usually avoided incticee in favor of (simpler) scalar quantizers.

The bit-rate associated with a stand-alone scalar quaiigigézen by the number of quantization lev-
els of the latter. More precisely, if the number of quantmatevels isL, then the binary representation
of each quantized output takg@eg, (L)] bits, where[ -] denotes rounding up to the nearest integer. Such
combination of quantization and binary-encoding is cominogferred to adixed-rate quantization

It is well known thatentropy codingcan reduce the average bit-rate (or the total number of bits)
required to transmit, or store, the output of a scalar qaan{i63]. Moreover, it has long been rec-
ognized that, for memoryless sources, entropy-coded umizalar quantization performs very close
to Shannon’s RDF at all rates [64, 65]. In entropy coded saglantization, each possible output that
the quantizer can generate is calledyanbol An entropy coder maps each of these symbols to (bi-
nary) words of different length. For this reason, this camaltibn of quantization and binary-coding is
commonly known awariable-rate quantizationlf the entropy coding mapping is from one symbol to
one word (in a sequential fashion) then the word-lengthi¢slfy in bits) of each word depends on the
probability of the corresponding symbol being generateaditioned on all previous symbols already

generated by the quantizeSuch an entropy coder will be referred toesropy coder with memory
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(ECM).

The computational complexity of implementing ECM is oftemiged by using entropy coders that
operatebased only upon the marginal probability distributiofieach symbol. The latter corresponds
to memory-less entropy coding, since, in this case, pasbejsmo not participate in the encoding
of the current symbol. As expected, the excess bit-raterieduby ignoring the past in memory-less
entropy coding is large if the probabilistic dependencevben consecutive symbols is strong, and zero
if consecutive symbols are statistically independent,if.the quantizer outputs a memory-less sequence.
By using either linear prediction, as in DPCM converterqjamrow-band analysis filters, as in sub-band
coders, the memory of the output of the quantizer can be seuThis can mitigate, and sometimes
eliminate, the performance loss of using memory-less pgtomding instead of entropy coding with
memory. However, in terms of the general architecture shiowig. 1.4, this requires the use of adequate
pre-processing and/or feedback. It also requires the dreed design a matched post-processing stage
(e.g., a “colouring” post-filter in the case of predictiveamtization, or a synthesis filter bank, in the
case of sub-band coding). Thus, when using memory-lessmntoding, the non-availability of any of
the design degrees of freedom will have a more adverse effettte rate-distortion performance of the
system, than if an entropy coder with memory could be used.

When encoding a band-limited continuous time source, tegistsituations in which increasing the
sampling rate is preferable (or less expensive) than isargahe number of levels used for quantiza-
tion. This is the case in, for example, digital audio [66]3[&ection 1.1]. The practice of sampling
a continuous-time source above its Nyquist rate is knowovassampling Notice that oversampling
can also be applied to a discrete-time band-limited signatreating interpolated samples between the
original ones. In both the continuous-time and discretettases, the effect of oversampling is a shrink-
age of the support of the spectrum associated with the sam@lgersampling, which can be seen as
an increase in time resolution, makes it possible to congierfsr poor amplitude resolution, i.e., for
coarse quantization. This was recognized early by Benre94i8 [67]. However, in achieving this MSE
reduction, it is crucial to place appropriate filters arotinel quantizer [45,56]. Thus, in oversampled

quantization, the optimal use of the three degrees of fr@estmwn in Figl1.4 plays a fundamental role.

1.1.5 Delay

It is known that for Gaussian sources with MSE as the distorthetric, any realization of th&(D)
function requires infinite (in practice, very large) del&yparticular, the forward-channel realization of
R(D) would require the use of non-causal (non-realizable) §iltsee, e.g., [6, Section 4.5]). This limits

the usability of the RDF (and its associated realizations)}lie design of optimal ED pairs subject to
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delay constraints. Delay constraints are present, for plgnn real-time speech communications and
networked control applications. In the latter case, a dbktyveen the source and its reconstruction is
highly undesirable, since it severely affects the dynamapprties and the noise rejection capabilities of
the closed loop system. Indeed, too much delay can easitieréhe closed loop system unstable, with

catastrophic consequences [68, 69].

The causal rate-distortion function has been charactbamy for memoryless sources or in the limit
as the rate tends to infinity, see, e.g., [70] and the refexetieerein. For sources with memory, and at
medium or low rates, little is known. The solution to the cuate-distortion problem could be helpful

in the design of rate-distortion efficient, causal souragers and decoders.

In addition to the causality of the encoder-decoder paiglaydconstraint may also produce further
performance degradation, if the system is subject to additilimitations. For example, if the digital
communications link between encoder and decoder is ofdinihstantaneous capacity, then the use
of entropy coding (either ECM or MEC), with average bit-ratese to that capacity, will induce time
varying delays. If these delays are not tolerated by theiegtpn, then fixed-rate quantization must
be used. By using non-uniform quantizers, such as the Mayel_fuantizer, the bit-rate of fixed-rate
guantization can be very close to that of a uniform quantidér entropy coding (which has variable-
rate), see, e.g., [71]. However, if only “off the shelf” umifn quantizers are available, then the fixed-rate
quantization constraint imposed by low delay requiremaiiltsentail a performance loss additional to

that already inflicted by the need to use a causal ED pair.

In all of the above situations, the design of optimal enceded decoders cannot benefit from knowl-
edge of the corresponding RDF and its realizatiomdess the RDF has been derived taking account of
the constraints associated with the design probl&sia consequence of this, the search for optimal ED

pairs for constrained scenarios has to be undertaken, ie sense, “from scratch”.

This is, indeed, the central theme in this thesis: the desfgoptimal ED pairs under the above
limitations, by either: i) following a “bottom-up”, congtined optimization approach, or ii) finding,
when possible, the RDF of the underlying problem and theloahg a more expedite, “top-bottom”

approach.
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1.2 Previous Related Work

1.2.1 MSE Extensions

It is possible to distinguish two philosophies in the saos that have been proposed in the existing
literature for narrowing the gap between sources and meadar which an RDF can be found and
those for which it cannot. The first approach is to approxartae application-meaningful (but non
tractable) distortion metric by a simplified version moréadie for analysis and optimization, as done,
e.g., in [72,73]. The second approach is to extend RDF#itig’ distortion metrics to better represent
the impact of reconstruction errors in a wider range of agpions. For example, the extension of MSE
to a frequency-weighted MSE (FWMSE), for which the RDF foiuSsian sources has been derived [74],
has found greater acceptance than plain MSE in areas suddiasgantization [46, 75] and image half-
toning [76, 77]. Nevertheless, frequency-weighted MSE fstiis to adequately measure, for example,

the type of perceptual differences that were illustratatiexan Fig. 1.2

1.2.2 Brief Review of Source Coding Paradigms

For stochastic sources, the problem of optimal design ofitiear processing blocks in the architec-
ture shown in Figl.4 has been solved only for MSE, and under certain constramdsagsumptions.
These results are reviewed below for two important sourdangoparadigms associated with the scheme

depicted in Figl.4

Full-Band Coders:

For a w.s.sscalar processsource with a singlescalar quantizer, the system in Figl.4 can always
be re configured to either of the structures depicted in Rigsand1.6. Both are typical schemes that
can be used to describe sigma-delfa\) converters [42], noise shaping quantizers [46] and DPCM

converters [55]. In these figures, the blodRsA, H, B, andF arelinear time-invariant(LTI) filters,

Weighting
Filter

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.5: General feedback quantization system.
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Weighting
Filter

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.6: General feedback quantization system, alternative configuration (equivalent to
the onein Fig. 1.5ifand only if H = A/(1 — F)).

andQ represents a scalar quantizer. The feedback filtaeeds to be strictly causal (i.e., it must have a
delay of at least one sample) for the closed loop to be welhddfisee, e.g., [78, Cha]). The blockP

is a frequency-weighting filter, accounting for the differ@erceptual impact that reconstruction errors
may have at each frequency.

From the viewpoint of the architectural limitations dissed in Sectiorl.1.3 the system in Figl.6
differs from the one in Figl.5in that the former does not require being able to measureighalghat
enters the quantizer. This is compatible with the architectimitation in which the pre-processing is
given and fixed. By contrast, the configuration shown in Ei§, in which one can both inject a signal
prior to @ and measure the result, implicitly allows one to arbityamilodify the pre-processing.

The analysis of the associated feedback system is commiompyified by modeling the quantization
error,

A
n=w-—yv,

as white and uncorrelated with the soutcgs5, 79-83]. Hereafter, we will refer to this simplification
as the Linear Mode] to be formally defined later in Secti@2.2 It must be noted that this model is
actually exact if uniform quantization with dither (eitterbtractive [84] or non-subtractive [85]) is used.
It can also serve as a useful approximation in other case4 2255, 86].

In the Linear Model, the constraint on the bit-rate is uguedpressed as a constraint on the SNR of
Q, i.e., the ratio between the variancesvoindn = w — v in Figs.1.5and 1.6, see, e.g. [55,79-83].
This ratio is denoted by

A

:qw. | <qw

gl (1.3)

Under these assumptions, the design of a rate-distortioriesit full-band coder can be posed as the
minimization of the frequency weighted MSE for a given aneédiwalue ofy, over all filters A, B,
F' (of un-restricted order) satisfying the given architeatwonstraints. Tablé.1 lists several possible

optimization problems that can be obtained assuming @iffiecombinations of filters as being given and
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fixed. We can see from Tablelthat some, but not all cases, have been studied earlier. Wowhese
Table 1.1: Architecture-constrained optimization problems. All cases but Case 7 are asso-

ciated to the system in Fig. 1.5. Case 7 is associated to the configuration shown in Fig. 1.6.

~ denotes the SNR of Q.

Optimization Problem

Case| Given, Find the Existing Results Note
Si(e?“) and | MSE Optimal (for MSE Only)
1 A F B Solution is the standard Wiener filter. -
2 B, F A Solution is the standard Wiener filter -
3 F,AB=W AandB CaselW =1, ' = 0 solved by Noll in [81].| *
4 F AandB CaseF' = 0 solved by *x

Tugan and Vaidyanathan in [87].

5 A B F Results unavailable. The cade= B =1

is a noise-shaping quantizer ok
6 B AandF Results unavailable -
7 H BandF Results unavailable -
8 - A, BandF Solved by **

Zamir, Kochman and Erez in [15].

* The optimal system has “half-whitening” pre-and postefit
** For the casey > L7 \F(ejw)fdw, this problem was first solved in [81].
*** For the casey > % 'fﬂ |F(ej“’)\2dw, this problem was first solved in [81]. The solution

was then re-derived in [88] under the same assumption.

cases consider the MSE criterion only. In this thesis, wé pvidvide a solution to all the problems in
this table as well as extend all of the results to a distortigterion we propose (which receives here the
nameweighted correlatiorMSE).

The optimization problem in the last row of Tallel is of particular interest for this thesis. Itis a
clear illustration of the fact that knowledge of a realipatdf the underlying RDF of a problem can serve
to solve the optimal design problem for an ED pair. This ojtation problem had remained open for

decades. The following is a brief overview of its history:

To the best of the author’s knowledge, the first paper to lookife MSE optimal filtersA, B and F',
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for a giveny, was written by Kimme and Kuo [89] in 1963. In that paper, eld$orm expressions were
derived for optimal frequency responses of the filtérand B as a function of"". These expression were
exact only for the cases in which SE < min,, Sy (e’*). The optimal solution fo~ had to be found
iteratively over the space of all causal and stable filtersl969, Brainard and Candy [80] proposed the
design of the corresponding filters combining some of thelteé [89] together with heuristic criteria
for optimal quantization of television signals. One yedeilaNoll [81] presented simple analytical
expressions for the optimal filters. These expressions ale@ned under the simplifying assumption of
negligible quantization fed back error. Noll showed thaigier this assumption, the optimal filters must
necessarily whiten the input signal prior to quantizatiod,aat the same time, yield quantization errors
whose PSD becomes white after the error weighting filter82j,[Atal and Schroeder study the problem
of optimal filters for noise-shaping-DPCM converters, feiog on the encoding of speech signals. These
authors propose a refined method for the design of the predliiters, matched to the characteristics of
human speech. However, the design of the filter that detesitire noise-shaping characteristics of the
converter is based on heuristics. After a surprising gappf@imately twenty years without further
attempts to solve this problem analytically, an importawinsight came with the work of Guleryuz and
Orchard in 2001 [90]. As in [89], the analysis in [90] yieldsadytical expressions for two of the three
optimal filters using a Lagrangian approach. Here too, ondefilters has to be found by numerical
iteration over the space of all admissible filters. Howeualike [89], these expressions are exact for all
distortion values, i.e., for all bit-rate regimes. More ionfantly, [90] seems to have been the first paper
to study the rate-distortion performance of DPCM at lowrhies, suggesting that scalar quantization
with feedback is (nearly) optimal, not only at high ratesr@gsognized in, e.g., [55, 59]), but at low bit
rates as well. A fully analytical solution to this optimiiat problem finally appeared in recent work by
Zamir, Kochman and Erez [15]. Of key importance is the faat the solution in [15] wasot derived

by solving a constrained optimization problem. Instead,abthors in [15] start frorknowledge of the
forward channel realization of Shannon’s Rate-Distortfanction for Gaussian sources with memory
Working from this, and following aleductivemethod based on mutual-information equalities, optimal
performance, using an entropy coded dithered quantizehads/n to be).254 bits per sample above
Shannon'sk(D), at all rates In [15], the optimal filters are not explicitly charactez, but closed form
expressions can be obtained from other results in the pdijgersame additional work. This example
illustrates one of the key ideas to be developed in this $h&sidetermine how and when the design of
optimal ED pairs can be solved directly from knowledge ofairation of the underlying rate-distortion

function.

Itis also of practical importance to characterize the biaireable performance of the scalar feedback
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quantization system in Fid..5as a function of theversamplingratio. As mentioned in Sectioh1.4
oversampling (i.e., sampling a band-limited continudosetsignal at a frequency above its Nyquist rate)
allows one to achieve a smaller MSE error for a given, fixed lbeinof quantization levels. For instance,
the MSE of simple scalar quantization (without feedbackiswn to decrease as !, where) is the

oversampling ratipgiven by
» Sampling Frequency
~ Nyquist Frequency

see [67]. The latter result has recently been extended tergeredundant expansions in [91]. In turn,
it has been shown in [56] that feedback scalar quantizersattain an MSE that i€ (\~2(m+1)) as

A — oo, Wherem is the order of the feedback filter. (See also recent work 8+4®, 92, 93]). From

a rate-distortion viewpoint, the inverse polynomial erdeicay of this error estimate is “too slow” to
compensate for the increase in the overall bit-rate due ¢éosawnpling (which is proportional tv). To

be more precise, let us consider a scalar quantizer With 2° quantization levels, wheredenotes the
quantization resolution in bits per sample. If the addilonit-rate caused by oversampling were to be
utilized instead to increas¥, the MSE would decay a8(2-2%"), i.e., exponentiall.

A faster decay rate of the MSE of oversampled FQ witban be achieved by selecting a different
feedback filter (of possibly different order) for each ownpling ratio. An example of such a family
(of 1-bit XA converters) was given in [95]. Here, for uniformly boundeguts, the continuous-time
reconstruction error can be uniformly bounded\oy '° *, wherep > 0 is independent of. This bound
guarantees an MSE that decays witas©Q(\~271°¢ %) which is faster than any inverse polynomial, but
still far from exponential. Based on this result, the fanaifyl-bit > A converters reported in [96] achieve
an MSE that ig0(270-14%), i.e., exponentially decaying with increasing Note that the results in [95]
and [96] were obtained using an exact, deterministic moaletjfiantization. The author is not aware
of results on exponential error decay with oversamplingriatfeedback converters having a multi-bit

scalar quantizer or dealing with unbounded support solfrces

Subband Coders:

The case of the system in Fij.4in which a w.s.s. source is decomposed into different bandgteen

quantization is carried out using independent and pamliahtizers corresponds to the typical setting in

5Strictly speaking, this has been shown to hold only for digménose PDFs have finite support. Indeed, it has been shown
that for several infinite support source PDFs, the MSE ofarmf quantization decreases asymptotically withot faster than

(In2)?/a ba2-2b wherea > 0 is a constant independent ifsee [94].
6There exist results showing that an exponential error dedgly increasing oversampling ratio can be achieved when the

guantization threshold crossimgstantsassociated with aontinuous timesource are encoded [97-99]. This falls outside of the

“first sample and then quantize” paradigm in which this théisi.
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filter-banks (FBs) andsub-band codingSBC) [59]. A typical subband coder is shown in Fig7. In
that figure, the pre-processing stage takes the form of a dahk analysis filtersH; (z) (analysis filter
bank) followed by decimation (down-sampliig)The latter process is represented by the blocks,

as shown in Figl.7. Each subband signal is quantized using a separate scalar quantizer, laliled

x Ho(z) |o{iM o 0 |—"0 1M || Ho(x) |

Hl(z) |—>|lMI L' =@ Wi =I TM |—>| ﬁl(z) }_A

Y

L>|HM—1(Z)|—’|J,MI Sl @ WM71=I ™ HﬁM—l(Z)}_T

Figure 1.7: M-channel subband coder with analysis filters H;(z) and synthesis filters
Hi(2).

The output of each quantizer is then up-samplédimes (zero padding). This operation is represented
by the blocks| M in Fig. 1.7. The output is then fed to the corresponding synthesis fﬁtﬁ(fz). The
down-sampling allows the inner section of the filter bank pemte atl /M times the sampling rate of
the input sequencéx(k)}. As a consequence, the total bit-rate is given by the aveshgee bit-rates
associated with each quantizer. Another consequence ohdgan is the introduction of delay, of at
leastM samples, between the source and its reconstruction.

Traditionally, the focus in the subband coding literatuae heen operfect reconstructio(PR) filter-
banks, i.e., on filter-banks where quantization is the oolyrce of reconstruction error (see, e.g., [59,61,
100-105]). When quantization errors are uncorrelated thighsource, the PR condition is a special case
of the signal transfer function constraints discussed icti®e 1.1.2 However, the motivation for PR
in the filter bank literature seems to originate from the cledor aliasing-free analysis/synthesis banks
in the absence of quantization, rather than being a respgonsectical situations where a unit signal
transfer function could be beneficial. (The papers [106] 467 an exception.) The study of filter banks
that do not satisfy the PR property began a few years lated[#5-113]. Non-PR filter banks sacrifice
the PR property in exchange for achieving lower MSE. Howgethezir superior performance can be
critically dependent on accurate knowledge of the stasigif the source [103].

For the case of th€erfect Reconstructiononstraint, it has been shown by Moulin, Anitescu and

Ramchandran that optimal FBs are, in general, biorthog@®alCorollary 3.2]. This fact had already

7 In the equivalent, but computationally more efficient, piigse representation, the decimation (preceded by diffdedays)

takes place before a (modified) analysis filter bank, see,[8Y].
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been suggested by the results reported by Aase and Ram$§24d.imhe work in [86] also shows that an
optimal PR filter bank can always be constructed as a cas¢adeamaunitaryrincipal component filter
bank(PCFB) followed by a set of pre- and post-filters placed addiie quantizer in each subband. The
paper [86] additionally gives analytic expressions for dptimal analysis/synthesis FBs, and provides

an iterative method to find the optimal bit-allocation.

For theNon-Perfect Reconstructiaase, expressions for the optimal synthesis FB, for a givaf a
ysis FB and a given bit-allocation, have been derived in [atdl [108]. The latter paper also proposes
an iterative method for joint design of analysis/synth€8s and associated bit-allocation. In a more
recent paper [113], Mih¢ak, Moulin, Anitescu and Ramchrandierive expressions for the optimal anal-
ysis/synthesis FBs for a given and fixed bit-allocation. yrakso propose an iterative algorithm for the
computation of globally optimal filters and bit-allocatiott is also shown in [113] that, as in the PR
case, an MSE optimal, non-PR FB can always be constructedascade of a paraunitary FB followed
by a set of pre- and post-filters placed around the quantizeach subband. Nevertheless, in general,
for the non-PR case, the FB in the first stage of the cascadensyseed not be a principal-component
filter bank [113, Remark 4].

Feedbacki.e., the third degree of freedom in the general architedepicted in Figl.4, has received
relatively scarce attention in the subband coding litesat@he use of feedback in subband coding first
appeared with the use of DPCM converters, instead of plaatasguantizers (PCM converters), to
quantize each subband signal more efficiently (see, e 3p]J1Feedback in subband coding has been
shown to be beneficial (in the sense of improving rate-distoperformance) in other situations as well.
For example, in [61], Bolcskei and Hlawatsch show that beetk is effective in reducing reconstruction
MSE in oversampled filter banks. Fisher proved in [116] thattate of a standarmguadrature mirror
filter bank (QMFB), without feedback, is strictly above the rate-dititm function, except for special
cases of the PSD of the source. Then Wong showed in [117]katte of cross-band prediction (a
special case of feedback in the scheme of Eig) allows a QMFB to achieve asymptotically optimal
rate-distortion performance at high rates. In a recent papé/akur and Arunkumar [28], the use of
feedback is also shown to improve rate-distortion efficgendiorthogonal subband coders by reducing
(and in some cases eliminating) what is knowrgaantization noise amplificatiorQuantization noise
amplification is defined as the ratio between quantizatiaseneariance in the reconstructed signal and
the average of the variances of quantization noises intedlin each subband. This ratio is unity for
paraunitary filter banks (where there is no quantizatios@aimplification), but is greater than unity in
all perfect reconstruction biorthogonal subband code8$. [ANlevertheless, to the best of the author’s

knowledge, the problem gbintly designing optimal filters and bit allocation for subband exsdwith
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feedback has not been solved. Hence, the optimal achiepalflermance of a subband coder with three
degrees of freedom remains an open problem, except in tliteakinthe rate, or the number of subbands,

tends to infinity.

1.2.3 Related Existing Results on Causal and Delay-Free Soe Coding

Itis known that full-band source coders, such as PCM, DPCi/bafy converters, do notintroduce delay
between source and reconstructed signal, as long as alidhand post-filters do not introduce delay, see
Fig. 1.5 However, it is not known how to design an optimal scalar Bestt quantizer satisfying a finite-
(or zero-) delay constraint. As mentioned in Sectlo?.2 the bit-rate of the predictive converters found
in [15], which use subtractive dither and entropy codingriy 0.254 bits per sample above Shannon’s
RDF, for Gaussian stationary sources. Unfortunately, thwerters described in [15] require the use of a
non-causal pre- or post-filter. In practice, these wouldiiede approximated by filters which introduce
a (possibly) long delay. On the other hand, all the filtershim ¢ptimal perfect reconstruction feedback
quantizers obtained by the author (and colleagues) in [&68Fausal. Therefore, these converters can
be considered the best zero-delay source coders for wosuses described to date. However, being
PR converters, it is clear that these ED pairs are still quii¥@l, within the class of zero-delay source
coders. This can be easily verified by noting that applyingwseal Wiener filter [119], which violates the
PR constraint, to the reconstructed signal in a PR convéstguaranteed to reduce distortion without
introducing delay.

In the subband codingSBC) literature, causal (zero-defyransform coders were first proposed
in [120] by Habibi and Hershel, as an alternative to princgmmponent transform coders (such as the
Karhunen-Léve TransformKLT, see [121]). Unlike KLT coders, causal transform cadese only tri-
angular matrices for analysis and synthesis. The cost éé@alg causality, in this case, is quantization
noise amplification. The latter arises from the fact thairtgular matrices cannot be unitary, and thus are
not energy preserving (except for the identity matrix). dieg the quantization error associated with one
transform coefficient to the next coefficidmtforeit is quantized, in a sequential fashion, reduces quan-
tization noise gain, improving rate-distortion perforrnanThis technique can be seen as a special case
of feedback in the general architecture depicted in Eig. Using the Linear Model (see SectibR.2),
it was shown by Phoong and Lin in [57] that careful design eflthear feedback componentin a causal
transform coder can, at high rates, bring the theoreticahtjpation noise gain down to unity. In such

cases, the performance of causal transform coding equaleftkKLT [57]. Notice that this is analogous

8The requirement of zero-delay is stronger than causalisystem can be causal and yet introduce arbitrary delay. riteless,

the term “causal transform coder” is commonly used to referetro-delay transform coders.
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to the results mentioned above regarding biorthogonat filéeks as reported in [28]. The extension of
causal transform coders to general subband coders is asosged in [57]. The author is unaware of
any other paper analyzing the design of SBCs. It is also itapoto note that the linear model analysis
carried out in [57] and [28] assumes that fed-back quarndimagrrors negligible variance. Thus, it is
accurate only at high rates.

From a rate-distortion theoretical perspective, therstgartial results on theptimal performance
theoretically attainablOPTA) with zero-delay codes and causal source coding.s@&mni¢122], and
Gaarder and Slepian [123, 124], have shown that, for i.bdrees, and under fixed-rate and zero-delay
constraints, optimal rate-distortion performance is eehd by PDF-optimized scalar quantization. Other
results have been obtained considering the less restriatition ofcausalityinstead of the requirement
of zero end-to-end delay. This notion receives the naausal source codings introduced by Neuhoff
and Gilbert in [125]. Under this concept, an encoder-decpde is deemed causal if the reconstruction
of the current sample in the decoder is a functiorooly the current and past samples of the source.
Notice that this definition allows for arbitrary delays iretantropy coding of the quantized samples. It
is shown in [125] that for memoryless sources, the OPTA iseaeldl by time sharing between, at most,
two entropy-constrained optimal scalar quantizers. It lates shown by Linder and Zamir that, for high
rates, the cost of requiring causality in source-codingjaraximately0.254 bis/sample with respect to
Shannon’s RDF [70]. Itis also known that, for any source arahg rate-regime, the mutual information
rate across aadditive white Gaussian noifAWGN) channel is not more than 0.5 bits/sample above
the corresponding rate-distortion function [126]. By ddesing the use of subtractively-dithered scalar
quantizers and entropy coding, this yields an upper bounith&oOPTA in causal source codinglaf54
bits/sample above the non-causal RDF. However, it is unknehether causal source coders can out-

perform this bound.

1.3 Overview of the Main Contributions

The main contributions of this thesis are as follows:

1.3.1 A Two-Parameter Frequency-Weighted MSE

The first contribution of this work is an extension of the MSiiterion to better address perceptual
phenomena such as those shown in Eig, and to account fasignal transfer function constraingich
as those discussed in Sectibid.2 This measure consists of a weighted sum of the varianceedfiBE

component which is uncorrelated to the source, on the oné, lzend the remainder of the MSE, on the



1.3. OVERVIEW OF THE MAIN CONTRIBUTIONS 25

other. We give a formal definition to this distortion metnicthe following.
For a random scalar soursereconstructed as with reconstruction erroz = y —x, the mean
squared errorg? = E [ZQ], can always be decomposed into two terms, nansgyrce-uncorrelated

error

andsource-parallel error

Dt 252 — UZ;‘ (1.4a)
and thesource-parallel distortion
pl 2 "f;, (1.4b)
such that
MSE = D+ + Dl (1.5)

As an extension of the MSE, th&keighted Correlation Mean Squared ErrfdfVCMSE) betweerx and

y is defined in this thesis as:
Das(x,y) 2 aD*t + 0D, (1.6)

whereq, b are real positive coefficients. In the particular case ofesgandom sourced)- and D!l are

asin (L.4). For aw.s.s. random process soufgék)} with reconstructiody(k)} = {x(k) + z(k)},

1 /" . S,x(e39)?

La 1 joy _ 122\ 1
D& —~ [ ) lsz(e e e (2 (1.7)
plal (" ’Szvx(ejw)fd 1.8
s %/4 R (1.8)

whereS, andS, are thepower spectral densitig®SD) of{x(k)} and{z(k)}, respectively, and,, . (e’*)
is the cross-spectral density betwefgtk)} and {x(k)}. For a vector random sourse € R having

covariance matri¥< y, we have

1 1
La b L —1 T
D* &~ {K,}) Ntr{Kz_,xKx Kz_’x} (1.9)
1
Dl 2 Ntr{Kz,xKglKgx}, (1.10)
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wherez = y —x andK ,  is the cross-covariance matrix betwessndx. Notice that setting = b = 1
yields the standard MSE criterion.

Reconstruction errors produced by linear processing, aaditering, are part of the source-parallel
distortion term. These have no impact on the source-uneteckterm. Thus, by choosirtg> a, it is
possible to assign a larger cost to deviations of the sigaakfer function of an ED pair from a target
transfer function. This allows WCMSE to take account of,dmample, the perceptually greater impact
of linear distortion in images such as those illustratedign E.2, or signal transfer function constraints
such as those described in Sectloh.2 In particular, lettindg — oo yields a distortion metric which is in
agreement with the situation where linear distortion istotdrated. The design of source coder-decoder
pairs that minimize the bit-rate for such a distortion newill yield optimal unity transfer function (i.e.,
perfect reconstruction) source coders

For the case of random processes and random vectors, iightforward to combine the WCMSE
with frequency weighting. To be more precise, if the frequyesensitivity to each distortion term is the

same, say’(e’*), then the frequency-weighted WCMSE becomes

Sy.z(e79) 2 Sy, (e79)

1 [7 2 » 1 7 o

a5e) |PE)
Obviously, frequency weighted WCMSE includes frequencigiveed MSE as a special case. Fur-
thermore, provided appropriate values foandb are chosen, frequency weighted WCMSE will be su-

perior to frequency weighted MSE in all applications whevarse-correlated distortion has a different

impact than linear distortion.

1.3.2 WCMSE Optimal Frequency Responses for

Scalar Feedback Quantizers

The second contribution of this work is the derivation of ttegjuency response of the filters in a general
feedback scalar quantization system that minimize theugaqy weighted WCMSE, for a given quan-
tizer SNR constraint, and for any choice of weight$. This optimization problem is solved for various
combinations of filters being fixed and given as listed in @dbll. Since the WCMSE is novel to this
thesis, the solutions are new and include MSE-optimal §ileex special cases. For example, for the last
problem in Tablel.l, the results presented here inclutie first optimization-basederivation of the

optimal filters characterized by Zamir, Kochman and EreA B

SWith the choices = 0, any optimal ED pair would yield no linear distortion, buetiource-uncorrelated distortion would be

unbounded, which makes this extreme case of little prddtiterest.
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These results are then applied to design a family of scatatfeck quantizers whose WCMSE de-
cays exponentially with the oversampling ratio, for a fixeguqtizer SNR, assuming overload errors are
negligible. If a subtractively dithered quantizer is a#d, then the noise model is exact, and the SNR
constraint can be directly related to the bit-rate if emyropding is used, regardless of the number of
quantization levels. It is shown that in optimal feedbachmfirers with entropy coded dithered quanti-
zation, the WCMSE decays with the oversampling ratid@s’>*. In the case of fixed-rate quantization,
the SNR is related to the number of quantization levels, araté to the bit-rate, when overload errors
are negligible. It is shown that, for sources with unbounsi@gport, the latter condition is violated for
oversampling ratios sufficiently large. By deriving an uplpeund on the contribution of overload errors
to the total WCMSE, a lower bound for the decay rate of the WENAS a function of the oversampling
ratio is found for fixed-rate quantization. To the best ofdla¢hor’s knowledge, this is the first bound of
this type that takes into account overload errors. This m#ke result applicable to the characterization

of the oversampling efficiency of feedback quantizers abdimg signals having unbounded support.

1.3.3 The Rate-Distortion Function for Gaussian Sources \th
WCMSE as Distortion Measure

The third contribution of this thesis is the derivation oé ttate-distortion function for Gaussian sources,
when WCMSE is used as the distortion metric. This RDF, dehbteR,, ;,(D), yields the well known
water filling equations whea = b = 1, and theRDF for source uncorrelated distortioriz" (D), which
was recently introduced by the author in [127], wher= 1 andb — o0.° In addition, R+ (D) is
characterized for the case in which there exists LTI feekbatween the output and the input of the ED

pair.

1.3.4 Using Realizations of the RDF to Design Optimal Sourc€oders

Itis shown in this thesis that, under the Linear Model, theM&E-optimal filters in feedback quantizers
having three degrees of freedpsubject to a quantizer SNR constraint, are also WCMSEy@itivhen
the constraint is thend-to-end mutual information ratnd the quantizer is substituted by an AWGN

channel. These results provide conditions under which tiveviedge of a realization of the underlying

10 1t may seem at first surprising that fixing = 1 and lettingb — oo yields only source-uncorrelated distortion. This
apparent contradiction is clarified by noting that a largueaf the weightb implies that, in order to minimizeD,, ; for a
given rate, source-parallel distortion should be smaikeit is more expensive than source-uncorrelated distortn the limit as
b — oo, source-parallel distortion is infinitely expensive, ahdd the minimization oD,, ;, can only allow for source-uncorrelated

distortion.
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rate-distortion function can be used as a guideline to deggimal ED pairs. Necessary and sufficient
conditions for the equivalence between the quantizer-Shifstrained optimization problem and the
Mutual-Information-Constrained optimization problene dound. This insight is then further extended
to other implementations (filter banks and transform codétls feedback) of the general architecture

shown in Fig.1.4.

1.3.5 Results on the Causal Quadratic Gaussian Rate-Distioon Function

By using R+ (D) as a starting point, an iterative method is found for obtajran upper bound on the
information-theoretic causal RDF for Gaussian statiorsmyrces under the MSE distortion criterion.
It is shown that this method always converges, and that thmdhothus obtained, is tighter th&mb
bits/sample. Moreover, if there exists a realization ofittfiermation-theoretic causal RDF in which the
reconstruction error is jointly stationary with the soyrtten this bound coincides with the information-
theoretic causal RDF. In addition, the method yields thguesncy response of the filters incausal
scalar feedback quantizer which achieves a @0d2&4 bits/sample above the latter bound. This consti-
tutes an upper bound on the optimal performance theorigtainable by any causal source coder for

stationary Gaussian sources under the MSE distortiorricnite

1.3.6 Summary of the Main Contributions
Summarizing, the main contribution of this thesis are:

1. A novel extension of the MSE beyond frequency weightirgnad WCMSE, is presented, to

incorporate signal transfer function constraints.

2. In Chapter3, feedback scalar quantization optimization problems \aitthitectural constraints
are solved, using the Linear Model and the WCMSE as distortietric and the quantizer SNR as
the bit-rate constraint. These results are applied to desiigmily of scalar feedback quantizers

whose WCMSE decays exponentially with the oversamplirig r&dr a fixed quantizer SNR.

3. In Chapte#d, the RDF for the WCMSE as the distortion metric is introduaad then completely
characterized for Gaussian sources. This RDF is then estktuicases where there exists LTI
feedback between reconstructed signal and source. The&atiphs of this result for networked

control theory are also discussed.

4. In Chapteb, conditions and principles are found upon which end-to-endual information and

guantizer SNR are equivalent constraints in the design ob@er-decoder pairs for minimum
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WCMSE. It is also shown how this result can help in the desfgsptimal subband coders.

5. In Chapte, it is shown that, for stationary Gaussian sources with nrgnam upper bound can
be obtained for theausal WCMSE rate-distortion function by means of an iterativeqadure.
This bound is equal to the causal RDF if the latter admits Bzagéon in which the reconstruction

error is jointly stationary with the source.
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Chapter 2

Preliminaries

A good notation has a subtlety and suggestiveness
which at times make it seem almost like a live teach.

Attributed to Bertrand Russell, British mathematician goidlosopher.

My greatest concern was what to call it. | thought of callibgjmformation”, but the word
was overly used, so | decided to call it “uncertainty”. Whediscussed it with John von

Neumann, he had a better idea. Von Neumann told me, “Youglealllit entropy, for two
reasons. In the first place your uncertainty function hashbesed in statistical mechanics
under that name, so it already has a name. In the second packemore important, no one
really knows what entropy really is, so in a debate you wilVays have the advantage”.

Claude Shannon, United States electronic engineer andanatician.

2.1 Notation

N is the set of natural numbers.

e 7 is the set of integer numbers.

R is the set of real numbers.

C is the set of complex numbers.

x, X, lower and upper case italic letters are used for scalars.

x lower case italic bold letters are used for vectors.

X uppercase italic bold letters are used for matrices.

{z(k)} is used for infinite length sequences.

31
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z¥ is a short-hand notation for the semi-infinite length segedn(i)}*____, k € Z.
«% is a short-hand notation for the finite length sequehe@)}r_;, j, k € Z.

x* denotes the complex conjugate:of

X7 denotes the transpose of the matkix

X' denotes the Hermitian (conjugate-transpose) of the mafrike., X 7 = (X7)*.
X T denotes the Moore-Penrose pseudo-invers¥ of

tr { X'} denotes the trace of a matrX.

| X'| denotes the determinant of the matix

| X |, ¢ denotes theveak matrix nornof X, see Definitior2.5below.

|| X || denotes thetrong matrix normof X, see Definitior2.4below.

X, ~ Y, denotes asymptotic equivalence between the sequencednidesX , andY,, see

Definition 2.7 below.

Ai(X) denotes the-th eigenvalue of the matriX, where);(X) > M\ { X} if ¢ > j.
diag{xy} is a diagonal square matrix (of appropriate dimension)y diagonal elements;.
1 is the identity matrix (of appropriate dimension).

x, X, X non-italic fonts for random scalars, vectors and matrices.

E[-] denotes the expectation operator.

02 = E[xx*] (= E[x(k)x(k)*]) is the variance of the zero-mean random variable x (or the-ze

mean w.s.s. procesg(k)}).

ox,y = E[xy*] is the covariance between the two zero-mean scalar randoablesx andy.
K = E[xx'"] is the covariance matrix of the random vector

K, x = E [zx'"] denotes the cross-covariance matrix between the randoiorse@ndx.

S, (e’*) denotes thgower spectral densitfPSD) of the wide sense stationary (w.s.s.) random

processx(k)}.
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o O, (e7%) = /S (esv) is the square root of the PSD of the w.s.s. random prope(&s }.

e L2 andL! are sets of all complex-valued functions that are squaegiable and absolutely inte-

grable ovef—m, 7], respectively.

e (/2 and/! are sets of all complex-valued square integrable and atedplintegrable sequences,

respectively.
e (-,-) denotes the inner product between its arguments In paaticul
— If F(e/¥), G(e?*) € L% then(F,G) = £ [T F(e7*)G(e*)* dw.
—If f(-),9(-) € I?, then(f, g) = 5= ["_ f(z)g* (x)da.
e |-|| denotes the-norm/(-,-)".

e |-/ denotes thex-norm. For a sequendex(k)}, |||/ corresponds to thé,, norm||z|. =

maxgez {|z(k)|}. For afunction of a continuous variabfe [a,b] — R, it correspondsto thé .,

norm || fllee = max,e(q4 {f(x)}.

e N} denotes the null-space of the function, mapping or transétion f, i.e., the set of arguments
whose image thougfiis zero. (With some abuse of notation, for a discrete-timarieo transform
F(e'%) we write Ny = {w € [—-7,7] : F(e/*) = 0}.)

2.2 Definitions

To simplify notation, we introduce the operatey™!, defined as follows:

Jw\—1
o)1 = F(e/v) . Yw ¢ Np 2.1)

h , Ywe NF,
whereF : C — R s any given function angldenotes any arbitrary and positive bounded value.

Definition 2.1 (Gateaux Differential [128]) Let X be a vector space and” a functional fromX to R.

TheGateaux differentiadf 7 at f € X with increment, € X is defined as

sV 2 Ly(fran)| (2.2)

do a=0

if the above derivative exists.
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Definition 2.2 (Similarly/Oppositely Functionally Related)We say that two functions, ¢ : [a,b] —
R aresimilarly functionally relatedff there exists a monotonically increasing functi6ff-) such that
o(x) = G(x)), for all x € [a,b], and write¢ 11 <. Similarly, if there exists a monotonically
decreasing functiot'(-) such that(z) = G(¢(x)), forallz € [a, b], we say thap andi) areoppositely
functionally relatedand write¢ 1| . A

Definition 2.3 (Almost Constant Function)A function f : [—m, 7] — R is said to be almost constant iff

dz = 0. (2.3)

] @)= 5] s
A

Definition 2.4 (Strong Matrix Norm [129]) Thestrong nornof a matrix A, denoted by A||, is defined

as

1/2
IA 2 max [zHAHAz} = max|\;(4) (2.4)

z:zHz=1
A

Definition 2.5 (Weak Matrix Norm [129]) TheHilbert-Schmidtor weak nornof a matrixA € RV*N,
denoted byA|, ¢, is defined as

Alys £ (% fr {AHA})W = <% ZL |Az-<A>|2)1/2. (2.5)
A

Definition 2.6 (Wiener Class Toeplitz and Circulant Matrices [129Fpr a given functionf € L' :
[—m, 7] — C, having absolutely summable inverse discrete-time Fodn@nsform, the Toeplitz matrix

T, (f) € R**is defined element-wise as

1 /7 )
[To(f)] o 2 > (w)e/=mldy mon=0,1,....0—1. (2.6)

Similarly, the circulant matrixC,(f) € R**¢ is defined as the circulant matrix whose top row is given

by

T

1
f@rk/0)d2Rme/t -y =0,1,...,0—1. (2.7)
0

CelP i 2 7

=~
Il
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Definition 2.7 (Asymptotically Equivalent Sequences of Matrices [129]))o sequences 6k ¢ matrices

{A¢}2,, {B¢}32, are said to beasymptotically equivalentienoted by

Ay~ By,

1. A, and By are uniformly bounded in the strong (and hence in weak) noem,
| A [|[Be|| £ M < 00, £=1,2,..., (2.8)
and
2. D, £ A, — B, goes to zero in the weak norm &s- o, i.e.,

gli,rgo|Aé_Bé|HS :ZEIBO|D|HS =0 (29)

2.3 Basic Information Theoretical Concepts and Results

The following is a brief list of some of the information thetical quantities and properties that will
be useful in the derivations carried out in this thesis. Foofs and insightful descriptions about these

concepts and results, the reader is referred to, e.g.,§3]9,

2.3.1 Entropy

Definition 2.8 (Entropy of a Discrete Random VariableJhe entropy of a discrete random variable

taking values from a countable S&f with probability mass functiops(-), is defined as

H(x) £ =" py(@)log(p« (@) (2.10)

zeX

A

If the log(-) in (2.10 is taken to bdog,(-), then the units of the entropy afarebits. If instead we

useln(+) in place oflog(-) in (2.10, then the units of{ (x) arenats. For any discrete random variable

H(x) > 0. (2.11)
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Definition 2.9 (Entropy of an Ensemble of Discrete Random Variabl&3)e entropy of an ensemble of
discrete random variable$x;, xs, ..., xy}, €ach of them taking values from countable géfs} % ,,

with joint probability mass functiopy, ... x, (+), is defined as

H(x) = — Z .- Z Dscyooin (X155 ZN) 108Dy, oxn (15, TN)) (2.12)

z1€X; znyeXy

A

Definition 2.10 (Conditional Entropy for Discrete Random Variable#) (x,y) ~ pxy(:, ), thecondi-

tional entropy H (x | y) is defined as

H(y|x) 2 po@)H(y|x =) (2.13)
reX
= pe() Y by x(yl2) log(py |« (y]2)) (2.14)
reX yeY

The notion of entropy can also be applied to continuous randariables:

Definition 2.11. Thedifferential entropyof a continuous random variablewith PDF f,(-) is defined

as

h(x) £ — / fe() log (o)) e, (2.15)

zeX

whereX is the support offx(+).

Unlike discrete entropy, differential entropy can be nagatndeedp(x) is differential in the sense
that it is relative to the entropy of a random variablalistributed uniformly over a unit-length interval.
Such a random variable will have zero differential entroplus, if the differential entropy is 2 bits,
this means that its entropy 2sbits higher than that of the uniformly distributed randomiale u.

Itis easy to verify that the differential entropy of a Gaassscalar random variabig; ~ N(0,02 )

'Y XaG

h(xg) = %logQ(Qweaic) bits. (2.16)

Definition 2.12. Thejoint differential entropy of a continuous random vectowhose elements have

joint PDF fy(-) is defined as

h(x) £ / f () Jog( f () dez, (2.17)

zeX

whereX is the support offx(-).
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For two continuous random vectoxsy having joint PDFfy (-, -), the conditional differential

entropy h(y|x) is defined as
v 2 = [ fry(@9) 108 fye(yla)dyde (2.18)

It is often useful to decompogey | x) as

h(ylx) = h(x,y) — h(x) (2.19)
which holds if and only if each of the differential entropieg2.19 is bounded.
Property 2.1. h(y) > h(y|x), with equality if and only ik andy are independent.

Property 2.2. h(y|x) > h(y|x,z), with equality if and only ify andz are conditionally independent
givenx. (See also Definitio2.180on page39.)

Property 2.3. h(y,x) < h(x) + h(y), with equality if and only ik andy are independent.
Property 2.4. If x is a scalar random variable andis some arbitrarily constant,
h(x+c) = h(x). (2.20)
Property 2.5. If x is a scalar random variable and= 0 is some arbitrarily constant, then
h(cx) = h(x) + log |c| (2.21)
Property 2.6. If f(-) is any given deterministic function, then
h(x+ f(y)ly) = h(x]y). (2.22)
Property 2.7. If x € RY is random vector and4 € RV*" is some arbitrarily matrix, then
h(Mx) = h(x) + log |det(M)| (2.23)

Property 2.8. (Chain rule for differential entropy)

N

h(Xl,Xz, ce ;XN) = Zh(xk |X1,X27 e 7Xk71)a (2.24)
k=1
N

h(Xl,Xg, ey XN |Z) = Zh(xk |X1,X27 e ,Xk_l,Z). (225)
k=1

h(x) = —h(x) (2.26)
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Fact 2.1 (From [7, Theorem 14]) If an ensemble of random variables having entrégyper degree
of freedom is passed through a filter with frequency respadngé“), then the output ensemble has

differential entropy
1 r 2
hQ = hl + %/ 10g ‘F(ejw)| dw. (227)

Definition 2.13. The differentiaentropy rateof a random proceséx(k)},-, is defined by

h({x(k)}) £ lim %h(x(l),X(Q), ...,x(0)) = lim h( o, (2.28)

{—o00 l—oo ¥

whenever the limit exists.

Fact 2.2. If {x(k)},— ___ is a stationary process, then

h({x(k)}) = h(x(k)|...,x(k —2),x(k — 1)) = h(x(k)| x*71) (2.29)

Fact 2.3. If {x(k)} is a Gaussian stationary process with PSQ(e’~), then

T

h({x(k)}) = % / log (2 e Sx(e’*)) dw (2.30)

Definition 2.14. Therelative entropy (or Kullback-Leibler distance)( f||¢) between two PDFg and
g is defined by

D(fllg) = /flog § (2.31)

2.3.2 Mutual Information

Definition 2.15. Themutual informatior! (x; y) between two random variables with joint POE (-, -)

is defined as

Sry(@,y)
I(x;y) /fxy T,y 1ogfx( oy )dzdy (2.32)

The mutual information (x;y) is a measure of the amount of information that any of the remdo

variables involved contains about the other. From Definita15 it is clear that

I(x;y) = h(x) = h(x]y) (2.33)
= h(y) = h(y|x) (2.34)
= h(X) + h(.Y) - h(Xa.Y)a (235)
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and that
I(x;y) = I(y;%). (2.36)

Other well known properties are the following:
Property 2.9. D(f|lg) > 0, with equality if and only iff = ¢g almost everywhere.
Property 2.10. I(x;y) > 0, with equality if and only ik andy are independent.
Property 2.11. For random variables;, y andz,

I(x;y|2) = hx|2) - h(x|y,2) (2.37)
provided the differential entropies on the right-hand sid€2.37) are bounded.

Definition 2.16. The mutual information per dimensionbetween two random vectossy € RY is

defined as

I(x;y) £ %I(X; y): (2.38)

Definition 2.17. Themutual information ratebetween two jointly stationary random proceséeg:) } - |
and{y(k)},-, is defined as

7 T .

T({x()} s {y(k)}) 2 lim —I(xiyh), (2:39)

provided the limit exists. A

Fact2.4. If {x(k)} and{z(k)} are independent Gaussian stationary processes then

T} (<08 + ) = 1 [ 1og (HELEHE) g, (2.40)

Definition 2.18. Random variables, y, z are said to form aMarkov chain in that order (denoted by
x — y — z) if the conditional distribution of depends only og and is conditionally independent f

Specificallyx, y, z form a Markov chairk — y — z if their joint PDF can be written as

Frya(@,y,2) = (@) fy 1< (o) f2) v (2]y), (2.41)

or, equivalently, if

fz\x.,y(z|x’y) = fz|y(z|y) (242)
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Property 2.12. Random variables, y , z form the Markov chaink — y — z if and only ifz andx are

conditionally independent given i.e., if and only if

fx,z|y($az|y) :fx|y($|y)fz|y(z|y) (243)
Property 2.13. The Markov chaix — y — zimpliesz — y — x.
Property 2.14. If z = f(x), wheref(-) is some deterministic function, then— y — .

Fact 2.5(Data Processing Inequality)f x — y — z, thenI(x;y) > I(x;z) andI(y;z) > I(x;2).

2.4 Scalar Memoryless Quantization

2.4.1 Uniform Scalar Quantization
A uniform scalar quantize@ having L levels and quantization interval is defined by the following
mapping:
= i — 2.44
Q(v) arg min =, (2.44)
where thequantization alphabéll is given by

U2 {uy=-22 -2 +kA k=1,2,....L}. (2.45)

If Lis odd, therd € U, and thenQ is amid-stepquantizer. Else, if. is even,Q is amid-risequantizer.

Thequantization errom is defined as
nZ Q) —v=w-u, (2.46)
where
w = Q(v). (2.47)

If the input to the scalar quantizer is a random variahléhen the quantization error is also a random
variable, denoted by. If the PDF ofv is smooth, and if_ is large, then
Zen ), (2.48)
Jll
see [130], and the quantization error has an approximatefgrm PDF [94], which yields

2_A2

Po (2.49)

g
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0 = n
|
v o v w w VA%_>W

Figure 2.1: a) Subtractively dithered uniform quantization ¢ is a dither signal and EC and

ED are, respectively, entropy encoder and entropy decoder. b) Equivalent model.
With the additional assumption that the PDFvdfias bounded support, the variance of the quantization
error can be well approximated, for large valued.pby
02 =272, (2.50)
see, e.g., [55], where
Ry = log,(L) (2.51)

is the operational bit-rate of the quantizer ifixed-ratequantization scenario, that is, if each valudljin
is encoded usingey, bits. The multiplying factor: in (2.50 depends on the PDF of

Thesignal-to-noise ratidSNR) associated with a scalar quantizer and its input isidéfas

2
N2 U_; (2.52)
O—H
Substituting 2.50 into (2.52, we can write
v =c 122 (2.53)
and
1 1
Ry = 5 log, (7) + ) log,(c) (2.54)

2.4.2 Subtractively Dithered Uniform Scalar Quantization

A subtractively dithered uniform scalar quantizZ&DUSQ) is obtained by adding an i.i.d. dither signal

{6(k)} ~ U[-%5, 2], statistically independent dfv(k)}, to the input of the quantizer, and then sub-

tracting{d(k)} from the output [131-133]. This is shown in F@1 The reconstructed outp{itv(k)}

at time instantk is given by
w(k) = Q(v(k) + (k) —o(k), VkeZ, (2.55)
and the resulting quantization error

n(k) =w(k) —v(k) =w(k)+ (k) — Q(v(k) + 6(k)), VkeZ, (2.56)
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is i.i.d., uniformly distributed ovef—2, 2], andindependent of the input proce$s(k)} [132, 134].

Theasymptotic memoryless operational rafethe SDUSQ is defined as
Ro = H(w(k)|5(k)). (2.57)

This quantity is independent éfsincew (k) andd(k) are jointly stationaryRo corresponds to the rate
(in bits/sample) achieved by a memoryless entropy cod@rgaoh consecutive non-overlapping blocks
of N quantized values, wheN — oo, supposing that the entropy coder assigns the word-leogtihé
(-th block,? € Z, as an integer-valued approximation@f:gg[’1 H(w(k)|o(k)).

It was shown in [126] that
H(w|§) = I(v;w). (2.58)
Also, from Lemma4.10in Section4.8.20f the current thesis,

I(v;w) < —logy(y + 1) + 0.254 [bits/sample] (2.59)

|~

where equality holds if and only if is Gaussian. Substitutin@ .69 into (2.58 and @.57),
Ro < % log, (v + 1) 4+ 0.254 [bits/sample] (2.60)

with equality if and only ifv is Gaussian.



Chapter 3

WCMSE-Optimal Filters for a Given
Quantizer SNR

It's not easy taking my problems one at a time when they refuget in line.
Ashleigh Brilliant, British Cartoonist.

There are no small problems. Problems that appear small
are large problems that are not understood.

Santiago Raibin y Cajal, Spanish neuroanatomist.

Divide and rule, a sound motto. Unite and lead, a better one.
Johann Wolfgang von Goethe, German poet, novelist andgapleer.

3.1 Introduction

In this chapter we derive the optimal performance and fraqueesponses of the filters of full-band
scalar quantization schemes, subject to a constraint ocBNifeof the scalar quantizer. These results are
an extension of earlier work by the author and colleaguesgntty published in [118].

The general architecture for full-band scalar quantizesichemes consists of a scalar quantizer and
a set of linear filters around it, as shown in F&§1L We call this architecture geedback quantizer
(FQ). Well known examples of FQs include-Modulators, DPCM converters [55] and Sigma-Delta
modulators [78]. The latter schemes have been very suetlgsgbplied in a number of areas, including
audio compression [46, 55], oversampled A/D conversion{Bf sub-band coding [61], digital image

half-toning [48, 76, 77], power conversion [135], and cohtiver networks [136].

43
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T T v
AR
Error frequency
weighting filter
Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FQ System

Figure 3.1: Feedback Quantization system and frequency weighting filter.

In this scheme@ may take the form of a non-uniform or a uniform scalar quanmt{z1], the latter
being either ditheret or un-dithered [85].

The filtersA(z) and B(z) in an FQ system allow one to exploit the predictability of theut signal
so as to reduce the variance{of(k) } .cz. When compared with simple PCM conversion, this flexibility
allows one to use a scalar quantizer with a smaller quardizatep. The error-feedback filtd?(z)
opens the possibility of spectrally shaping the effect cdirgjization errors on the output. In this way,
one can allocate more of the quantization noise in the frecgbands where it is less harmful from a
user’s point of view. Accordingly, it is convenient to useracuency weighted error criterion, via an
error frequency weighting filteP(z), and to focus on thfequency weighted errar.

For the sake of generality, we consider the possible use lifgec beforeQ. This device limits the

value of the quantizer input signal so that

v, if o] <s,
s, if [v] > s,

wheres > 0 is thesaturation thresholdf the clipper. This clipping technique, which is equivalen
the one proposed in [56], can be used to keefsom overloading, which is helpful in reducing limit-
cycle oscillations (idle tones) in an FQ with high order fidte On the other hand, if we chosédo be
sufficiently large, them’ = v, and the clipper has no effect on the system.

If the characteristics of and the spectral properties of the input signakre known, then the design
of an FQ converter that minimizes the variance amounts to choosing the filtery z), B(z) andF(z).

In this chapter, we will characterize the performance asddaiated filters of optimal feedback quan-
tizers, under different architectural limitations. (Sesc®n1.1.3. For this purpose, as in [79-83],
we model the scalar quantizer as a linear device that intesladditive white noise whose variance is

proportional to that of the signal being quantized. The mesults are:

1n this case, the block in Fig. 3.1 represents the scalar quantizer including the dither &gna
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1. We derive equations that relate the minimum achievaldguiency weighted WCMSE to the

signal-to-noise ratiqSNR) of Q, for any subset of the filterd(z), B(z) and F'(z) being given
and fixed. Each possible subset of filters being fixed givesois different optimization problem.
These optimization problems were listed in Tabl& (pagel8), for MSE as the distortion metric.
We solve these problems using the WCMSE as the distortionien@thich includes the MSE
problems as special cases. We derive equations that chiaradhe optimal filters for each case.
Within the scope of validity of the Linear Model, our resut@n be applied to quantizers hav-
ing any given number of quantization levels, and to almasit@ary input spectra and frequency

weighting criteria.

. We show that, within our model, the frequency weighted Mi$SEn optimal FQ where the SNR

of 9 is fixed, decreases exponentially with oversampling rati&rom this result it follows that,
if Q is an entropy coded subtractively dithered scalar quanitd sufficient quantization levels

to avoid overload (or clipping), then, for a fixed operatikdni&rate,
MSE = 0(2—1.746/\),

as\ — oo. We also derive an extension of this result for the case diraatively dithered scalar
guantization with a (finite) number of quantization levéiattis insufficient to avoid quantizer
overload. This covers situations in which the source sasple), have a PDF with unbounded

support, provided that the momerpl(g) £ E[x(i)"] can be bounded as

. 1 ;
P T s =

for some finite scalaf/. We note that this requirement is satisfied by most PDFs aftiged or
theoretical interest, and in particular, by uniform, Gaaissand Laplacian PDFs. For these cases,
we show that ifQ is a subtractively dithered scalar quantizer wiHevels, then the MSE can be
made to decay as

MSE = O(e=<*""),

when\ — oo, whereey £ 4N2/3. In order to achieve this asymptotic decay rate, it is neugds
balance the variance of clipping and granular errors in trentjzer, for each oversampling ratio,
by carefully adjusting the loading factor (defined as hadfitiput dynamic range of the quantizer
divided by the standard deviation of its zero-mean inputalpat whichQ operates. To the best of
the author’s knowledge, this is the only result in the litera combining overloading quantization
and oversampling. It also seems to be the first decay ratedofuurthe MSE of oversampled

guantization that holds for sources with infinite support.
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The contents of this chapter are organized as follows: Ini&@e8.2, we present our analysis model
for PRFQ converters. The different optimization problemsiag from different architectural constraints
are solved in section3.3-3.9. The case of oversampled FQ is analyzed in Se@®id2 Section3.9.2
discusses the relationship to previous results and higtslitne importance of taking account of fed back
gquantization noise. Secti®111presents a simulation example, and Sec8dBsummarizes the main

results of the chapter.

3.2 Analysis Model and Assumptions

In this section we discuss some of the main aspects of fekdipsantization. We also describe the

analysis model and the constraints to be considered.

3.2.1 Feedback Quantizer Equations

We begin by presenting the equations that describe the mivaf the FQ shown in Fig3.1

Quantization and Clipping Errors

From Fig.3.1, the quantization errat is given by
n(k) £ wk) — o' (k). (3.2)

Every practical scalar quantizer has an associated cdri§tan0 such that, iflv’| > V, thenQ is said

to beoverloaded When the quantizer is not overloaded, theit) is said to consist of onlgranular

quantization error, namely(k), which can be bounded &s(k)| < omaz, Y0’ (k) € R, for some0 <

Omaz < 2V (See, e.g., [71]). For example,d is a symmetric, uniform, non-dithered quantizer with

levels and quantization interval, then one needs < NA/2 in order to obtairp,,q. = %.
In general, we can write

n(k) = o(k) + 7(k), (3.3)

where

v(k)
(k)|

is theoverloaderror. Clearly overload errors are boundedd#)| < |[v'(k)| < |v(k)|, but they cannot

(k) 2 v(k) — min{V, [v'(k)|}

be bounded by a constant unlesss bounded.
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As outlined in the introduction, the clipper in Fi§.1 can be used to kee@ from overloading. For
simplicity, we will consider only two possibilities, nanyeithats = V, or elses = co. The former

choice guarantees th@t does not overload, since tkepping error, defined as
I(k) = ' (k) —v(k), VkeZ, (3.4)

takes place instead. More preciselys i= oo we have that

J(k) =0, and (3.5)
=0 — ﬂ min v

If, instead,s = V/, then the latter revert to
I(k) = v(k) — % min{V, |o(k)|} and 3.7)
v

(k) = 0. (3.8)

A key point in using clipping is that, unlike overload errocdipping errors are not fed back ini@
throughF'(z). This helps to avoid large limit-cycle oscillations arigifiom the overload 0B, see [56].
Since such oscillations are not part of the analysis modeliV@se, their occurrence could increase the
frequency weighted WCMSE significantly above the value joted by the model.

Using the above definitions, and from FRy1, we can write
w(k) = v(k) + n(k) + 9(k), (3.9)

which reveals thaty differs fromwv by the sum of the quantization and clipping errors.

Transfer Functions

From Fig.3.1and @.9 we have that

v=A(z)x — F(2)n, (3.10a)
T = B(2)A(2)z + B(2)[1 — F(2)]n + B(2)9, (3.10b)
e = P(2)B(2)[1 — F(z)|n+ P(z)B(2)9. (3.10c)

Notice that these equations are exact and require no assmsph the signals involved. Fror8.00H
one can see that(z) B(z) corresponds to th&gnal transfer functiofSTF), fromz: to z, of the converter.
Similarly, the producB(z)[1— F'(z)] is the transfer function for quantization errors. Itis usueferred
to as thenoise transfer functiofNTF) of the convertétr The term[1 — F(z)] will play a crucial role in

the derivation of the optimal filters in the subsequent sesti

2In noise-shaping anB A literature, whereB(z) is typically a unit gain, the term NTF is normally used for- F(z).
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Stability

We say that a PRFQ Bounded-Input-Bounded Outp(BIBO) stable if and only if for any input se-
quencer satisfying||z|| oo < zmaz < oo all the signals in the converter are bounded.

If s =V, orif @ has infinitely many quantization levels, then) < 9,42, Vk € Z, and thus all the
other signals in the converter are bounded. On the other, liland= oo, then, from Fig.3.1, v can be
written as
1 14(ljz,z)x 1 fi’;zz)w

v

(3.11)

If the quantizer has a finite number of quantization levéigntw is bounded. IfF'(z) is stable and
1 — F(z) is minimum-phase, then it follows fron3(11) thatv is bounded. This in turn guarantees that
n and all the other signals in the converter are bounded G&gnd B.10). Summarizing, if all the
filters in Fig.3.1are stable, and if — F'(z) has no zeros on or outside the unit circle, then the resulting
PRFQ is BIBO stable.

In addition, if A(z) and F'(z) are stable, then thé, norm of their impulse responses, namély,
andF,., are bounded. Thus, if there exists a boundgg, > 0 such thatz (k)| < z4. < 00, VEk € Z,

then a sufficient condition to ensurék) = ¥(k) = 0, Vk € Z, is thatV > V,,,;,, < oo, where
Vmin é Aooxmax + Foo Omax- (312)

Thus, for a uniform quantizer with quantization intervs| it suffices to havé/,,,;,,/A or more quanti-
zation levels in order to avoid clipping or overload errof$ie latter condition provides a “worst-case”

stability criterion, which has been considered, e.g., & 187, 138].

3.2.2 Assumptions

The assumptions associated with our FQ model are descrivéd n

Input Spectrum and Frequency Weighting

The error weighting filterP(z) in Fig. 3.1 models the impact that reconstruction errors have at each
frequency. This “performance assessment” filter is apfiicalependent, and is assumed to be stable and
given. The input signa§z (k) }rez iS a zero-mean w.s.s. stochastic prodegth known PSDS,, (w) =
}Qx(ej“’)|2 and finite power, i.e.|Q||? < oc. In order to simplify our subsequent analysis, we shall

further restrict), and P(z) to satisfy the following:

3 This excludes, for example, non-zero mean random sigrialssaids, or constant inputs from the analysis.
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Assumption 3.1. The productQ,P| is a piece-wise differentiable function having, at most,rétéi
number of discontinuities and satisfying. (e/*) P(e*)| < oo, Yw € [—m,7]. In addition,|QP| is

such that onteof the following conditions holds:
i) There exists a constapt,» > 0 such thaiQ, (e/*)P(e/*)| > gynin, forallw € [—, 7], or

i) 3w € [, such that|Q(e/)P(e/)| = 0. Furthermore, if{T';} denotes the set of non-
contiguous and non-overlapping intervals|inr, 7] such that|Q(e*)P(e’*)| = 0 & w €
(U, T, then, for every, 3¢; € T'; such thafQ,(e/*) P(e’*)| is O(w — (;) asw — ¢;. A

We note that the above is a rather weak constraint, sinceittmmsli) and ii) include almost any
product/Q2, P| of practical or theoretical interest. In particular, cdiati i) covers all the cases where the
productQ,(z)P(z) has no zeros on the unit circle. In turn, condition ii) is si@id if PQy is zero over
any interval on—, 7] having non-zero measure, or{¥,(z)P(z) is rational and has zeros on the unit

circle.

The Quantizer

We shall focus our analysis on the effect that granular qeatidn errors have on tifeequency-weighted
WCMSE, (FW-WCMSE). For their effect to closely represerd #ttual FW-WCMSE, we need to as-

sume the following:

Assumption 3.2. The variances of overload and clipping errors are neghgité.,

0?2 < o2, ifs=o0,0r (3.13a)
ol < o2, ifs=V. (3.13b)
A

In addition, and as stated in the introduction, we will adapadditive white noise model far. This
model is widely used for the analysis and design of data aterge(see, e.g., [43,46, 55,56, 61, 78-83,
87,90,92)). Itis usually described as follows:

Assumption 3.3. The sequence of quantization noifsg k) } <z is a zero-mean w.s.s. random process,

uncorrelated with the input of the PRFQ, and having con$&m
Sp(w) =02, Vw e [-m, 7],

whereo? is the variance ofn(k)} rez. A

“Notice that conditions i) and ii) cannot be met simultanépus
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The above additive white noise model, although not exadt) general, a good approximation when
a signal with a smootprobability density functioiPDF) is quantized with many levels and negligible
overload (in the sense of Assumpti8r®), see, e.g., [78]. The model can be made exaatn for few
quantization levelsby utilizing a uniform scalar quantizer with either sulotiée or non-subtractive
dithe, provided quantizer overload does not occur, see [85]. Asudised before, one way to achieve
this is to use a quantizer with a sufficiently large numbenarization levels, so as to satisB/12. In
this case, if the quantization intervaldsand the dither sequenéeavhitensn, makes: uncorrelated ta:
when Q@ is not overloaded, and is bounded|88:)| < d,.q4, VE € Z, then any number of levels greater
than or equal tqViin + 20maz)/A will make Assumptior3.3 hold exactly. If a smaller number of
quantization levels are employed so thak V..., then the use of dither with the same characteristics
as before, together with clipping (i.e., setting= V), will also maken satisfy Assumptior8.3exactly.

Assumption3.3allows one to write the variance ¢t (k)} ez as
oy = [1AQ|* + o7 | FII%, (3.14)

see Fig3.1 This equation describes the effectajf on o2 through the feedback path. However, if the
scalar quantizer has a finite and fixed number of quantizégigris, then another link between these two
variances needs to be considered. In order to model thisoneship, we will use the fixed signal-to-noise

ratio model employed in, e.g., [79-82, 87]:

Assumption 3.4. For a fixed number of quantization levels, the variance ofrdization errors is pro-

portional to the variance of the signal being quantized, i.e

2
Sy (3.15)
071
is fixed. A

If no clipping is used (i.e., it = o), theny corresponds exactly to the SNR@f If s =V, theny
is a good a approximation to the SNR@fwhen @.13h in Assumption3.2holds.

In our model;y is assumed fixed and given. Strictly speaking, as alreadyiomed in Sectior?.4,
depends on the PDF @b (k)} ez, on the number of quantization levels @f and on how quantization
thresholds and levels are distributed along the dynamigear Q. In practice, for a given number
of quantization levelsy should be chosen such that the dynamic rang@ a§ used efficiently, whilst
ensuring a low probability of quantizer overload or clipgirFor example, for the often cited uniform

quantizer withV levels and loading factdrequal to4 we obtainy = 1—36]\72 (assuming thafn(k)}rez

5Here and in the sequel we assume the dither is suchutisatvhite and uncorrelated with whenQ is not overloaded.
6The loading factor corresponds to the ratio between haléiyiiamic range of2 and the standard deviation of its input.
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has a uniform PDF and negligible overload errors). We naag fior largeN, and provided the signal
being quantized has bounded support, a quadratic relaiphgtweenN and~ holds for most types
of scalar quantizers (see, e.g., [71,130]). This is indéedwell known rule of 6 [dB] reduction of
guantization noise variance per additional bit of quamtizeolution” [55, 71].

In the sequel, we refer to the model of quantization errotsrd@ned by Assumptior.2, 3.3and3.4
as theLinear Model. Summarizing, the Linear Model is exact if the FQ uses a déthguantizer having
enough quantization levels to avoid overload. If only aruffisient number of quantization levels is
available, but dither is used jointly with clipping, theretinodel is exact for predicting the effects of
granular quantization errors, and is a good approximaiorpfedicting the total frequency weighted
WCMSE if Assumption3.2 also holds. If the scalar quantizer is un-dithered, has dl gjuantization
interval (relative tar,,) and enough quantization levels to avoid overload, thet.ihear Model can be
expected to yield a good approximation to the total freqyemeighted WCMSE. Perhaps surprisingly,
the Linear Model turns out to predict with remarkable accytthe WCMSE of an optimal PRFQ when
few quantization levels and clipping are used with a load#@gor big enough to satisfy Assumpti8i2,
even without dither, and even for a 1-bit quantizer. Thisviglent in the simulation results presented

later in Sectior8.11

3.2.3 Optimization Constraints

ThefiltersA(z), B(z) andF'(z) in Fig. 3.1are design choices. We shall restrict the search for thenapti

filters to those satisfying the following constraint:
Constraint 3.1.
1. A(z) andB(z) are stable.
2. F(z) is stable and strictly causal (i.éim ... F'(z) = 0). A

As discussed in Sectidh2.] the stability constraints oA(z), B(z) andF'(z) are a necessary con-
dition for the converter to be BIBO stable. The additionauieement onF'(z), namely strict causality,
is needed for the feedback loop in FBj1to be well defined (see, e.g., [78, Chaf}). Notice that we
will not, a priori, requirel — F(z) to have zeros only inside the open unit disk. Instead, weshitiw
that the latter property arises naturally from the solutbthe design optimization problem.

An additional constraint oi’(z) arises from the value of, as explained next. The ratio between the

variances of) andn imposed by the feedbackn be obtained by dividing(14 by o2, yielding

o2 A1
n Un

Q
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Figure 3.2: Equivalent analysis models

One can see from the above thal if||? > ~, thenanypre-filter or scaling of the quantization intervals
of Q will yield o2 > ~02, thus making large overload (or clipping) inevitable. Thisuld increase
overall distortion, and if no clipping is used, may lead t@klimit-cycle oscillations. We thus conclude

that the use of feedback imposes the following constraint:

Constraint 3.2.

IF]* <.

3.2.4 Analysis Model

Under the Linear Model originating from assumptié?2 3.3and3.4, the feedback quantizer of Fig.1
can be analyzed using the system shown in Big(a). In this figure{n(k)} is a white w.s.s. process
uncorrelated with{x(k)}, and whose variance;, obeys the SNR assumptio8.15. The variance of
{n(k)} can be found by substitutin@ (15 into (3.16. This gives

AQ,||?
o2 = ”7”” (3.17)
7= IFI?
SinceF (z) is strictly causal, it satisfies
1 /7 ,
- Jw —
o) F(e’)dw = 0. (3.18)
Thus, we have that
IF|* =1 - F|I* - 1. (3.19)
Substitution of 8.19 into (3.17) yields
O A|?

oo =
AR S Fl
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Since, in the Linear Model, quantization errors are undatee with the source, the frequency-weighted
WCMSE (see1.1]) on page26) is given by

Day(x,y) = ac?|PB(1 — F)||® + b||(AB — 1)Q,P|]? (3.21a)
QAP IPB(1 - F)| 5
= b||(AB — 1) P 3.21b
Upon defining
fe) &1 F(e™)|, VYwe [-m,n] (3.22a)
K&y+1 (3.22b)

we can re-write 3.218 more compactly as

1Al PBSI?

%[/ +b||(AB — 1) P|? (3.23)

Da,b(Xa .Y) =a

In the subsequent analysis, it will also be useful to comdlteequivalent structure shown in F&j2-

(b). This scheme is equivalent to the one depicted in&ig;(a) if and only if

H(z) = %, (3.24a)
L(z) = [l — F(2)] B(2). (3.24b)

The equivalent expression for the frequency weighted WCM@Ehe system in Fig3.2-(b) can be
readily obtained upon substituting.24) into (3.23, yielding:

[ PLI* (|2 H £

e +b|[(HL — 1)Q,P|? (3.25)

Da,b(Xv Y) =a

Comparison of§.25 with (3.23 reveals the duality between the two schemes shown in3zy.

In sections3.3to 3.9, we characterize the frequency response of the filters tiratmze D, ;(x,y)
subject to the constraint thatis fixed, and subject to constrair@sl and3.2 We consider different
scenarios of architectural limitations, as described ictiSe 1.1.3 In each scenario, a different subset
of the filters of the system in Fi®.2-(a) (or of the system in Fig8.2-(b)) is considered to be given and
fixed. Thus, each scenario generates a different optirnizgtioblem. We begin in Sectidh3with the
most restrictive scenarios, in which only one degree ofdoae is available. We finish in Sectiéh9 by
solving the problem in which the three filters that minimihe FWCMSE have to be found, i.e. where

there are are no architectural limitations.
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3.3 F(z)and A(z) (or B(z)) Given

3.3.1 F(z)and A(z) Given

If A(z)andF(z) are given and fixed, minimization of the frequency weighteBMSE reduces to the

following:

Optimization Problem 3.1. For a givenK > 0, frequency responsé(z) and the frequency response
magnitudesQ, (e/*)|, | P(e’)], f(e’*), find the filterB(z) that minimizes

12 A||PBS]*

K72 + b[[(AB — 1) P (3.26)

Da,b(X7 y) =a
A
The answer to this problem is given in the following:

Theorem 3.1. The solution to Optimization Proble®l satisfies
b |0 ()] A(e)*

ao? f(e7%)? + b |Qy(e7) A(er) [

wherea? is given by(3.20. The frequency response of the solutidt{e’~’), can take any arbitrary

B(e?¥) = a.e. on[—m, TN\ Np, (3.27)

(bounded) value for alb € Np. The minimunD,, ;, achieved withB(z) as in(3.27), is

iy . . 2 .
. 1 Qe (7)) P(e7)|” f(e7¥)?
B(:) 21) af(er)? + bILHE 0 (er) Aferw)|
A
Proof. Define
W(z) £ A(2)B(z). (3.29)

Noting that the optimaB (e’ ) must clearly be bounded a.e. par, |, we can write
B(e?) = A(e?)~ W (e7) (3.30)
Substitution into 8.213 yields
Dap(x,y) = aoy || PFAYW|? + bl[(W — 1) P
Applying Lemma3.16(pagel04) to this equation, the transfer functid¥i(z) that minimizesD, ,(x, y)

is found to satisfy

W (o) = b (e7)* | Pe™) [ (3.31)
_ i |
a0 |P(e3)[ f(e7)2 (JA(e7) ™) + bu(e7)? | P(e)

jw )2 jw 2
_ b (e) \A(ei )| __ aeofma]. (3.32)
aoy f(e79)? + bk (e7)? [A(e?v)
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Notice that 8.32 follows by multiplying both sides in3.31) by |A(ej“’)|2 (\A(ejw)\wl)Q, and by
noting, from @.30, that 17" (e/+) | A(ei)|* (yA(ejw)y“)Q = W(e/), Yw € [—m,x]. Substitution
of (3.32 into (3.30, together with the fact thél‘A(ej‘”)}Q A7)~ = A(e’@)*, yield (3.27). Substitu-
tion of (3.27) into (3.26 yields 3.28. This completes the proof. O

3.3.2 F(z)and B(z) Given

If F(z) andB(z) are given then the minimization of the WCMSE can be stateth@$dlowing opti-

mization problem:

Optimization Problem 3.2. For a givenK > 0, frequency responsB(z) and the frequency response
magnitudes, (e/*)|, | P(e’*)], f(e/*), find the filterA(z) that minimizes

O A|?|PBf|?
Dgy(x,y) = ‘IM +b||(AB — I)QXPHQ. (3.33)
K —I£l
A
The answer to this problem is given in the following:
Theorem 3.2. The solution to Optimization Proble&2 satisfies
. 2 .
A(e™) = ‘ (e )_‘ 2(e >_ 5, a.e.on—m,m\Na,, (3.34a)
aV +b|P(e)[” |B(e/)]
where
PBf|?
VA Hi. (3.34b)
K—If1?

The frequency response of the solutidiie’ ), can take any arbitrary (bounded) value for alle Ao, .

The minimunD,, ;, achieved withd(z) as in(3.343, is

a+b

min D, p(x,y) = ab— — . ——dw (3.35)
A@) 2m) a+ bipfr |P(e) B(e)”
A
Proof. Noting from 3.33 that the optimald(e’“) must be bounded a.e. ¢nr, 7], we can write
A(e??) = B(e?)™'W (e/¥), a.e.on—m,7], (3.36)

whereWW (z) is as defined in3.29. Substitution of 8.3 and @.29 into (3.23 yields

Day(x,y) = aV||[QUB™ W% + b||(W — 1)Q,P||%, (3.37)
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whereV is as in 8.34h). Itis clear from 8.37) that the optimal¥/(e’“) can take any arbitrary bounded
values at all frequencies € N, . For all other frequencies, direct application of Lem3nb6(pagel 04
to (3.37) yields that the transfer functidiv’(z) that minimizes 8.37) satisfies

N2 N2
, b [Qy(e7%)|” | P(e?*
—_— (e * | P(er)

5 (3.38)
aV |Qx(ejw)|2 (|B(ejw)|~1) +b |Qx(ej“’)|2 |P(ej‘*’)|2

b|P(e7%)|* | B(e)
aV +b|P(ei)|” [Blei)|*’

’ 2

a.e. on—m, T\ WNaq,. (3.39)

We note that 3.39 follows by multiplying both sides in3.39 by |B(ej‘*’)\2 (|B(ejw)\wl)2, and by
noting, from @.36), that I¥'(e7) | B(e7)|” (yB(eJ'w)rl)2 = W(e/), Vw € [—m,7]. Substitution
of (3.39 into (3.36, together with the fact thdlB(ej‘*’)\2 B(e?*)~! = B(e/*)*, yield (3.343. Substi-
tution of (3.343 into (3.33 yields 3.35. This completes the proof. O

3.4 F(z) and the Signal Transfer Function Given

If the signal transfer functionl(z)B(z) is set equal to a given transfer functi®(z), then the mini-

mization of the WCMSE reduces to the following:

Optimization Problem 3.3. For a givenK > 1 frequency responsés, (e’~), P(e/), frequency re-
sponse magnitudg(e’~’), and transfer functiodV (z), find the filtersA(z), B(z) that

1Al PBS||

minimize: D, 3(x,y) = a
K —|flI?

+b||(AB — 1) P||? (3.40a)
subjectto: A(z)B(z) = W(z) (3.40Db)
The solution to this problem is provided by the theorem below

Theorem 3.3. The filtersA(z) and B(z) that solve Optimization Problefi3are completely character-

ized by the following equations:

)] = 5/ I P(e3%)] [Qu(e) ! Flei*) W (i),  ae. on[—m,], (3.41a)

- 1 ; . ; o
|B(e’)| = —\/IP(eJ‘*’)I~1 (7] (7)™ [W(e)],  a.e. on[—m, 7], (3.41b)
R
wherex > 0 is an arbitrary real constant. The minimum ¢8.408 under the constrain{3.408, which
is achieved by filtersl(z) and B(z) satisfying(3.41), is

- (f, 1P| [W])? )
min Dap(x,y) = U?m L L L b|(W - 1)QP (3.42)
A(2)B(2)=W (2) () fIF K — |f]2 Iit ) |

A
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Proof. Denote the numerator of the first term on the right side teri3 @03 as
N £ Q.AI7|(1 - F)PB|*.
Applying Cauchy-Schwartz inequality we get
N 2 (941, |(1=F)PB|)? = (|Q:P| |[AB|, 1= F|)* = (W||Q:P[,1-F])>.  (343)

Substituting the last term on the right hand side348) into (3.403 yields .42, which is obtained if
and only if equality holds in3.43. In turn, equality in 8.43 is achieved iff2, A| = x?|(1 — F)PB|,
a.e. on—m, ], for arbitraryx? € R*. This equation, when combined wit3.400 and @.1) (see
page33), leads directly to3.41). O

If [ (e?) P(e?)| satisfies condition i) in Assumptio® 1, then there exist stable filter§(z) and
B(z) with the frequency response magnitudes giver»1). However, depending qu(ejw)P(eJ“) \
the optimal frequency response magnitudes charactei3z4g) (hay be non-realizable, and can, in some
cases, lead to unstable filters. In these situations, itvaysd possible to obtain a performance arbitrarily

close to the optimal one by using stable filters, as showndm#xt proposition.

Lemma 3.4. Denote the frequency response magnitudes characteriz@i4g and(3.418 by A;,, s (e7*)
and Bi s (e7*), respectively. 1fQ,(e/*) P(e/¥)| satisfies condition i) in Assumpti@l, thenA;,,(z)
and B;,(z) can be chosen stable; else,|fb,(e?~) P(e7*)| satisfies condition ii) in Assumptidhl,
then one can achieve an FWMSE arbitrarily closeffgnle with causal and stable filterd(z), B(z)

such that

€B ,Vw S IEB
|A(e?)] = AFl(w) & ¢ 1/¢, Vwel., (3.44a)
|Aing(e7)| Vw ¢ T, UZe,,

|B(e’)| = Bll(w) 2 (A[E] (w)) - (3.44b)
a.e. on[—m, 7|, where

I, £ {w e [-m, @] : |Bing(e!)| > I UNp,

I, 2{w e [-m ] : |Aing ()] > é} UANa,,

by makinge 4,5 — 0. A
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Proof. We note that for any 4,5 > 0, the functionsAl®!, Blel € 12, andAl¢l(w), Bl€l(w) > 0, Yw €
[—m, 7). As a consequence, one can always find causal, rational alolé §ittersA(z) and B(z) satisfy-

ing (3.44. Secondly, the difference betweef,, - ando? when|A(e/%)| and|B(e?*)| satisfy @.44

€N

is given by

Nl — N
02 =02 = —— el (3.45)
=y — P2
whereN'el £ ||, Alel|)2| P(1 — F)B¥||2 and Ny, ¢ £ [|QxAins||?| P(1 — F)Biyy||?. Defining

ea(e’) £ Al (W) — A p ()],

ep(e??) £ B[E](w) - ‘Bmf(ej‘”) ,

and with f (e’*) as in 8.22), we can write

2 2
N — Ning = [ Aing| + ea)II° 1P (1Bingl + en)ll” = [|QAing|*[| f P Bins |*
= 12 Ains |2 (If Pesl +2(PI* £2|Bingl ) )
+ 1 PBing 12 (I0eall® + 20107 | ins | e.)
3 2 2 2 42 2
= Nt [P esll? + 11eall® + 2(P1* 12 Bingl  e5) + 200 | Aing | €4)]-
Each of the terms above can be upper bounded as follows:

(@ jwy |2 jw jwy |2 jw jwy |2
£Pesl? £ [P s@2ehdo + [ PEF F) B do
I., I.,

(b) ) . .
SANPIE+ [ P[0 Fe)de

B

()
< eAllFPIP + eBlIu? /5,

d
||Qx€A|2(§)/ \Qx(eﬂ'W)fs?Bdw+/ |24(7)|* | Ains ()| dw

€B €A

(e) . . )
LI+ [ 0] [P)] S
cA

f)
< eBlu* + Al PIPR?,

i (9) i 2 iw i
(PP £ Buuglsen) £ [ P F0)? [Buns o) ad

€A

), 5

< 1P,

(7) . .

1" Ainslsea) = [ 0] [ Ay )] cnl

B

©)]
< 3l
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In the above(a) follows from the fact that
les(e)| < ea,Vw € I, and (3.464a)
— |Bins(e7)| < ep(e’*) < 0,Vw € I.,. (3.46b)
(b) follows from the fact that
[P)[* 1 = F)[ | Bins ()]
— [ (@)* [Ains ()] (3.47)

= [P(7)] | ()] [1 = F(e7*)

)

VYw € [—m, 7], see 8.4)), and fromZ., C [—m, ). Inequality(c) follows from the fact that
| ()| < 4K | P(e)| f(e), Vw e I,; (3.48a)
|P(e)| < ek ()] f(e/)™, Vw € Ty, (3.48Db)
which is readily obtained fron(41) and @.44. Inequality(d) follows from

|e,4(ej‘”)‘ <ep,YVweZIl.,,, and (3.49a)

— |Amf(ej‘”)‘ <eale’) <0,YweT,,. (3.49b)

Inequality (e) is due to 8.47 and to the fact thaf.,, C [—w,n]. Inequality(f) stems from 8.48.
Inequality (¢) follows from (3.46), while (h) follows from the fact thaf B;, s (e/*)| < ea, Vw € Z.,,.
Inequality (i) stems from 8.49, while (j) follows from the fact thajA;, s (e’“)| < ep, Vw € Z.,,.

Therefore,
Nlel — Ning
1/2 _
< N2 3+ &2)ISPIPEL + (3 + w2 101%3]

which completes the proof. O

3.5 F(z)Given

In this section we solve the problem of finding the filtefs:) and B(z) that minimizeD, ;(x, y) when

the feedback filteF'(z) is given. More precisely, we seek the solution to the follogvi

Optimization Problem 3.4. For a givenK > 1, and frequency response magnitud®@s|, | P| and f,
find the filtersA(z) and B(z) that minimize

1Al PBF|®

e +b[[(AB — 1) P2 (3.50)

Day(x,y) =a

A
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Theorem 3.5. For any given and fixed'(z), the solution to Optimization Probleg4is

|P(e)|™" [G(ei)
K f(e7?)
|A(e7)] = k& | (e) |7 V(@) f(e#) —Ef(e%)?,  ae.on—m,a], (3.51b)

|B(e!*)| = —¢, ae.on—m, 7] (3.51a)

R{A(&*)B(e’)} >0, Z{A(e’¥)B(e’*)} =0, a.e.on[—m,n] (3.51¢)

wherex > 0 is an arbitrary real constant; is the unique scalar that satisfies

ol [ o { sy, 1P }dw ool 35
and
G(e’) £ max {£f (), |Qu(e™)P(e™)|},  Vw € [—m, 7. (3.53)
The scalak is related tOJI% andx via
o @k _ @A 354

K2 K2 (K = fI1?)
The minimum oD, ;, under the conditions of Optimization Proble3r, achieved if and only if4(z)

and B(z) satisfy(3.5)), is

: _ b€ Jw Jw Jw b Jw Jw 2
min Do) = 50 [ @) |0 Pee)|dot o [ [P do (359)
[ P|>Ef [ P|<Ef

A

Proof. From the proof of Theorer8.1, the optimal signal transfer functidi’(z) for a givenA(z) and
f(e’*) satisfies 8.32. On the other hand, the optimdlz) for fixed f andW (%) is given by 8.413.
Since the optimalA(z) and W (z) must be reciprocally optimal, these transfer functions tnsas-
isfy (3.413 and @.32 simultaneously. From this fact, and substituti®g4@ g into (3.32, it follows
that the optimalV (z) satisfies

K20 () | P(e7) | f(e¥) W (7))
aoy, f(99)? + K26 [P(e7¥)| f(e7) W (e7¥)]”

W(el®) = a.e. on—m, 7).

At any frequencyw € [—m, 7] (except possibly on a zero-measure subsetaf, 71]), the frequency

responséV (e’«) that satisfies this equation must satisfy either

W(el?) =0, (3.56)
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or else
W(e¥) = max {o, 1— g'%} , (3.57)
where
;o (a/b)al (a/D)IQANP (a/b){%P] f,IW])
S Ry 5 B - 7 ER (3.58)

The last two equalities ir3(58 follow by substituting 8.20 and @.413 into the left hand side of3(58.
Next we show that the optim&l’(z) satisfies 8.57) (andnot (3.56) almost everywhere of-, 7]. For
this purpose, we write3(42 as

(1P| £, W)?

Day(x,y) =W (W) &
7b( Y) ( ) a K — ||f||2

+b|(W — 1D)Q,P|? (3.59)

If W (e/*) does not satisfy3.57 almost everywhere ofr-r, 7], then there exists a non-zero measure
set of frequenciesV such thatV (/) = 0 and¢’ f (/) < [Qx (/) P(e7*)], for allw € W. To show
that such ariv(z) is not optimal, we will demonstrate that the Gateaux diffiieg of % (17), that is,

oW (W5 h), is negative for some choices of the functienApplying (2.2) (page33) to (3.59 we find
that

59 i) — 2 12PLEW)

W<|QXP| Foh) +26((W = 1) [P|” , ).

Let us choosé to be such that(w) = 0, Vw ¢ W and such thak(w) > 0, Vw € W. Then
W (W h) = 2b ((€F [P, h(w)) = (0PI 1)) = 20([¢'f — [P, [P B]) < 0.

where the inequality follows from our initial suppositiom &V, which implies that¢’f(e’*) <
| (e7)P(e/*)| over a non-zero measure set of frequencies. Thus, the dphinta) is such that
W (e’*) satisfies 8.57) a.e. on—, 7).

In order to obtain an explicit solution for the optimid(z), we need to express only in terms of

Q., P andf. For this purpose, define
G'(e/) 2 max {£' f(e) , |[u(!)P(!)|}, Vw € [-m,7] (3.60)
where¢’ is as in 8.58. With this definition, 8.57) can be written as
W(e/) =1 ¢ f(e) /G (w). (3.61)
Substituting the latter into the right hand side 848 we obtain

O P| f,1 =€ fG' 1 G'f1-¢fa1 G, f) — €| |2
e e i Ul o el Uy ol
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Solving for¢’ in (3.6 it is found that

K=t =5]071P 369

It is easy to verify that there exists a unique value for thalasct’ that satisfies 3.60 and 3.63

¢ =

simultaneously. Noting tha8(60 and 3.63 are equivalentto3.52 and @.53, respectively, this implies
that

¢ =¢, G'(e?¥) = G(e?¥), Vw € [-m, 7). (3.64)

Substitution of 8.64) into (3.63 and then into3.61) yields

: (a/b)(G, [) f(e)
W(ev)=1- . . (3.65)
AR e TR
Substitution of 8.65 into (3.413 and (3.41h yields 3.519 and @.513, respectively. Substitution
of (3.69 into the right hand side of3(42) yields

in D
min ab(X,Y)

2
(r.10:P| (1 - 240 L)) bH
K = IfIP
Baﬁ*%%%%ﬁﬂm}Aﬁﬁ@JPwN”WO—H#W)
K- £y b (K- -4IfI1)
Mny<(KD%Hﬂ2ﬂVWf P 17§ )
B AP (K == g1 (K == g]I1A1)
= b2|(1 = L) fII? + bll(1 — L) %P

2

=a

WG f
K-n-aie ¢

=a

+lI(1 = Ip) QP

G
(K~ 11— £1l71)°
(G.1

SR

where the indicator functiod (e/*), is defined as

5 (K = IFI* + I £117) = €211 = I) f1* + 0] (1 = 1) P>

=0 (1 = Ip) fII? + blI(1 = Ip) P 1%, (3.66)

_ Qe (7Y P(eI9)| > £ f (eI
ey & {1 I 2 67

() Pe)] < £f(e).
Rearranging terms in3(66 leads directly to 3.55. From 3.64 and @.60, it follows that 3.63 is

equivalent to

G.1) (1= 2] 1. (3.67)

a
K=-20
b €
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Substitution of 8.53 into (3.67) yields (3.52. Also, from (.64 and @.58, we have that

(L @)t (@)0.Al?
2 T R(E —f]7)

R

This completes the proof. O

Whena = b = 1, i.e., when WCMSE equals MSE, the optimal filters charazgerby Theoren3.5
correspond to those found in [87]. The result in [87] was wigd solving aniso-perimetricprob-
lem [139, 140] by means of Lagrange multipliers. Interegtinthe proof of Theoren3.5, apart from
using a simple variational argument, is based only uporba#ge manipulation.

In addition, choosing = b = 1, and assuming(e’~) is such that, (e7*) P(e/*)| > £ f(e/), Vw €
[—7, ], we have that3.55 becomes

T

Dii(x,y) = %/ F(7°) | () P(e7) | dw (3.68)

—T

Since f(e’*) needs to satisfy3(76), it is straightforward to show that the functigife’~) that mini-
mizes B.68 satisfies
1 %, p
) =T o) P (369

where

7752sz 8 o ST In]Qu (7)) P(e7)|dw (3.70)
is theminimal prediction variancef a w.s.s. process having PS?DX(ejw)P(ej“)\Q. With this result,
the condition| €, (e7) P(e/*)| > £ f(e/), Vw € [, 7] becomes

2

Qe Ple)[" = T (3.71)

The optimal filtersA(z) and B(z) are then characterized by substituti8gg9 into (3.51). The result is
the same as the one derived by the author and colleagueslij s result also happens to be a special
case of the filters first characterized by Zamir, Kochman amed Erst in [142] and then in [15]. We shall

generalize3.69 beyond the assumptioB.(71) and for general choices afandb later in Sectior8.9.1

3.6 A(z)and B(z) Given

In this case, the minimization of the WCMSE reduces to thie¥aghg:
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Optimization Problem 3.5. For a given K > 1 and given frequency respons@s(e’), P(e’),

B(e??), A(e’+), find a frequency response magnitytle’*) so as to

2
minimize: D (x,y) = % +b[|(AB — 1) P||? (3.72)
subject to: %/ In f(e’“)dw > 0. (3.73)
™
IF1? < K,
f(e) >0, VYwé€ [-m 7] (3.74)
A

Notice that the above optimization problem is stated in teofif (e/“) (see 8.22 on pages3), and
not directly in terms ofF'(z). It is therefore necessary to guarantee that searchingadvemctions
f(e’*) that could yield a solution is equivalent to search over &t I'(z) that are feasible solu-
tions. For this purpose, we next translate the restrict@mg(z), stated in Constrain3.1and3.2, into

equivalent constraints oft To begin with, note that, by definitiorf,needs to satisfy
(&) >0, Vw € [—m, 7], (3.75)

and that, since|F||? = ||F —1||* — 1, see 8.19, Constraint3.2 is satisfied iff||f||> < v + 1. In
addition, a stable and strictly caudd(z) (i.e., one satisfying Constraifit1) always leads to a function
f, see B.22, which satisfies

0< /7r In f(e/*)dw < oo. (3.76)

—T

This result follows directly from Jensen’s formula [144é€salso the Bode Integral Theoremin, e.g., [145]).
On the other hand, as Theoreéh¥ will show, if Assumption3.1 holds, then the optimaf within
the set of functions described b$.76 and the requirementf||*> < v + 1 turns out to be piece-wise

differentiable orf—, 7], has at most a finite number of discontinuity points, andsas
QL/ log f(e’*)dw =0, and (3.77a)
U —T
0 < fmin < (@) < finaz < 00, Yw € [—m, 7. (3.77b)

Under these conditions, it is always possible to find a stabl strictly causal filte’(z) such that

\1 - F(ejw)\ approximateg (e/*) arbitrarily well on[—, 7], as stated in the following lemma:

“Notice that 8.76) dictates a fundamental trade-off in the noise-shapinglitipes of feedback quantizers, namely, that one
can remove noise from one frequency band only at the expdrieereasing it in another. This is also known as the “watet-b
effect”, see, e.g., [143]. We will discuss further implicats of 3.76) in Section3.9.2
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Lemma 3.6. Suppose that is piece-wise differentiable gn-7, 7], that it has at most a finite number
of discontinuity points and that it satisfi€3.77). Then, for every > 0, there exists a (finite order)

rational, strictly proper and stablé’(z) such that| f — [1 — F||| < e. A

Proof. Define the partiton-7 = wy < w; < --- < w, = 7, where{w;}’_] correspond to the
discontinuity points (if any) off. Sincef is piece-wise differentiable, its first derivative over afien
intervals(w;,w;+1), ¢ € {0,...,p — 1} is bounded by a constafit< S < co. For eachn > S, we

define the sef,, consisting of alcontinuougunctionsh : [—7, 7] — R satisfying

1 T
o /_ logh(w)dy =0, (3.78a)
Fmin < h(W) < fonaz, Yw € [—m, 7], and (3.78b)
%h(w) <m, Yw € [-m,7]. (3.78c)

For eachmn, the function
hy, = arg min — hl. 3.79
rghele 1/ | ( )

is the element ir?,, “closest” tof. From @3.770, and from the fact thaf is piece-wise differentiable, it

follows that for every:y > 0, there exists a bounddd > S such that
If = hmll <0, VYm>T. (3.80)

(Indeed, it is easy to obtain the bouif(e’“) — h,, ()| < (fmaz — fmin)?p/m). Notice that iff had
no discontinuity points and il > S, thenh,,, = f (see 8.789), yielding || f — k.|| = 0.

Sinceh,,, (w) is continuous and piece-wise differentiable, its Fourgfes converges uniformly over
[—m,w]. Thus, by definition, for every; > 0, there exists arV-th order (whereN < oo is odd
and depends oy ) rational transfer functioii/ iy (z) (the Z-transform of the coefficients of th@;—l—th

partial sum of the Fourier series @j such that

|hm(w) — Hy (e7)] < €1, Yw € [—, 7). (3.81)

Hy(z) can be written agly (z) = G12~ =R HiZL(Z —¢;), whereGG; € R. Thus, the transfer function

G N-1 N C ciz 1
1 N1 7 i~
Hy(2) = HN(Z)—|G1|Z = I el ( P— >
|(Z:|1>1
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is clearly biprope#, stable, minimum-phase and such théf, (/)| = |Hx(e/*)],

Yw € [—m, 7],

with the first value of its impulse response being
P Zl;rr;o Hy(z) > 0.
Define Hy (z) £ L Hy(z), so thalim., ., Hy(z) = 1 and
’ﬁN(ej“)‘ - i |Hy ()],  Vw € [-m,7]. (3.82)

With the choiceF(z) = 1 — Hy(z), we have

17 = 1= Flll = £ = 1wl < 1S = Bl + || = 1 v

<eotert Hhm—|ﬁN|H. (3.83)

We now proceed to find an upper bound for the last term in thealm@quality. From3.81 and 3.82),

we have that

[ = 1| < e = B + | 1] = 12|

1 —1
<ert 1= | bwl = a1+ Xy (3.84)
X X
From Jensen’s formula (see, e.g., [144]), and siHgg ») is stable and minimum phase, we obtain
1 [™ ;o
logx = Dy log |Hy ()| dw. (3.85)
@ —T

Recalling from 8.783 and 3.79 that f log Iy (w)dw = 0, we can write 8.85 as

T e (@Y T (@) + e(w)
10gX = %[W 10g (W)dw = %/77‘- 10g <T(w))dw, (386)

wheree(w) £ |Hy (e*)| — hyn(w). From @.81), we have that
le(W)] = |hm(w) — |[Hn (€?)|| < |hm(w) — Hn ()] < e1.
Thus, choosing; < fmin, the last integral in3.86 can be upper and lower bounded as

log (7fm}n__51) ——/ ( (—L)e( ))dwélog (7fm}nf€1) .

It then follows from (.86 that

R

<x<1+

= [x—-1<

€1
min min fmzn

8A transfer functionF (z) is said to be biproper if and only i < [lim; 0 F(2)| < 0.
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Substituting the latter inta3(84), we obtain

o = 15| < &4 Nl < @1+ (U 0 te). (38D)

fmzn -

where the last inequality stems fro@.80 and @.81). Substitution of 8.87) into (3.83 yields

fmzn

[f=N—=Fl|[ <eo+e1+ (|\f|\+50+51) (3.88)

fmzn -
Since|| f|| is bounded, and fron8(77h, it follows from (3.88 that for anye > 0, one can always choose
sufficiently large (bounded) values f@r (see 8.80) and IV (see 8.81) so thats, ande; are small

enoughtoyield|f — |1 — F||| < . This completes the proof. O

Having verified that a feasible filtef(z) can always be found to match almost any frequency re-
sponsef(e’“) to any degree of accuracy, we present the solution to Oitioiz problem3.5 in the

following theorem:

Theorem 3.7. The functionf that solves Optimization Proble®5is given by

o K\ ' -
f(e?*) = \/|P(eﬂ'w)B(er)|2 Y a.e. on[—m, 7, (3.89a)

where the parametex > 0 is the unique scalar satisfying

L2
1 P(e7)B(e/
In(K) = w (IPEIBEI g, (3.89b)
o A
The corresponding minimum éf, ; is given by
min Dap(x,5) = a\||QA|> + b]|(AB — 1) P2 (3.89¢)

figs [T In f(e?¥)dw>0
f(7*)>0, Ywe[—m,7]

A

Proof. We first define and solve a related (but simpler) optimizaposblem, namely: For any given
constantC' € (1, K) and transfer function®(z), B(z),

minimize: _#(f) £ |PBf]? (3.90a)
subjectto:0 > %, (f) 2 || f||* — C (3.90b)
0> %(f) 2 _% " I F () dw (3.90¢)
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Clearly, the functionals 7, ¢, and%, are convex. Moreover, for all' > 1, there exists a function
f1 € L? such that?, (f1) < 0 and%(f1) < 0 (a trivial example isf; (w) = 1/(C + 1)/2). This allows
one to apply Theorer.17 (pagel05). From the latter, we have that the minimizer gf(f) subject
to (3.90h and (3.909 is an extremizer of the Lagrangian

200) 2 o [ 1P B 1P+ 0 [ 16200~ 22k [ n )
- % (‘P(ejw)B(ejw)‘Q + )‘1) f(ejw)Q —X2ln f(ejw)dw

—T

for some\;, A2 > 0. An extremizer ofZ(f) must be such that its Gateaux differential satisfies
5L (f;h) =0forallh e 2. (3.91)
Applying the definition given inZ.2) (page33) to .Z(f) we obtain

5L (fih) = w

a=0
T

= % 2 (|P)BE)* + X)) £(e7) = Aaf ()| hlw)dw. (3.92)

Notice thatf (e’*) must necessarily be strictly positive a.e. [enr, 7], since otherwise constrain.009

and (3.90H would not be met. This guarantees that9Q is well defined. It is clear from3,92
that (3.91) holds iff

0=2 (\19((;;]@)13(@"“)\2 + )\1) F(&) = \af ()71, ace. on—m, 7]
Aa/2
|P(e7%) B(e7%)|* + Ay

= f(e?)? = , a.e.on—m,mnl. (3.93)

Notice from the latter that, ifP(e/“’) B(e/*’)| = 0 over a non-zero measure set of frequencies, fhen
cannot equal zero. On the other hand)if = 0, then constraint3.900 could not be met. In view
of (3.217% in Theorem3.17(pagel05), this fact implies that constrainB(909 is satisfied with equality,

i.e., we have:
1 [7 jw jwn |2
n(e/2)= 5[ (\p(e )B(e?)] +)\1)dw. (3.94)

Therefore, the minimizer of7 (f), satisfies

B(M)

HE) = ) = ey B o) T

a.e. on—m, m, (3.95)
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for some\; > 0, where
B 2 e n(|Pe)B*)|* 1 ) dw . (3.96)

Itis clear from B.96 that if | PB| is almost constant, thef), (w) = 1, a.e. on—m, «], forall A\; > 0.
Conversely, if| PB] is not almost constant, then the value Jf for which f\, solves 8.90 has to be

found. For this purpose, we substitugeg5 into (3.903, obtaining

N ‘P eJ‘” eJ“ ‘
2 - d 3.97
S ()2 T00) = )5 / e (3.97)
where
s(M,w) 2 [P(e)B(e™)|* + M, Vw € [=m, 7], YA >0

Differentiation of.J( ;) with respect to\; yields

dJ (A1)
d\
4 T j jwy |2
L1 [PE)BE) L[ |PEe)BE)
B 1 |P(e)B(e)|” L e )BT
610\1)477-2/ (}\17 )dw/ (}\17 ) dw 6()\1)277- [ﬂ s()\l,w)Q w
1 ’p (e’“)B er ’ 1 T dw f A1
_ _ = - | —/d
Br(A) 47T2 )\1, / s(A\1,w dw o (/ 5(A1,w) /5()\17@2 w)}
1 |P(e’)B(e’)|” ej‘” [ L
= — dw —1 — d
Br(h) 27r/ s(A1,w) (277/ s(A,w “ )+2 / s(A1,w)? w]
L ) ) ,
00 o= [ om0 [ o] |20 w0 (3.98)
TR on s(A1,w)? s 2 ) s(A,w) o - = .

SincedJ(A1)/dA\1 < 0, it is clear that the minimizer of# (f) is given by 8.99 with \; taking the

smallest value allowed by the constraint

CZﬂM%L/WTi—%u

2 s(A1,w)

This arises by substituting(95 into (3.90. Let the dependence dffy, ||? on \; be made explicit by

the function

) 2 [l = ) e / "l (3.99)

21 J_ . s(A,w)
We have that

de(h) 1o N
e ) {(%/_wm‘”) %/ Wd”]@’ (3100

—T
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where the above inequality follows from Theore3118 (in page106) and the fact thai(A\;) > 0,
VA1 > 0. The inequality is strict if and only ifPB| is not almost constant (which is the case). Thus,
the functionc(\,) is monotonically decreasing with;. Combining this with 8.98), it follows that, in

order for f, to be the solution 0f3.90, the Lagrange multipliek; must be

0 L if O > ¢(0),
A= (3.101)

cHC) | if C < e(0),

wherec~1(-) is the inverse of the function(-) defined in 8.99. Also note from 8.10Q, (3.10) and
the fact tha{ P B| is notalmost constant that, & < ¢(0), thenc=(C) > 0, and thus the optima\; is
strictly positive. Therefore, the (squared) functipthat solves 3.90 is given by 8.95, where\; > 0
is the unique scalar that satisfi&X07). Furthermore, we conclude fror8.09 and @.10) that

if fo=arg (f), then 17212 < e(0). (3.102)

min
F:41(£),%=(f)<0

Next, the solution t03.90, given by @.95 and 3.107), will be used to solve Optimization Prob-

lem 3.5, For this purpose, define the functional

IPBf|”
V(f) £ : (3.103)
K—If1?
and letf* be the minimizer of/'(f) subject to 8.73 and @.74. DefineC* £ || *||2. Then
x , ) : )
4 = min > min L 3.104
() Foxa()  K—C* T poze) K —|[|f]? (3109
0<f(e’?), Ywe[—m,7] 0<f(e’?), Ywe[—m,7]
I£l12=C* If|2<c
In view of (3.103 the inequality in 8.109 is strict unles<"™* < ¢(0). Moreover
f* = f/\{a
where\ is such that(\1) = C*. To find \f, we substitutefy, into (3.103, which yields
B )7, KB dw
=d(\) 2 oo sne) 3.105
V() = @) a0 (3.105)

Notice that Optimization Proble@.5has been reduced to finding the scalathat minimizes the func-
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tion (). For this purpose, we simply differentiafé \; ) and make use 03(903 to obtain

dd(\y) 1 [ |PBP 1 [ |PBP
o - |:c()\1)% e = B 5 /7@1, )dw] (K — c(\))

o o G ) ] st o

R [ |PBJ? 1 [ |PBP
‘{Eﬁ/QuhwW“ sOn@ ™ " o RXEETWIMM“K‘dM”

—T —T —T

11 ’ 11

—T

B 1 TIPBE(K ) +I00)
s ke ( !

472 s(A,w s(A1,w)

—T —T

/|PB| K —eOn) I g,
s(h,w)?

Noting that®(\;) = J(A1)/(K — ¢(A\1)), the above can be re-written as

d®(\) / [ |PB+®(\)
— BOK —c\) | [ ——dw [ B2 TR,
Dy P ( 1))[47# IPB|* + A\ |PB|* + A

1 [|PB*+o(\)
2m ) (|PB” + A1)

Application of Theoren8.18to (3.106 leads directly to the conclusion that

o
dd(;l) =0 < B(\) =\ (3.107a)
1
dq;&m <0 <= B(\) >\ (3.107b)
1
d‘z(;l) >0 < d(A\) <\ (3.107¢)
1

Substituting 8.109 into the right hand side of3(1073 yields

1 (™ |PB)?
= |PB]* + )

_ areBR e
61(/\1){ /W|PB| Y /|PB| Y ] )

)\1K 61( ) dw + )\16()\1)

71

- dw] (3.106)
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Thus,
1 ™ 2
d® (A1) A ) e/ mUPBIP A dw
= K= = = 1
o, 0= R() = = " (3.108)
The functionk()\;) is monotonically decreasing for al} > 0, since
dk(\ A1 T A PR
(1)25(21) s 21 do — 1 _ B 2 |PB|? o < 0.
Ay AT ©) |PBI’ + X\ >\ / |PBP +A1

Therefore, the value ok, that satisfies the right hand side &.109 (and yieldsd®()\;)/d\; = 0)
is unique. From this and the fact thét\,) and its derivative are continuous functions, together
with (3.107, we conclude that the value af that satisfies the right hand side & 108 is the unique

minimizer of ®(\;). This implies that
mfin“//(f) = H/{inq)()\l) = A, (3.109)

which substituted into3.103 and @.72 yields 3.899. It also implies that the optimaf is given
by (3.99. In these solutions); takes the unique value that satisfies the right hand sid8.508. The
latter equation is precisel\3(89h. In turn, (3.893 is obtained by substituting(89h into (3.95. This

completes the proof. O

3.7 B(z) Given

If only the post-filterB(z) is given, then the minimization of the WCMSE reduces to tHiefang

Optimization Problem 3.6. For any givenK > 1 and transfer functiom3(z), find the frequency re-

sponsed(e/) and the frequency response magnityfde’ ) that

L QO A|?|PBf|?
minimize: D, (x,y) = % +b|[(AB — 1)Q.P|? (3.110a)
. 1 [7 .
subjectto: 0 < 2—/ In f(e’*)dw, (3.110b)
U —T
IfI* < K, (3.110c)
(7)) >0, Vwe |-, 7] (3.110d)

Theorem 3.8. The solution to Optimization Proble&6is

b|P(e7)|” B(ei)*
aX+b|P(e)* | B(er)]?
o K\
fer)” = |P(e7)B(ei*)|* + X’ (3-111b)

(3.111a)
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where) is the unique scalar that satisfies

g w ion 2
In(K) = % In <w + 1) dw. (3.111c)

—T

The minimunD, ;, achieved withA(z) and f(e/*) as in(3.11)), is

™ . . 2
1 Qu (/) Pl
ab(X,y) = abA— [t >, e >|, 5 dw (3.112)
21) aX+b|P(e/*)B(er¥)]

min D,
A(z),f(edw)
A

Proof. If B(z) is given, then the optimaf(e’“) does not depend oA(z) (see3.1103. Furthermore,
the optimal f(e/*) is given by 8.893. On the other hand, the optimall(z) given B(z) equals the
optimal A(z) given the samé3(z) and givenf(e’*) is optimal for thatB(z). Thus, the optimal(z)
satisfies 8.34) with f(e’~) as in 8.893. Furthermore, from Theoren3(7), the optimalf(e’~) given
B(z) is such tha/ in (3.34h equalsX (see 8.109 and 3.103). When substituted inta3(343, this
yields 3.1114. Also, replacing/ by X in (3.35 yields (3.112. This completes the proof. O

3.8 H(z) (pre-filter) Given

Here we find the filters that minimize the frequency weightedM&E for a given quantizer SNR under
the architectural limitation that the pre-filter is givendafixed. In this case, it is necessary to make a
distinction between the two schemes shown in Big, as discussed already in Sectib2.2 For the
configuration corresponding to Fi§.2-(a), it is implicit that one can both measure and act upon the
signal coming out of the pre-filted(z). As a consequence, evenAf(z) is fixed, one could alter the
transfer function from{x(k)} to {v(k)} at will. Hence, assuming in this architecture that the ptefi
A(z) is fixed and given makes little practical sense.

By contrast, the scenario in which the pre-filter is fixed aivéigis better represented by the config-
uration shown in Fig3.2(b). This scheme assumes implicitly that one can add sgwahe input of
the scalar quantizer, but not measure the result of thigiaddiHence, it is not possible to bypass the
limitations imposed by a fixed (z), i.e., one cannot alter the transfer function frérik)} to {v(k)}
without changing the transfer function fropa(k)} to {v(k)} also.

Focusing on the scheme of Fig.2-(b), if only the pre-filter/ (z) is fixed and given, then the mini-

mization of the WCMSE reduces to the following:
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Optimization Problem 3.7. For any givenK > 1 and H(z), find the filterL(z) and the frequency

response magnitudg(e’~) that

2 2
minimize: D, ,(x,y) = a% +b|[(HL — 1) |)? (3.113a)
subjectto: 0 < %/ In f(e’“)dw, (3.113b)
T —T
If1I? < K, (3.113c)
f(e) >0, VYwe€ [-m 7. (3.113d)

Theorem 3.9. The solution to Optimization Proble&7is

b‘Qx(ej“)‘QH(ejw)*

L(e?¥) = 3.114a
) aX + b [Qu(e7)|* [H (e3)[? ( :
f(e?“)? = , K)\. 5 , (3.114b)
[(ed) H &) + A
where) is the unique scalar that satisfies
LT (19 H ()
In(K) = - 1n< S +1 |dw. (3.114c)
The minimunD, ;, achieved withl.(z) and f (e’*) as in(3.119, is
T . . 2
» O, (e79)P(el¥
min_ Da_b(x,y):ami/ [ (e )Ple )’} —dw (3.115)
L(z),f(ed®) 2777 aX + b |Qx(e79) H (e3w)]
A

Proof. The cost functional in.1133 has the same structure as that in TheoB8nMore precisely, the
constraint of a fixed7 (z) in (3.113a plays the same role as the constraint of a fi¥gd) in (3.110a.
Thus, the solution is given by(111), replacing, (/) by P(e’“), B(e’*) by H (e’*), andA(e’“) by
L(e’*), which yields 8.114. This completes the proof. O

3.9 No Constraints:

The WCMSE Optimal Feedback Quantizer

We now address the problem of finding the frequency respafsééz), B(z) andF'(z) that minimize
the WCMSE for a given quantizer SNR= K —1. These frequency responses characterize the WCMSE-

optimal FQ when all three degrees of freedom are available.
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Optimization Problem 3.8. For any givenk > 1, find the filtersA(z), B(z) and the frequency response
magnitudef (e’~) that

L QA|?||PBf?
minimize: a% +b||(AB — 1)Q,||? (3.116a)
K-/l
. 1 [7 .
subjectto: 0 < o In f(e’“)dw, (3.116b)
) —x
IfII? < K, (3.116¢)
F@¥) >0, VYwe[-m,7l. (3.116d)

A

The solution to Optimization Proble&8is given in the next theorem, for the cases in which 2b.
The latter restriction is imposed in order to avoid the higitimematical complexity that arises whenever
a > 2b and the distortion is larger than a given threshold, as éxgdbin footnote9 of the proof. We
shall say more about the implications of the relationship 2b later, when we argue, in in Sectio#s3.2

and4.7, that the conditiom < 2b is satisfied in many cases of practical interest.

Theorem 3.10.1f b/a > 2, the solution to Optimization Problef8is

3

fe*) = , . —, (3.117a)
\/G(ej‘”)2 + [1 - %] a + G(elv)

A(e*)B(e*) = 1 — (a/b)a/2 , (3.117b)
(Votey + [1- 4] a + ) Gee)

\P(ejw)rlJ (\/G(ejw)2 +[1-¢] a + G(ejw))2 Cw
2VKa' !

VRS |, o
2 (Vo) + 1 - 4] + )

(3.117¢)

|Be™)] =

R

|A(e7)] = k| ()] S|, (3.117d)

a.e. on[—m, 7], wherea: > 0 is the unique scalar that satisfies

%ln(K) _ 1 / In (\/IP(ej‘*’)Zx(ej“’)|2 n [1 _ E} i W) dw (3.118)

27 b Vva'

a/E@
|92 P|2 =55

and

Ge7) & max{%\/a/z, |Qx(ejw)P(ejw)|}, Yw € [~ 7). (3.119)
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The scalar is related toK, x and the variance? via

2

o2 = %\/Q/K (3.120)

The minimunmD, ,(x,y), achieved with(3.117%, is

Jjw Jw
s o )= / Vio @a‘w)za(gjz |+Q >[(1(6— ﬂ)]i('i |)f|z P
|2, P|> 24 * b *
+% |2.(e)P(e) " dw  (3.121)
| P|< 2
A

Proof. Clearly, the optimal filters must also be reciprocally o@limin particular, Theorer3.7 must

hold. This implies that| PBf||?/(K — | f]|?) = ), see 8.109 and @.103. Substituting the latter
into (3.54), we have that

2
[SAI" (3.122)

57 a
b R?PBfIPT

Since the optimal filters also satisfy Theor@?3 (page56), we have from 3.4 thatx?|| PBf||* =

L[|« A||%. Substitution of the latter intc3(122) yields

= 7R = (1/2)§Va/K. (3.123)

where
a2 4K = 4K (2)? ¢, (3.124)

If the filters are reciprocally optimal, theB.613, (3.893 and @.890 hold simultaneously. In par-
ticular, from 3.893,

o2 K\
fe)" = P BB T A (3.125)

From @.53 and @.513 it follows that |[P(e/*)B(e?)| = 0 <= G(e*) = (f(e/V)
| (e7) P(ed*)| < £ f(e7*), for any given frequency € [—m, 7]. On the other hand, fron8(123 we
have tha{ P(e/)B(e/*)| = 0 <= f(e/*) = VK. Thus

(7Y P(e)] < Ef(7%) = Ef(e/) =EVE @ Vo (3.126)

Substitution of 8.126 into (3.53 yields (3.119. Substitution of 8.123 into (3.54 leads directly
to (3.12Q.
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On the other hand, substitution &.613 into (3.129 yields

) K\ KK\
F(e*)? = o = 5o K - —
(f(em) —’f) +A Flamy TRIAE

0 =[x = €Jf(/*)* + G(e/*) f() = KKA,
where we recall from3.53 that
G(e’*) = max {{f(e), [P},  Vw € [—m, 7). (3.127)
If K2\ — & = 0, then the optimaf (e’) is

Fe) = CIJ{(ejj) — VGI((;LU/;L , a.e. on-—m, 7. (3.128)

Otherwise, ifx?\ — € # 0,

oy +/G(e79)? + AK2A[R2A — €] — G(e/¥)  +/G(eI9)2 + AKRAA[R2ZN — §R2D] — G(e7¥)
f(e*) = 2[K2A — €] - 2[R2N — $R2A]
_ +,/G(e7%)? + 4K kN1 — §] — G(e7¥) :I:\/G ()2 +[1— %o — G(e/v)

262A[1 — 4] [1-2)\/a/K

It is now necessary to determine which sign before the squatan (3.129 yields the solution. We

(3.129)

will next show that the minus sign{\/) yields an infeasible solution. To this end, we note fr@m1.27

that a feasible solutioyfi(e’*’) must satisfy the condition

< 1)

<1 3.130
- G(eﬂw) - ( )
forallw € [—m, 7]. Substituting8.123 and @.129 with the choic&\/ into (3.130Q, the latter condition
becomes
. [$—1]a
oy 14/l - ggeye
§f(e™) _ __GEEY (3.131)
G(elv) 2202 —1]

from where it follows immediately that the choiee\/ is infeasible ifa < b. On the other hand, when
a > b, the right-hand side o0f3(13]) increases monotonically witt¥. Since, from 8.126 and @.127
G(e/v) > £&\/a’, Yw € [—m, ], we have from8.13) that

[

wl@

—llo

—_

gfev) 1+

WL 1+2—”}2—‘;f1| 1+1-2
> 2 a = al>1, 3.132
G(edw) — 23[% 1] 22 1+1-2 ~ ( )

The last inequality is strict ib < a < 2b, and becomes equality onlydf > 2b. Thus, whem < 20,

choosing the minus sign before the squared roo8itZ9 leads to an infeasible solution for all €
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[—7,7]. On the other hand, ii = 2b, then the minus sign before the squared rooBir129 becomes
feasible only for frequencies at whi¢h, (/) P(e7*)| < £+/a’. However, the solution obtained with
the plus before the squared root $1129 yields the same result over those frequengiggth the choice
+/ in (3.129, the latter become$(1174. Notice that this solution also yield8.(28 if kA — & =0
(which happens if and only if = b). In addition, noting from3.125 that

(P B[ + 0/ = /ey = WAL Gl # CE)

(0%

and substituting this intd3(890, we conclude that is the unique scalar that satisfies

In(K) = % _W In <\/G(ejw>2 : [i/a%]al +G() ) dw. (3.133)

We have that3.125 is precisely 8.1173, and that 8.119 together with 8.133 lead directly t0 8.118.
Substitution of 8.1173 into (3.59 yields (3.123). Finally, substitution of3.125 and 38.123 into (3.5))
yields 3.117¢ and 3.117d. This completes the proof. O

1
2

3.9.1 Special Cases

By using Theoren3.1Q it is possible to characterize the optimal filters and SNRedtion performance
of optimal feedback quantizers for each possible comhinatf values for the weights b. Two relevant

special cases are discussed below.

MSE-Optimal Feedback Quantization

If one setsu = b = 1, then WCMSE is equivalent to standard MSE. In this case, fidme8.10yields

that, for an MSE-optimal feedback quantizer,

f(e¥) = %, (3.134a)

A(e*)B(el®) = 1 — %, (3.134b)
oy _ 1PE)[™ [G(er)2 —a/4

|B(e™)| = —— TRt (3.134c)

|A(ej‘“)| =K ‘Qx(ejw)|~1 \/ Ka/4 [1 — G(Oééf)Q] (3134d)

9 On the other hand, i, > 2b, both choices of sign lead to a feasible over all frequencies which |Qx(e~7”)P(e~7”)| <

%\/E. This difficulty is avoided by excluding the cases> 2b from the analysis.
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a.e. on—m, 7], wherea > 0 is the unique scalar that satisfies

1 1 P(e7) Oy (e7*
“n(K) = — / In <M) dw (3.135)
2 2 a/4
[ P[>y a/4
and
G(e) émax{\/oz/él , ‘Qx(ejw)P(ej“)‘}, Vw € [~ ). (3.136)
The minimumD; 1 (x, y), achieved with 8.139, is
1 f « ; ion 12
i D =— inqg—, |Qx(e’)P(e?)|" td 3.137
i D) = 5o fwin{ e pE e @3)
Notice that if\P(ej“)| = 1, and with the change of variable
0=a/4, (3.138)

the expression for the MSE i13(137) is equivalent to the one given by the water-filling equadin1).
Moreover, the filters characterized (8,139 are equivalent to the filters that achieve the quadraticsGau
sian rate distortion function in [15]. Notice also that, lwihe change of variabl&(138, the quantity

1 In(K) in (3.139 plays the role of the rat&(D) in (1.1). In Chapteis we shall see that this correspon-

dence is not accidental, and that it has important implbcegtin the design of optimal ED pairs.

Optimal Perfect Reconstruction Feedback Quantization

If one setsa = 1 and letsb — oo, then from 8.1171) the optimal filtersA(z) and B(z) satisfy the

perfect reconstruction condition
A(e?*)B(e’*) = 1, Vw such thatS, (e?*)P(e*) # 0. (3.139)

As a consequence, the WCMSE in this case is made of souraeratated reconstruction error only.

From 3.117%, the optimal frequency responses foe= 1 andb = oo are found to be:

; vVKa
eIW) — , 3.140
N = e ra ) 21409
|
IB(ei)) = |P(ef:)\ \lg(w) (\/g(w)KJra +g(w)) | (3.140b)
|A(e)| = # |Q(e?)] ™! VRagw) (3.140c)

VW) +a +gw)
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a.e. on—m, ], where

g(w) £ [P0 ()|, Vw € [-m,7], (3.141)
and wherex > 0 is the unique scalar that satisfies
1o 1T () 9(w)
S In(K) = /m ( 1 N dw. (3.142)
The minimumD; . (x,y), achieved with3.117, is
S (0/2)gw) 4, (3.143)

min D1 o(x,y) =
Ao By DoY) 21 ] Vg(w)? +a +gw)

Recalling thatx is an arbitrary scalar3(117 is exactly the solution for optimal perfect reconstruatio
feedback quantizers first derived by the author and colleagu[118].

It can be shown that the right-hand side 8f1(42 is a convex, monotonically decreasing function of
«. This guarantees that, for any givén the value ofx satisfying 8.142 can be easily found via, for
example, the bisection algorithm [146], or, indeed, by atepbconvex optimization method [147].

It is interesting to note that for the perfect reconstruttase, we have
K—1 <+ a— . (3.144)

In such a case, it can be seen fra8rld 04 that the optimal noise-shaping frequency response madmit
f(e’*) converges uniformly ta, i.e., the feedback filef'(») approaches. This situation corresponds to
not using feedback. In view 08(140, expression3.144 also implies that wheik — 1, A(z) andB(z)
converge tdhalf-whitening filterswhich are known to be the best perfect reconstruction petffilters
in the absence of feedback, see, e.g., [55, 81].

An important feature of the filters characterized 31(17 is that they all can be implemented with
arbitrary accuracy by usingausalfilters (see also lemma3.6 and 3.4, in pagest5 and 57, respec-
tively). This is not only attractive in applications wherehere exists feedback between reconstruction
and source, but will also be instrumental in our derivatibthe bounds for the causal rate-distortion

function in Chapte6.

3.9.2 The Importance of Taking Account of Fed Back Quantizabn Noise

If one tried to optimize the filters of a FQ neglecting fed bapglantization noise, i.e., by trying to

minimizeq A2 ZIA=FBPI* 104 _ 1), P|| (compare t08.23), then one would obtain a (sub
Y

optimal) feedback filter, namel (=), which satisfies

11— Fol = na.p QP ", (3.145a)
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where the minimal prediction variange_ p, already defined in3.70 (page63), is given by
No.p = eifj” ln|(2x(ej‘*’)P(ej“’)|clu.)7 (3145b)

provided|Q,P| > 0, Vw € [—m, «]. This is the solution one obtains by settiAg — oo in (3.1173
and @.118. It corresponds to the result obtained in [81], which wastrieted to the cases whetfe>
| Fo||?. For the casé€), (e’*) = 1, the noise transfer function magnitude- Fy(z)| is also equivalent to
that derived in [88]. The latter is optimal in the sense ofimiging the ratios? /o2, but not in the sense
of minimizing o2 for a fixed quantizer SNR.

As it can be seen fronB(1173 and 3.118, f*, in general, does indeed approafgh= |1 — Fy| as
v — oo. Hence, one can expeg} to benearoptimal in situations where > ||Fy||?, see 8.23. The
latter is often satisfied at high bit-rates (i.e., when mamgrgization levels are available). However, for
any given number of quantization levels, it is easy to findcpeal situations wheré€), P is such that
| Fo||? is comparable to (or greater than) To see this, suppose that there exist scalarsl, / > 0 and

H > ¢/ such that

| (e?)P(e)| = €, Vw € [T, 7], (3.146)
| (e?)P(e)| < cl, Vw €L, (3.147)
| (e’)P(e™)| > H, Vw € H, (3.148)

wherellL andH are subsets df-7, ] having Lebesgue measuiég and|H|, respectively. Then

1 ] ) 1 . .
11— Ep||? = exp 7 / 1H‘Qx(e]“’)P(e]“’)|2 der% / ln‘QX(er)P(e]w)‘Q dw

weH wgH

i/ dw +i/ dw
2 O (eJ@)P(eiw)|> 27 O, (e7@) P(eiw)|?
Ly 1o Plei)F 72w Jy(ei) Plei)

> exp <|H| In H? + 2r — H] 1n€2) [&(6262)1]
7T

2 2 2
L 2 L (HY-
|| H]| =
_ 2\2x (p2\ "I _ 4
- 2me? (H%) (£) 2mc? < 1 >
Recalling thaf| F — 1||* = || F'||*> + 1 (see 8.19), the above yields
L) [ H\E/
F|* > |— — . 3.149
IRl 2 3 () (3.149)

This implies thata large || Fy||? is obtained for any produc®, P whose magnitude becomes signifi-
cantly small (in relative terms) over certain frequency 8an(An example is included in Sectich11

below.) A direct consequence is that, for these cases, aviewinof (3.23, trying to match/1 — F'| to
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N, P |QXP|_1 will yield a performance far from optimal. Also, this alsaieases the risk of incurring
large limit-cycle oscillations if no clipping is employesgge, e.g., [43, 78]).

The (possibly unbounded) increase|df||2 as |1 — F'| approachesio, p |2 P|~' seems to have
been first observed in [79]. Several heuristic solutionehaen proposed since then (see, e.g., [43, 46,
78,82,83,88]). In contrast to these approaches, the metboded in the present work allows one to
characterize the true optimal filters, by explicitly takimgo account| F||? in the cost functional to be
minimized (see&.23). In other words, our method not only guarantees ffat? < -, but also yields
the true optimal filters. Our proposal also has the advardaigeing applicable to arbitrary input spectra
and frequency weighting functions, regardless of how sth&lquantizer SNRy may be, within the

scope of validity of the Linear Model.
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3.10 Comparative Analysis

3.10.1 Optimal Frequency Responses

The frequency responses of the optimal filtérs:), B(z) and1 — F(z) for each architecturally con-
strained scenario are listed in Tal#el It is interesting to note that, in all the cases, the optifra
guency response magnitudes$(e’«)|, | B(e/¥)|, f(e/*) are, in general, different from unity, unless
| (e7*) P(e?*) | is constant ovef—, «r]. This implies that, unless the frequency weighted inputspe
trum has flat PSD, it is always necessary to utilize all thélavke degrees of freedom in order to achieve
optimal performance, in each scenario. This fact goes agtia intuitive idea that, in the scheme shown
in Fig 3.1, the filter F'(z) is necessary only when error frequency weighting makesrshisping a use-
ful tool to reduce reconstruction error. It also contraglitte perhaps natural thinking that the pre-filter
A(z) is required only when the input has a non-flat spectrum thatsgioom for predictive pre-filtering.
In reality, and as can be seen from TaBl&, pre-filtering is also beneficial when, (e/) is constant
andP(e’*) is not, while noise-shaping is required for optimality, ewehenP(e/*) is constant, as long
as{),(e/*) is not. More generally, it is clear that, unle§s, (e7) P(e7*)| is constant, every degree of
freedom not available, or not exploited, in the design ofelfack quantizer, will always entail a penalty

in operational rate-distortion performance.

3.10.2 Optimal Signal Spectra

Here we will analyze the PSD of the output of the quantifgre’), and the PSD of the frequency
weighted reconstruction erra$, (e’“’). Table3.2lists the expressions for the optim&i, (e’*) in each
scenario, derived from the equations characterizing thiemap filter frequency responses. It can be
seen from Table3.2 that, unless, (e’*) and P(e’“) and the frequency responses assumed given in
each scenario take special fornss,(e’) is, in general, not constant. However, when all three degree
of freedom are available (last row in Tal#e?), S, (e’“) is constantfor any input spectral density,
frequency weighting criterion, and choice @fb. Having a flat PSD in the output a@ is beneficial,
since it allows one to achieve near optimal coding of the tjmanoutput with a memory-less entropy
coder (seed.60 on page42 and Lemmab.2in Section5.2). Conversely, if any of the three degrees
of freedom is not utilized optimally, then rate-distortiparformance can be improved by using entropy
coding with memory. Indeed, it will be shown in ChapsgiSection5.2.2 that, when using subtractively
dithered scalar quantization, entropy coding with infimtemory is capable of substituting the lack of
any (but not more than one) of the three degrees of freedonciassd with an FQ scheme.

Table 3.2 also summarizes the expressions for the PSD of the frequeaighted reconstruction
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Table 3.1: Optimal frequency response magnitudes

Given Optimal A(z Optimal B(z Optimal f Where
p p
At ) o A - §
2 p* .
B, f %\PBB\Q - - (I)
fl
AB =W K/ | P||Qx |~ FIW] LVIPI Q| f2 W] - -
f K|~ /G e S Lo Je e - (ii)
A, B B - FBET (il
2 p* .
B aiﬁ‘\PBB\Z - ‘pBI(‘;+>\ (iv)
2 pr*
H 3 L :aifbx\l):iip mng\%r)\ (V)
- R Q| ™Y | B 1 o 1 | (VERTE6) e VEa (vi)
) ’ (VaTrea+a)® " 2K’ G2 +Ca +G
i\ 17 & IPBSI?
-V = &=17e

(i): k> 0isan arbitrary real constant, ¢ is the unique scalar that satisfies
a T - F(e@) |y (e9%) P (eI® a
KZE%‘[ max{f(eJ )27 ( )| (5 )P( )|}dw+[13]||f||2,and

G(e’*) & max {§f(ejw) , |Qx(ejw)P(ejw)|} ,  Yw € [—m 7]
(ii): () = L [ n (w + 1) .

(iv): In(K) = & [ In (w + 1)dw.

—T

: T s
(v): In(K) = %lr In (x\z—lﬂx(efW)A(eW)lz)dw

P23

Wiy im(E) =L [ I (\/WH n W) dw, (21— 2, and
|9 (e3) P(ed)| > 24

G(ej“’) L max{%@ , |Qx(ejw)P(ejw)|}, Yw € [—77',71’]
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Table 3.2: Optimal Power Spectral Densities. S, (¢’“) is the PSD of the output of the scalar

quantizer; S.(e’“) is the PSD of the frequency weighted reconstruction error, see Fig. 3.1.

Given Optimal Sy, (e/*) Optimal S, (e’) Where
02\QxP\ZfQ(a2a2+b2mxA\2)
2 2 p2 n n -
A' f |AQX‘ +Unf (a62+b\ﬂ A\Z)2
2P0 B2 | 2 02 _a2vio.p? | o ;
B, f (av+b|PB|2)? touf (av+b|PB|2)2 +on|PBI* (I)
fl
. . 2y
AB=W K| P||W | f+02 2 1= W[, P> + Talg -
2 .
f K2G S+ (o2 —r2E) 2 “Gf+< fn—;)eﬂ (ii)
. B - 2 aun
A, B QA2 +o nm |1—AB|?|Qy P|* 402 f;;“;’g‘g (iii)
b2 P40y B2 KX a®220x P12 2 KAIPB|? ;
B (a>\+b\PB\2)z+ ‘“XHPB\Z (a>\+b\PB\2)z+ " A\ +|PB|? (V)
b2 10 |4 PH|? KX 02220y P2 2 KA|QxH|?
H (ax+b|QxH|2)?2 +on A|Qx H|? (ax+blQxH|2)?2 Ton A |Qx HI[? (V)
2
2 VK o all-fy .
- K5 a 17—[ b ] 5 (vi)
(,/G2+[1—% a+G>
(i): vV é |PBf?
=112

(i): k> Ois an arbitrary real constant, ¢ is the unique scalar that satisfies

ol [ wy2  FE)]0 () P(e) a
= g e { ey LML 4 411117, and

—T

G(e*) £ max {{f(e7?) , |Qu(e?)P(e?*)|},  Vw € [, 7]
(il In(I f1 (WH)W
(V): In(K) = L fl (w 1)dw.

™

_ - A
(V): In(K) = %_fwl (,\2 10 (le)A(er)lz)dw

Vi) tn(K) =L [ 1n(\/w+c +w¢f§“ew”)dw,cé1—%,and
|9 (e3) Pe%) | > 24

G(e/v) & max{’; \/; , Qx(ejw)P(ej“)‘} , Yw e [-m, 7]
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error, S.(e’*), for each scenario. Careful analysis of these expressevesls that, except for specific
cases of2, P and the given frequency responses for each scerrie”) is not constant over-r, 7.
However, when all three degrees of freedom are availablédsign (last row in Tabl8.2), and ifa = b,
thenS, (e/*) is constant for allu such thaqP(ej‘”)]2 Se(el®) > (4)?2 = 2,

4 4

3.10.3 Optimal Performance

The equations characterizing the optimal trade-off betweeantizer SNR and WCMSE are listed in
Table 3.3 This table is a summary of the rate-distortion (or more isedyg, SNR-distortion) results
derived in Theorem3.1-3.1Q Using these results, it is possible to determine the SNddion effect of
having any subset of the filters =), B(z) andF(z) fixed and given. Only in the scenarios corresponding
to the first three rows of Tabl@.3is it possible to findD, ; directly from a given value of. In all the
other scenarios), (x,y) is a bijective function of’. In some cased), ,(x,y) and K are connected
by a scalar parameter, which needs to be determined nurheritiae latter is not a big difficulty since,

in all casesk is related to these scalar parameter®( \) through monotonic functions. Moreover, if

a < b, then it can be shown that the functions that reldtéo these scalar parameters are convex.

3.11 Simulation Example

To illustrate our results, we present below an example irclvinie design the filters of a Perfect Recon-
struction FQ aimed at digitally encoding audio signals irsggho-acoustically optimal manner. Recall
that an optimal Perfect Reconstruction FQ is obtained byirsglOptimization Problen3.8 with a = 1
andb — oo, see also Sectiod.9.1

The details of the simulation model, as well as the resultsotf the simulations and the numerical

optimizations are given below.

3.11.1 Simulation Setup

The PSD of audio signals was modeled as unit-variance zeao mkite Gaussian noise filtered through

Oy (2) = 0.09315 (jfggggg) The magnitude of the frequency respons€gfz) is depicted in Fig3.3

(solid line). The frequency weighting filtde(z) considered has a frequency response magnitude which
approximates the psycho-acoustic curve derived in [46leTHh thus modelling the sensitivity of human
hearing to nois¥. The corresponding frequency response is plotted with seddine in Fig.3.3 (the
sampling frequency i¢4.1 [kHz]). The resultingy = |Q, P| for these), and P(z) is also shown in the

10The coefficients ofP(z) can be found at http://msderpich.no-ip.org/research
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Table 3.3: Minimum D, ,(x,y) and K = v + 1 (v is the SNR of Q)

Given Minimum D, (%, y) K=~v+1
2y QA2 2
A f ab L [ PP g, K=l FIf
, e A )£
2
|9y P|? _ IPBf 2
B,f abzwif”a prde K= vV +||f||
fy
2 .
AB=W a LR b (W - 1) P K
s
. o
f bE(F I Pl)e p<i0n P HOI Pl 5 10 ) K=%¢L [ max{f*, L2 bdw+[1- 2] 7|2
-
s
A, B aX|QxA||2+b||(AB—1) P2 K:exp(ﬁf ln ‘PB‘ +1 w)
— T
T loxpP)? _ T \PB\
B ab/\i;fﬂ e dw K_exp(ilr ln +1 dw)
T Qx P T Qx H
H abx\%ﬁf md K:exp(%ﬁf 1n<%+1)dw>
- o —/DIPL gy b [ |, P|Pdw exp| L ln[ 1POx|2 oy 1POx] ]dw
aya VIxPI2+Ca +10xP| sy e Ve
105 P|> 2% 195 P|< 195 P| > 2

where¢ £1 — £,
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Figure 3.3: Frequency response magnitudes for {2« (z) (solid line), P(z) (dotted line) and

g(w) = |Qu(e’*) P(e’*)| (dashed line). The underlying sampling frequency is 44.1 [KHz].

same figure (dashed line). For this choicgypind in view of 8.149, one could expect the norm of a
full whitening feedback filter to be very large. This is indethe casei|Fy||? = 2.2 x 10!, Thus, the
sub-optimal feedback filter characterized Byl45 requires the use of a scalar quantizer with at le&st

bits in order to become feasible (see Constraigy.

In the simulations,©@ was chosen to be a uniform mid-rise quantizer with quantinainterval
A = 1. Several values off were considered for the simulations, calculatedyas %2%, where
be{l,2,...,16} and wherep = % denotes théoading factor Two different loading factors were
considered:4 and6. The latter choice yields a slightly lower than the usual loading factor af
However, this regime has the benefit of making overload srsanaller and more infrequent. As the
simulation results will show, for our choices 8f; and P, this more conservative loading factor yields

lower overall distortion wheh takes values abov&bits per sample.

For eachh (and corresponding two values for one for each loading factor), the filters of the con-

verter were designed according to the following:

1. The parameter,,; was calculated by numerically solving.(43.

2. The optimall — F|, | A| and|B| were obtained via3.140 and @3.22.
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3. These functions were then approximafedith rational IIR transfer functionsi(z), B(z) (of
order7) andF'(z) (of order15).

o !

4. An appropriate value for the parametein (3.41) was chosen via? = 202,/% | see 8.120,

assumings2 = 1/12 (recall thatA = 1 for all the simulations). This ensures thgt= vo2.

For each combination dfandp, the resulting PRFQ converter was simulated utilizing tiffedent

architectures.

1. Non OverloadingQ: This scheme is as depicted in FB1, with Q having (virtually) infinitely

many levels. Thugn(k)| < % for all & (neither clipping nor overload errors occur).

2. OverloadingQ and Clippedn: Here, Q hasN = 2° levels, which yields a scalar quantizer
with a finite input dynamic range- N £, N £]. As a consequence, any valuék)| > N4 would
overloadQ (if s = oo) or produce clipping error (i§ = V). To avoid large limit-cycle oscillations,

this variant was simulated using clipping (i.e+ V).

Each simulation with the non-overloading PRFQ comprisg@tdsamples. For the overloading con-

verter, five10° samples simulations were performed for each combinatigresidb.

3.11.2 Results

The results of the numerical optimization and the simurtatiare discussed next.

Comparison betweenD* and the Rate-Distortion Function

The information theoretic lower bound (see [148]) for tiegjuency weighteMSE (FWMSE) associated
with the given sourcéxz(k)} ez and filter P(z) is plotted in Fig.3.4 (solid line). This corresponds to
Shannon’s quadratic Distortion-Rate functibf R) whenR = b. As the bit-rate is increased, the gap
betweenD* and this absolute lower bound decreases to approxdB] for p = 4 and11 [dB] for

p = 6, atb = 16. This difference can be attributed to the rate-distortivefficiency of the uniform
scalar quantizéf. On the other hand, the larger performance gap observedvat lit-rates can be

attributed to the perfect reconstruction constraintRecall that, at low bit rates, the achievement of

11The optimization routines utilized are based upon the Matiptimization toolbox and can be found at http://msderpich

ip.org/research.
12From Shannon’s Rate-Distortion function for memorylessiggian sources, the maximum SNR for a bit-ate 22°. The

SNR (neglecting overload errors) for a uniform scalar gaantwith loading factor is given byp%QQb. Thus, the theoretical

performance gaps for = 4 and6 are10 log,((3/16) = 7.3 [dB] and 10 log;(3/36) = 10.8 [dB], respectively.
13The quadratic Gaussian rate-distortion function with thiestraint that the end-to-end distortion is uncorrelateth¢ source

has recently been characterized by the author in [127]. tterlis also described in Sectidrb.20f this thesis.
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Shannon'’s rate-distortion function demands the suppressi relatively less significant bands of the
PSD of the input signal (see, e.g., [6], and [148]). Thisdindistortion, which a PRFQ cannot achieve,

is more severe at lower bit-rates. Thus, the performancéngapases akis reduced.

Non Overloading Q

The FWCMSE of this form of converter is presented in four @f phots in Fig.3.4, with labels beginning
with “oZ opt. PRFQ, Non Overloading”. These plots differ in the |loaygiactor, denoted byg", and

in the meaning ob in each case. For the plots whose labels do not have the eftiEi€g (entropy
coding), b is simply the number utilized to generate the value- %2% for which the filters were
optimized. The plots whose labels end in “E.C.” correspantthe same simulations, but for each point
the value ofb is thescalar entropy of the quantized output of the converter. It can lemse Fig.3.4
that the FWCMSE obtained for the non overload@gvithout entropy coding is remarkably close to the
theoretical valueD* predicted by 8.143. More importantly, even for bit-rates as smalltas: 2, each
observed ratier2 /o2 deviates from its nominal value af by less thar2%. (For the extreme situation
b = 1, the observed? was slightly lower than predicted, white? was55% higher thanl /12 due to
the highly non-uniform PDF of the resulting sequeregk)}.cz.) It can also be seen that the scalar
entropy of the quantized output of the PRFQ in these casesylose to ShannonB(D) function for

a given distortion. This agrees with the observation thatithtput ofQ in an optimized PRFQ is white,
see Sectio3.10.2 The difference between these quantities is bigger for taxakies of, for the same

reason given in the previous paragraph.

Overloading Q

For the Overloading PRFQ using arof 4, the FWCMSE diminishes along with the corresponding
forb € {1,...,6}. However, the measured FWCMSE varies very little for 7, staying several dB
higher thanD* over that range of bit-rates. This performance degrada@anbe attributed to clipping
errors. The fact that overload errors become noticeablefonhigh bit rates (many quantization levels)
might seem, at first, surprising. However, this phenomeramle easily explained by noting that the
size of the tails of the PDF ofuv(k)}xez that fall outside the dynamic range &f remains approxi-
mately constant in relation t/ A = 2°A for all b. (This is a direct consequence of the loading factor
rule.) In contrast, granular (non-overloading) quant@agrror is proportional taA?, which is held
constant in the simulations. Therefore, the ratio betwdippiog and granular quantization errors grows
approximately a&” and clipping errors become dominant for sufficiently highraies.

Because of the reduced occurrence (and magnitude) of eipgirors, the optimized PRFQ with
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Figure 3.4: Frequency weighted MSE forb € {1, ..., 16}.

overloadingQ andp = 6 exhibits an FWCMSE smaller than that of its counterpart with 4 for b > 7.
Furthermore, this more conservative loading factor all¢es converter to perform almost exactly as

predicted by our analytical expression for.'4

Comparison with PCM

The theoretical FWCMSE of a PCM A/D converter, denotedibyc s, can be found from3.23 by
takinga = 1 and making4(z) = B(z) = 1 andF = 0, which givesDpcar = [|4|%|| P||?/~. For the
chosen input PSD and frequency weighting filter, and calmgay asl%22b, the value ofD p¢ )y, varies

with b as shown in Fig3.4(dotted line). As seen in this figure, the gap betwé&erand D p¢,, for each

14There exist several results on the optimal balance betwasioad and granular error variances for stand-alone Isgatmntiz-
ers (see, e.g., [94] and the references therein). Howerdgddback quantizers the question seems to be open. Analjptade-off

between overload and granular errors as the oversampliogteads to infinity is found in Theore®.15 see Sectio.12.3
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value ofp, gets smaller as the bit-rate decreases. It can also bers&&m3.4that the optimized PRFQ
with overloading angh = 6 exhibits an improvement df2 [dB] over PCM atb = 16. Equivalently, in
order to obtain the same FWCMSE as that of PCMbits, the PRFQ converter with = 6 requires
less thari2 bits. At lower bit-rates, the improvement of the optimal RR&ver PCM is also significant.
For example, the overloading PRFQ wijth= 4 andb = 2 has a lower FWCMSE than the PCM converter

with b = 4, thus achieving a data rate compressiofi@f (see Fig3.4).

3.12 Oversampled Feedback Quantization

3.12.1 Introduction

As already mentioned in Sectidhl.4 there exist situations in which increasing the rate at flac

continuous time source is sampled is preferable (or lessresipe) than improving the accuracy of the
guantization by increasing the number of quantizationl&j@6], [43, Section 1.1]. The use of over-
sampling along with scalar quantization is known to red@m®nstruction MSE for a given number of
guantization levels. Using the Linear Model (defined in S8&t2), it has been shown in [56] that the

MSE of scalar feedback quantizers can be made to decay witbvérsampling ratia as
MSE = O\ 2mt)) when\ — o, (3.150)

wherem is the order of the feedback filter (see also recent work if)[92f course, if the number of
quantization levels in the scalar quantizer is kept fixed,ifmemoryless entropy coding (or no entropy
coding at all) is utilized, then the operational bit-ratergases proportionally with. Thus, the decay
rate in 8.150 is rate-distortion inefficient, since a linear increasthia bit-rate at a fixed sampling ratio
reduces MSE a®(2-%%), i.e., exponentially.

Recent work in [96] has shown that, for sources with boundgbert, 1-bit ¥ A quantization can

attain an MSE which decays as
MSE = 02791 when\ — cc. (3.151)

Such exponential decay rate is obtained by selecting areiffdeedback filter for each oversampling
ratio [96]. This result was obtained using a deterministodiel of quantization errors, and, to the best of
the author’s knowledge, corresponds to the fastest detiayofahe MSE with oversampling available in
the literature. Unfortunately, applying the method uétizin [96] for the cases in which the source has
unbounded support, or to multi-bit feedback quantizeresyseto be a formidable task.

In Section3.12.2we will show that, within the Linear Model, if the optimal infte order filters

characterized in Sectio®9 are used for each value af then one can achieve an exponential decay of
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D* with oversampling ratio, provided is kept constant. For simplicity, we will restrict the arsifyto
the case in which the weights of the WCMSE are 1, b — o, i.e., where the WCMSE reduces to the
MSE, and the reconstruction error is uncorrelated to thecgouVe will then linky to the operational
bit-rate of the scalar quantizer, and obtain asymptotic M8&ay rates when the operational bit-rate is
kept constant. It will be shown below that, using an entrapyed subtractively dithered scalar quantizer

(SDUSQ), the MSE of an optimal PR feedback quantizationetesas as
MSE = 02 ™) when\ — oo, (3.152)

when the operational bit-rate is kept fixed, provided sidfitguantization levels to avoid clipping/overload
are employed.

This result is then extended, in Secti8rl2.3 to the cases in which the FQ uses clipping and a
subtractively dithered scalar quantizer with levels. With this setting, we will demonstrate that, by

adjusting the loading factqgrto each oversampling ratio, the MSE can be made to decay as
MSE = 0(e=*""), when\ — oo, (3.153)

wherecy = [0.5(N — 1)]2/3. This asymptotic behaviour of the MSE holds for sources Witinded or
unbounded support, provided conditicdhl) on page45is satisfied.

3.12.2 The Oversampled Case Without Clipping/Overload

If the input sequencéx(k)} ez is obtained by sampling a band-limited analog signal, amersing
would causey (defined in 8.147) to vary with A. To capture this effect, we replageby the family of
functionsg,, defined as
) & VAgOw)  if w| < we, 3150
0 i we < w| <.

In (3.159, ¢, denotes the square root of the PSD of the frequency weighped without oversampling,
andw, £ Z. Notice that||gx||?, that is, the total power af, (in units of variance per sample), remains
constant for all\ > 1. This ensures a uniform comparison basis for the distofigures.

When considering the asymptotic performance of oversasmp@ntization a3 — oo, the validity
of Assumption3.2 on page49 needs to be reconsidered. To see this, notice that if the euaflguan-
tization levels is insufficient to avoid clipping/overloadors, and if dither and clipping are used with a
fixed loading factor, then there always exists a certaindindiue ofA beyond which Assumptio8.2is
violated. This arises from the fact that, for any fixed loagiactor, the effect of clipping errors in the

output does not decay with, thus becoming the dominant component in the FWMSE for seiftty
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high oversampling ratios. Further reduction of the FWMSHildahen require one to balance clipping
and granular quantization errors by increasing the loatintpr. If the number of quantization levels
is fixed, this would necessarily reduce the value pflearly increasing the component of the FWMSE
due to granular quantization errors. Nevertheless, ifpatig and dither are used (with = V'), then
the Linear Model and Theorefi12are exact in describing the FWMSE dueg@nular quantization
errors. Furthermore, as explained in Remakbelow, for subtractively dithered quantization with in-
finitely many quantization levels, the entropy of the quaedi output conditioned to the dither can be
kept constant (and finite) as— oo while having the reconstruction MSE that decays exponkntia

We can now make explicit the dependencéxdfon~ and\ by writing

2
DYEN L min D(f)= min L9 1
N it P 8P BT (3499

whereK, defined in 8.22, corresponds to theutput-SNR 08.
Interestingly, it is possible to establish a precise “exd&d formula for K and\. Indeed, in terms
of minimal achievable distortion, the effect of increasmgrsampling is equivalent to an exponential

increase in the output-SNR @f. This is shown in the next theorem:

Theorem 3.11. Under the Linear Model described in Secti®i2.2 for any functiory; (w), and for any

K > 1, )\ > 1, the minimum achievable FWMSE satisfies:
D*(K,\) = D*(K*1). (3.156)
A

If we assume thaty depends exponentially on the number of bits per sample, Theorem3.11
suggests an FWMSE that decays exponentially wjtbrovided the Linear Model holds and that optimal
filters A(z), B(z) andF'(z) (characterized by3(140Q and 3.22) are employed for each The following
simple example illustrates this idea:

Example(Flat Weighted Input Spectrum) Consider an input sigh&lk) } .z and a weighting filter
P(z) such thaf), P| is constantvw € [—, 7], without oversampling. For this setup, the optinigl:)
for our model of PRFQ i¥'(z) = 0 (f(e’*) = 1), i.e., a PCM converter. Fron.143, the minimum

frequency weighted MSE without oversampling (i.e., With 1) under these conditions becomes

O’2 0'2
D*(K,1) = =& = —£&
(K1) = 228 =

whereo?, 2 ||Q.P||?. To analyze oversampling behaviourdf in this case, we apply Theorednll

2
9P

L5, and, thus,

to the above expression. This gives thet{ K, \) =

2
02, K~ < D*(K,\) < (%) K (3.157)
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forall A > 1. Note that, to achiev€8.15%, F'(z) needs to be synthesized according3d 403, (3.142
and (3.22. Therefore, for this example, the MSE of an optimized PRR® fixied~ exhibits an expo-
nential decay with the oversampling ratio (since, by daéniti’ > 1).

If we further assuméy to depend on the number of bits per samiples K = 1%22” + 1 (which
would correspond t@& being a uniform quantizer with many levels and operatindpwitoading factor
of 4), then(3.157 becomes

_ 3 4o-2b
092:P2 [log, (&+2 )+2b])\§

(3.158)

D*(K, )\) < (1:?(;11) 27[log2(%+2*2b)+2b]/\'

The termlog, (+ +272") in (3.159 is negative for alb > 1. This implies that the decreaseof with X,
although exponential, is slower th&t2"}. Thus, the use of oversampling in this case is rate-digtorti
inefficient. In particular, taking = 1, and supposing that AssumptioBS and 3.4 hold, we obtain
from (3.158 that D* (K, \) is lower and upper bounded by terms proportiona2td-#°". For loading
factor values of5, 10 and 20, the exponent in the latter expression changes @1\, —0.1635\ and
—0.0426 ), respectively. A
The next theorem shows that the exponential decay of the F&/bIfained in the example above

can be extended to arbitrary (band-limited) input signal$faequency weighting criteria.

Theorem 3.12. For anyK > 1 and functiony; (w) satisfying Assumptio3.1, the following holds:

K2aopt (K, 1)

D*(K,N) < =g

K™ VK >1,VA>1, (3.159)
whereay,,. (K, 1) denotes the optimat for A = 1. A

Thus, under the Linear Model, we have that the FWMSE of amtp&d PRFQ decays exponentially
with \.

Remark 3.1. As already mentioned in Secti@®.2 if x is bounded and a sufficiently large number of
quantization levels to avoid overload is used together dither, then the Linear Model is exact. Never-
theless, there is no guarantee that the number of quartizégivels necessary to avoid overload remains
constant as\ increases. Thus, if that number increases witithen keepingy constant may require
increasing the number of quantization levels in the quentidevertheless, if a subtractively dithered
scalar quantizer is used, then the entropy of its quantiaggut conditioned to the dither, denoted by
R, depends only on the PDF ofk) and on the quantization interval, see SectioR.4.2 R, corre-
sponds to the asymptotically achievable rate that can baionbtl by entropy coding long sequences of
quantized values. Thus, when using SDUSQ with sufficigrdlys(bly infinitely) many levels arfcked
ratg one can substitute2.60) into (3.159, which yieldsD* (K, \) = O (27 1:7462), A
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An extension of these results to include the effect of chigpérrors, which are unavoidable if the
source has unbounded support and the quantizer has a fimiteemwf quantization levels, is the main

result of the next section.

3.12.3 The Oversampled Case With Clipping

In this section we derive an upper bound on the total frequeveighted MSE of a perfect reconstruction

FQ, including clipping errors. To do so, we assume that tladascuantizer in Fig3.1 uses subtractive

P A A

5 5. Choosing the saturation threshold of the clippes asN2,

dither, uniformly distributed ove]

no overload occurs (see Secti®2.]), and thus

2
— A (3.160)
12
Denote thdoading factorat whichQ operates by
a _Ov
p= NAj3 (3.161)
Substitution of 8.16Q and @.16J into (3.19 yields
2 N2A2
=T 3 N2 (3.162)

ol 4pPAY12 T g2
In order to keep clipping errors infrequent and small, ieiguired to choosg large enough.
In the FQ shown in Fig3.1, clipping errors are not injected into the feedback loopstéad, they

appear in the frequency weighted erediltered by B(z) and P(z), as the process
I(k) £ P(2)B(2)0(k), VkeZ. (3.163)

Unless the sourcéx(k)} is a stationary process, one cannot guarantee that the esofithe clipping
error will form a stationary, or even a w.s.s. random procdasorder to quantify its contribution to
the FWMSE for non-necessarily stationary sources, we d#imaverage frequency weighted power of
clipping errors in the outpués
1 -
2 A q: 2
02, £ Jim o k_Z_ZE [ﬂ(k) } (3.164)
The next lemma provides a fundamental result that will séoweerive an upper bound for clipping

errors.

Lemma 3.13. Letsy, 2, . . . be independent random variables with momeuits= E [¢"], and leto? =

>, 1h < oo. If there exists a constarf such that

|| < %(n!)H"‘2 lub|, V¥n>2,Viez", (3.165)
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then
Pr {ZZ S > ua} <e Y Yu>o/(2H). (3.166)
A
Proof. From one of Bernstein’s inequalities, given in [149, Seb],5ve have that

Pr {Z G > ua} < e 209" " wy > 0 andVe € (0,1) such that < (3.167)

co
2(1—c)H'
For everyu > 0, the tightest bound for the first inequality i8.067 is obtained withc = —*—.
2H
Substituting this into%.167 yields Pr{>",¢; > uo} < e~2v*/(0+% ) The latter, together with the

factthat2u/(1 + %u) > 5%, Yu > o /(2H) leads directly t08.166, completing the proof. O

The following theorem provides an upper bounda‘@g applicable to situations in which the source

has unbounded support.

Theorem 3.14. Suppose there exists a scafak oo such thaty; (w) < g, Vw € [—m, 7], see(3.159.
Assume that the innovations of the procésék)} is a sequence of zero-mean, independent random
variables{¢(k)} having a symmetric PDF and moments which sai{8f§$65 with H = H¢, for some
constantt,. Then, in an optimal PRFQ with clipping and subtractive dith

2
SAeTVP VA1, (3.168)

o2 <16L
12

=)

where) denotes the oversampling ratipjs the loading factor defined i(8.161), and where

Al YA 1/2 O¢  On
v= -—ming (| —— — . — 5. (3.169)
2 v+1) H.H,
A

Proof. We have from 8.164 that

02, < Bl 0205 (3.170)
where
B A ma ]}P(ej“)B(ejw)}Q (3.171)
we|—m,T
and wherer? is the time-averaged power of clipping errors, given by
1 4
2 A 4 2
oy & lim o k;ZE [0(k)?] . (3.172)

We will first upper bound3,,,,, and themg.
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Bounding BZ,,, From @3.41h, we have:
Jw Jw 2 —_ g/\(w) o
|P(e’)B(e’)] 2 f(c)’ Yw € [—m, 7. (3.173)
From 3.120,
1/2
2 oo 7+l
Kk® =207 <a(K, )\)) . (3.174)

Substitution of the latter intd3(1403 yields

2 00w o2 ’y—i—l o o)) = v+1
K2f (/) = 202 (\/g 2+ a(K,\) — ()) n\/g)\ 22+ a(K,\) + ga(w)

Noting thata (K, \) = Aa(K*, 1) (see the proof of Theorem 5 in [118]), we obtain

7+1
7n \/)\gl )2+ Aa(KM 1) + Mg (Ow)
205(v+1) !
VX \/gl 2w)? + (KX 1) 4 g1(Aw)

K F () =

Substituting this last equation an8l 154 into (3.173 we obtain

’2 - # (\/gl()\w)Q +a(K/\,1)|+g1()\w)) g(dw), Yw € [-m, 7).

[PE)BE = 5071

(3.175)

Sincea(K*, 1) decreases monotonically with increasilghe following upper bound can be obtained
from (3.179:

|P(e*)B(e?)|* < =

(Wﬂ;) 3, Vwe [-ml. (3.176)

In order to get rid ofx(K, 1) in the above expression, we will use an upper boundf{dt, 1) instead of

202 ’y—f—l

the latter in the right hand side d3.0.79. SinceK = ~ + 1, it follows directly from @3.149 that

1
(K1) < 4?22 (3.177)
’7

and thus

= A\~ +1 . oY +1
(\/92+a(K,1) +g)g§< 1+4’772 +1)92292L.

Y
Substitution of the latter intd3(179 yields

~2
|P(e/)B(e™)|” < B2, < 2—

A, VYw € [-m, 7). (3.178)
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Boundingo? Foreveryk € Z, v(k) is a linear combination of the i.i.d. random variabfesi)}*~* __,
and the independent random variabjééi)}<____. Notice also that, due to the use of subtractive dither,

the random variables(i) and{(k) are independent for all k € Z. More explicitly, at any instank, we
can write
(k) =Y ce(@é(k—i);  y(k)=) eald)ulk i) v(k)=) (i),  (3.179)
1=0 1=1 1=0
where the sequence

(i) 2 ce(3)8(k = 3) i even (3.180)

cn(%) n(k — %) .1 odd

is made of independent random variables. We will upper begriy applying Lemma&.13to >~ < ().
For this purpose we need to find a value féy namelyH., for which the random variablgs; }$°, sat-
isfy (3.169. This can be done by upper bounding the coefficientsndc,. From @.179 and Fig.3.1

we have
o0 ' 1 ﬂ— " 9
o7 205(1)2 =0’ = %/ |A(e)|” g(w)?dw. (3.181)
i=0 o

From @3.179, and sinced (e/*) = B(e/“)™!, the squared frequency response magnitude of the pre-filter
A(z) can be upper bounded p4(e7)|* < 02(v + 1)/(g(w)2)), which, when substituted into the right
hand side of.181), yieIdst:_OO ce(i)?of < M = aﬁ”v—tl. The latter immediately gives the

upper bound

. v+1 .
ce(i)? < @aﬁ, Vie ZF. (3.182)
Similarly, from 3.179, and sincer2 < 02, we have thaEf;ioo cn(i)%0? < o2, which leads directly
to
0.2
cn(i)? < U—; Vi€ 77", (3.183)

Since, for any random variabteand scalae, H. . = cH,, it follows from (3.180, (3.182 and 38.183

that H. can be upper bounded as

N\'"?*H: H,
%) —f,—}av (3.184)
i

H, < H, 2 max{max{ce(i)}He, max{c, (i)} H,} < max { (
U U O¢ On

SubstitutingH by H. into (3.166 we obtain

Pr{v>uo,} < e Y < e_;Tvcu, Yu > oy /(2H,). (3.185)
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From 3.185 we have that the variance df cannot be larger than that obtainedvifvere a random

variable with cumulative PDF given by

i Jif z < —2H In(2),
Fopn () £ 4 1/2 Jif 2| < 2H.In(2), (3.186)

T .
1—e 287 [ifz > 2H In(2).

Hence, forp > % In(2), the variance of overload errors can be upper bounded as

0o d 2 "0 _ 1
o3 < / (t = o) [ 7 Fopna ()|t = — / (2 = 2pout + p?o?)e 0 dt  (3.187)
o dt 2H. Jpo,
— 16H2c 2" = 16H%e ™7, (3.188)
H o 1 : YA 1/2 [ H H H
since7- = 3 min (m) o T (= V»See 8.169. Substituting8.188 and 8.17§ into (3.170,
we obtain
N g9
ol < 16027)\Hf e =165 Ae T, YA (3.189)
where 8.15 and @B.169 have been used. This completes the proof. O

Thus, we have obtained an upper bound on the MSE due to ojjgpinrs that grows linearly with
and decays exponentially wigh(provided the product\ does not tend to zero as— oo, see 8.169).

It is worth noting that the above bound is not tight, whichnstefrom the use of the following
inequalities: from 8.166 (Bernstein’s inequality); from inequalityd3(170 (which assumes that all the
power of clipping errors coincides with the peak|t§f(ejw)B(ej‘”)|); from inequality 8.178 (which
only has the effect of introducing a constant scale factorgt from @.183, (3.182, and 8.184 (which

can be expected to be very loose inequalities).

Remark 3.2. If one assumes that the average power of clipping ertgss evenly distributed over

[—, 7], then(3.170 would change to
o2 = 05%/ | P(e7) B(e?)|duw. (3.190)

From (3.179, and becausg(w) is zero for|w| > 7, the integral in(3.190Q converges, a8 — oo, to the
valuel/(202(vy + 1)), which is independent of. This, when substituted in{8.189, would eliminate
the A factor that multiplies the exponential (8.169, yielding

) 16

€9 —

v (3.191)

g
14

A
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Now we can upper bound the total MSE:

Theorem 3.15. Suppose there exists a scafpk oo such thaty; (w) < g, Vw € [—m, 7], see(3.159.
Assume that the innovations of the procé¢sék)} is a sequence of zero-mean independent random
variables{¢(k)} having a symmetric PDF and moments which sai(8f§$65 with H = H¢, for some
constant,. If the loading factor in an optimal PRFQ with ai-level uniform quantizer using clipping

and subtractive dither varies with the oversampling ratias
p=4"Y3/3 (N —1)2/3)\1/3, (3.192)

theno?, the MSE including overload errors, satisfies

02 =0 "), asi — oo, (3.193)

where the constant
co £ [0.5(N —1))%/3. (3.194)
A

Proof. The total frequency weighted error is
€=en+ ey, (3.195)
where
en(k) £ (1 — F(2))B(2)n(k) (3.196)

is the term ine due to granular errors i@ and where: is the part ofe due to clipping errors. We then

have that

02 =E[’] =E[(en +€9)?] SE[2(e} +€3)] =2(c2, + 7). (3.197)

€n

By substituting 8.177% into (3.159, the upper bound to the FWMSE due to granular quantizatiaie
in (3.159 becomes
3
o2 < g’ <7—“) LICAR IR (3.198)
" Y
Upon substituting3.189 and @3.169 in (3.197, we obtain the following upper bound for the total error
variance:

2 o (YT 1 ’ —In(y+1)A 92 —v,
o <25° | —— | e M7 +32=5 e 7. (3.199)
o v
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The above upper bound fet. does not tend to zero with increasingunless one makes the loading
factorp grow with X fast enough. Fron3(162 and since the use of subtractively dithered uniform scalar
quantization reduces the effective number of quantizdgwals by1, we have thaty = 7n/p?, where
n = 3(N — 1)2. Thus, the term due to clipping errors i8.199 can be reduced only at the expense of
havingQ operate at a lower SNR. This, in turn, makes the term due toudgaerrors decay more slowly
with increasing\.

For example, if one makes the loading factagrow with A\ asp = w\?, wherep > 0 anda > 0 are

constants to be chosen, thén99 becomes

w2 \2P

s —2p G° P
0? < 2° <1+ ) e~ I(EATTHDA 39T\ gmveN (3.200)
12

It can be seen in the above expression that a large valpevotild reduce the decay of the granular error
term and increase that of the clipping error term)a@gows. Thus, the optimal decay rate when- oo
is achieved by choosingso as to make both terms decay at the same asymptotic rateisTdthieved

if and only if p anda are chosen so that

In (o + 1) A= 3In (14 =22) —In2

ER 3.201
CTEN T vma —In(A) — 2In(4g/v) — In2 (3.201)
equalsl. Before evaluating the above limit, note that fro&169 we obtain
1\ H
v=v24V3, VYA>2/2 (l) - (3.202)
Y O¢
sincen, being a random variable uniformly distributed oferg, 3], has standard deviation, = ;5

and satisfies3.165 with H,, = %. Applying I'Hdpital’s rule to 3.20) and substituting by 7,

o [In (25222 + 1) [A - 3] — 6pln(\) + 31n ()
TS PP — In(\) — In(16/3)
. [In (AP +1) — ﬁg—zpu — 3\ —6pAt
A—00 paopAP—1 — A1
[ —2npA=1  6mpA 2 (n+w?A?P)—4w®np? 132" 1A% _
[P e oy
A—00 voop(p — 1)AP~=2 4+ A\ =2
: —2npA _ 6np(n+@’N?P)—dw’yp?[1-3X" AP
_ lim | TEEE (nt=?22r)? +6p
A—o00 vowop(p — 1)AP + 1
~ i [Z2A( A+ @A) — Gnp(n + D NP) + deo?yp?[1 — BATHNPET 4 6p(n + A
A—oo | (n? + @A + 2?9 \?P) (Vop(p — 1)AP + 1)

(3.203)
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By comparing the powers of in the numerator and denominator of the right-hand side3&1Q3, it
is clear from that is either(0 or co unlessp = 1/3. With this choice, we get = 33, and thus

c=1 < w= (g)1/3. Therefore, the right-hand side &.20J) equalsl if and only if

p=1/3,
N\ /3
v
Substituting these values int8.20Q we obtain
af < e M)y gmha (V) (3.204)

where

hi(\) 2 In [cl)\_2/3 + 1} A—3In {1 + c;u?/ﬂ — In(25?),

(3.205)
ha(N) 2 ) A3 —In(\) — In(326%v72),
VYA > 1, and where
e 2 MR = (3/16) 3 = (3/16)/*[3(N — 1)2)/% = [(3/4)(N = )P (3.206)
From 3.205 and (3.208, it is straightforward to show that
. hi(N) L ha(N)
i S = s = (3.207)
Using (3.207% itis found that, for any constant< ¢, the following holds
) e—hi(N) CA%/L" ) 1_hoy e
A11*{1010 (W) = Ali}H;oe aal/3 =e e < 1. (3208)

This means that for every > 0, there exists a bounded and positive = A (¢) such that, ifA > A4,
then(ef}”m

e—ckl/S

—1 c <
) eal/s < ol—F +e. Choosings < 1 — el_Tl, we have that

o—hi (V)

i <1, VA > Al(E). (3209)
e—¢

e () C)\1/3 o
<e——w3> <ot e, WASAe)

A similar analysis leads to the existence of a bounded anitiy®4 (<) such that

o—ha(V)

i/ <1, VA> AQ(E). (3210)
e—¢

Sincecy in (3.199 satisfiescy < c¢1, (3.209 and @3.210 demonstrate3.193. This completes the
proof. 1
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Remark 3.3. The requirement that the innovation procesgxfk)} is made of independent samples is
necessary in TheoreB115in order to obtain(3.184 in TheorenB.14 This condition can be omitted if
the pre-filter is simply a scalar gain and if we assume, indt¢laat the samples df(k)} satisfy(3.165

for some bounded/. Setting the pre-filter as a scalar gain would yield a non wyati PRFQ (unless,
of course, the source is white). Nevertheless, one woulirbtato? also grows linearly withA and
decays exponentially with. As a consequence, Theor&mi5can be extended in a similar fashion

without requiring the source to have an innovations proseitis independent samples.

Remark 3.4. From Remark3.2, if one makes the assumption that the average spectral pofuis
evenly distributed ovef—m, ], the effect would be to eliminate thel term on the right end of the
denominator 0f(3.203. Following the proof of Theore®.15 it is easy to verify that thigzould have no
effecton (3.193.

3.13 Summary

In this chapter we have characterized the filters aroundlarsgaantizer with given SNR that minimize
the frequency weighted reconstruction WCMSE. The assetiaptimal performance (SNR-distortion)
trade-off for this class of ED pairs has been also estalisie has been shown that the frequency
weighted MSE of optimal perfect reconstruction feedbachrgizers decreases exponentially with the
oversampling ratio, if the quantizer SNR is kept constamtaddition, a lower bound to this decay ratio
has been found when the number of levels in the quantizerite #amd fixed. This bound takes into

account the effect of clipping errors, and holds for soureis unbounded support.

3.14 Appendix

In this appendix we give some technical results which weeel tisroughout this chapter.

Lemma 3.16(WCMSE Wiener Filter) Let S, (e/*) = \Qm(eﬂ'“’)|2 and S, = |Qx(ej‘*’)|2 be power
spectral densities. Let,b > 0 be given constants. Then, the frequency response of thelteT i (z)

that minimizes
Do p(x,y) = al|[ WQLP||* 4+ b||(W — 1)Q, P|? (3.211)

satisfies

bSx(e7¥)
@5 (@) + b9 (1)’

W(e¥) = a.e. on[—m, 7] \ Np, (3.212)
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whereNp £ {w € [-m, 7] : P(e?*) = 0}. A

Proof. It is clear from @.21J) that in order to minimizeD,, ;,, W (e?“) must be real, non-negative and

symmetric. If this is the case, we have that

Da,b(Xv Y)

_ / | P(e7)|? (aW (€7)2020 (€72 + bIV (e7) 260 (€7)2 — WV (£7) 0 (€7)? + b2y (€7)?) v

:(/ﬂf«ew»f((agﬁ_%bgi)vv2-_zbmzai-%bgi)dw

2 2
2 b2 b2

= [ |P(e® a2 b2 W — ——=x | 4502w — |—2 | | dw

/‘ () ( Va2 + b2 L/anMQg )

I S b ()2 12 abQ(99)20, (e7)?2
= Jw Jjw Jwy Jw
- 2W/ |P(e7)|” T () [W(e ) T(e)? + |P(e)| ()2 dw

b2\ |7 Va0 ||

= HP <W - > T P (3.213)

whereT'(e/%) £ /afd,(ei*)2 + by (e/+)2 . From the last line 0f3.213, we conclude that the filter
W (z) that minimizesD, ;(x, y) has the frequency response given3r2(9. O

As one could expect from3(21)), the filter described by3(212 would be the standard non-
causal Wiener filter if the source and the noise had powertispetensitiess \P(ej“)\2 Sy (e’*) and
b }P(ej‘*’)}2 Sn(e7%), respectively.

Theorem 3.17(Simplified from Theorem 1 on p. 217 of [128])et X" be a linear vector space antla
convex subset ¢f. Let.# be areal-valued convex functional Srand¥; , %, . . .,y convex mappings
from S into R. Assume the existence of a pofnte S such that4;(f1) < 0,fori =1,2,..., N.

Let

wo = inf Z(f) subjecttof € S,%4;(f) <0,i=1,2,...,N (3.214)
and assume is finite. Then there exists a vectare RV satisfying
A >0, Vie{l,2,...,N} (3.215)
and such that

o=t {#(+ X7 M} (3.216)

fes
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Furthermore, if the infimum is achieved(®.2149 by f* € S, 4 (f*) <0,Vi € {1,2,..., N}, thenf*

also achieves the infimum {8.216 and
G(f 9N =0, ,Vie{l,2,...,N} (3.217)
Proof. Same as in the proof of [128, Theorem 1, in p. 217]. O

Theorem 3.18.%If ¢, : [a, b] — R are similarly functionally related, then

b b b
[b—a]/ (b(x)w(z)dzZ/ (b(z)dz/ Y(x)dx. (3.218)

If ¢ and+) are oppositely functionally related, then the inequality(3.219 is reversed. In either case,

equality is achieved if and onlyf (and thereforep) is almost constant. A

Proof. We will examine the difference between the right and leftchside in 8.218§. We obtain
b b b .
[ o~ [ otwds = [ o) [v@) - 7] o

wherey £ - f; Y(x)dz. Note that we have divided both sidesby a. Suppose 11 . (The proof
for ¢ 1| ¢ proceeds in a similar way.) Then there exists a monotogigatreasing functiorz(-) such
thatg = G(1), and a valuey, such thaip(z) > ¢y <= ¢(x) > ande(z) < ¢g <= ¢(x) < 1.

It then follows that

b o b .
/¢(x) [w(:c)—w]d:cz/ o [V(x) — ] dx =0,

with equality if and only if

(@) —¥ldz=0= | _[p(x)-¥]da,
> $<T

i.e., if and only ify) (and therefore as well) is almost constant. O

15This theorem is related to the variant of Tchebyshev's haletpequality given in [150, Theorem 236]. It departs frome t

latter in that the integrands must be functionally dependeiich allows us to state necessary and sufficient comditior equality.



Chapter 4

The WCMSE-Rate-Distortion

Function

It can scarcely be denied that the supreme goal of all theotyg make
the irreducible basic elements as simple and as few as gdessithout having
to surrender the adequate representation of a single datuewerience.

Albert Einstein

There is nothing more practical than a good theory.
Attributed to Kurt Lewin, German Psychologist.

4.1 Introduction

In the previous chapter we analyzed the optimal bit-ratéoperance attainable with a general feedback
scalar quantization scheme, using WCMSE as the distortitmien However, it is not clear from those
results whether the achieved performance is optimal in aplate sense, that is, when compared to the
best performance achievable hgy possible source coding scheme. A function that charaetetize
minimum achievable bit-rate for a given distortion metschy definition, a rate-distortion function [6].

Here, we first define the information-theoretic rate-disor function for WCMSE as the distor-
tion metric, denoted as WCMSE-RDF or by and by the functityn, (D). The information-theoretic
WCMSE-RDF is then characterized for Gaussian sources,hndgcves, initially, as a lower bound to
the rate attainable by any ED pair under the constraint th@WWCMSE is smaller than some value
D > 0. The cases of Gaussian scalar and vector sources are @ddnsectiong.3 4.4 respectively.

The information-theoretic WCMSE-RDF for Gaussian stadignscalar processes and vector processes

107
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is characterized in sectiodssand4.6, respectively. A proof of achievability of these boundsrieyided

in Section4.8, which implies that the information-theoretic WCMSE ralistortion function actually
coincides with the WCMSE rate-distortion function. The i@ghbility result holds for Gaussian scalar
and vector processes, as well as for infinite ensembles afsgauscalar random variables.

The special cases in which the WCMSE has weights b = 1 anda = 1, b = oo are briefly
discussed in Sectiofh.5.2 The latter case characterizes theadratic Gaussian rate-distortion function
for source-uncorrelated distortionslenoted byR* (D) and recently introduced by the author and col-
leagues in [127]. An image processing example which prevaléangible illustration of the meaning
and potential applicability of the WCMSE-RDF is presentedSection4.7. In Section4.9, this rate-
distortion function is extended and characterized for €asevhich there exists linear, time-invariant
(LTI) feedback between reconstruction and source.

We begin by stating some preliminary results.

4.2 Preliminaries

421 The WCMSE is Not Linear in the PDF of Source and Reconstrction

Perhaps surprisingly, the WCMSE (defined in Secfigh]) differs from the standard MSE in an essen-
tial way. Itis clear that both WCMSE and MSE are expectatmrefsemble average) distortion metrics.
However, unlike MSE, the WCMSEannot be generated from a fidelity criterion the strict sense of
the term. This stands in stark contrast with most distortr@trics studied in the rate-distortion theory
literature, see, e.g., [6].

To demonstrate this fact, we first recall that, for a singésgl wvalued scalar source a (scalar)

distortion measurés a function
p(z,y), p:R> =R,

that represents the cost of having a realizatioof the source being reconstructedasin the scalar
case, a distortion metriD(x, y) is usually generated from a given measure by taking the ¢egealue
of p(x,y), thatis,D(x,y) = E[p(x,y)]. In such cased)(x,y) is simply called a distortion.

Crucially, when originated as the expected value of a distomeasure, a distortion metric is linear
in the joint probability distribution of source;, and reconstruction;. For example, consider a given
(scalar) distortion measupéz, y) and a scalar sourcewith PDF f,(-). For this source, two conditional

probability assignmentg, |.(-|-), fy, |x(:|) generate two values for the distortion metfigx, y) =



4.2. PRELIMINARIES 109

Elp(x,y)], given by
Dy = //p(%y)fylwx(ylx)f(w)dydx
D, = / /'p<x,y>fy2 (12) f(2)dyds,

respectively. Then, for the conditional PDF assignmnt, (y|z) = cfy, |x(ylz) + (1 =) fy, |x(y|z),

with 0 < ¢ < 1, the average distortion is
Dy — / / o) [efy 1x@lz) + (1= Oy, | x(yl2)] f(2)dyde
—c [[ oot 1wtol) @y + (=) [[ oo, 1xolo) o) dyds

= CD1 + (1 — C)DQ.

This example illustrates the fact that, if a distortion riceis expected value of a distortion measure, then
the distortion obtained by a weighted mixture of two or moperating regimes is the weighted sum of
the distortions associated with each regime.

To demonstrate that the WCMSE cannot be expressed as thetedpalue of a distortion measure,
it suffices to give an example in which the linearity of the WEHKEI with respect to the probability
distribution of source and reconstruction does not holdr tRis purpose, consider a hybrid operating
regime, obtained as the combination of two basic operaéggmes. When the regime indicator variable
r equalsl, which occurs with probability, the reconstruction error is given by = u —V x, whereV is
a scalar anah is a random variable uncorrelatedtoOn the other hand, whenequals2, which occurs
with probability (1 — ¢), the reconstruction error is = — x. The reconstruction error obtained from the
stochastic combination of these two regimes is charaetrma

z1 L ifr=1,
73 =

7o , ifr=2.
The source-parallel error in the hybrid regiméds ., /o2) x. The covariance betweerandz; is given
by
Oxzy = E[xz3] =Elxzs|r =1]c+E[xzg|r =2](1 —¢)
=Ex(u-Vx)]e+ExX(—x)](1—-c)=-Voic—oZ(l—c)
=-—02(Ve+1-c)

Thus,

pl Oxias 2 2
s=—>=Ve+1l—-0c)0o

2 X’
0%
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The source-uncorrelated distortion term for the hybridmegs D5~ = 033 ng. We will first determine

the variance of.3, namely

z3

oy, =E[z3] =E[g3|r=1]c+E[z5r=2](1—¢)

[(u=Vx)*]c+E[x*] (1-¢)

=olc+V3ilc+o2(1—c). (4.1)
With this, and recalling thab- = ¢2 — D!l, we obtain
Dgl:aﬁc—f—ai[(V20+1—c)—(Vc—|—1—c)2 :

Notice from4.1thato?, = coZ +(1—c)oZ,, i.e., the hybrid MSE is the linear combination of the MSEs

72"

of each regime. However, for the WCMSE,

Do p(x,x+23) = ac’ec + ac? [(VQC—i— 1—¢)—(Ve+1-— 0)2} +b(Ve+1—c)o?

:a{aﬁc—i—az [(VQC—Fl—C) —(Vc—l—l—c)Q}}—i—b(Vc—i—l—c)Qaz

# acic+bV2oic+boi(l —c) = cDyp(x,x+21) + (1 — ¢) Dy p(x, X +22),

where equality holds if and only if = b or V' = 1, i.e., in the special case in which the WCMSE is a
scaled version of the standard MSE, or when the first regimaledhe second.

The above example proves that WCMSE, in general, cannotfressed as the expected value of a
distortion measure. In particuldp,, , cannot be expressed as the expected value of a differericeidis
measure of the form(y — «), which is the focus in, e.g., [6, 151], add}, , cannot be expressed as the
expected value of an input-dependent distortion measutedbrmp,, (y — x) or p(x, y), such as those
studied in, e.g., [18,152,153]. Nevertheless, it is stlgible to characterize the rate-distortion function

for Gaussian sources using the WCMSE as the distortion cpasiwill be shown in Sectioh.3below.

4.2.2 The Reconstruction Error Must Be Jointly Gaussian wih the Source

The nextlemma plays an important role in the results dedudxdequently in this section. It will be used
to conclude that, for every realization Bf, (D), the reconstruction error is necessarily jointly Gaussian

with the source.

Lemma 4.1. Letx € RY ~ N(0, Ky), with |K«| > 0. Letz € RY andzg € RY be two random

vectors with zero mean and the same covariance matrix,Ke.= K .., also having the same cross-

V1eR]

covariance matrix with respect to, that is, K , = K 5. If z¢ andx are jointly Gaussian, and i
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has any distribution, then the mutual information betwgeandx + z satisfies
I(x;x +2) > I(x;x + zc). (4.2)
Equality is achieved i¢4.2) if and only ifz ~ A/(0, K ,) with z andx being jointly Gaussian.
Proof. Definey £ x + z andyg £ x + z¢. Then
I(x;x+2) — I(xix +26) = hxlyc) — h(xly) = h(zalya) — h(zly)
- / focya (2, Y9)108(fagye (2]y))dzdy + / fay(z,y)log(fz)y (2|y))dzdy  (4.3)
@ ]t o8ty Gl + [ [ fuy (o) lox(Fy (2l
- [ / et s (722 55 i
— [ K@Dyl faciyoy)y = 0 (4.4)

whereD(f||g) is the relative entropy (aKullback-Leibler distancebetween the two probability den-
sity functions f and g (see Definition2.14 on page38). Equality (a) follows from the fact that
log(fzs|yc(2]y)) is @ quadratic form ot andy, and from the fact thak(, , = K, y.. The in-
equality in @.4) follows from the fact thatD(f]lg) > 0, with equality if and only iff = g. Thus,

equality is achieved if and only if

fralye (21Y) = [2y(2]y), Vz,Vy such thatfy(y) > 0. (4.5)

It will be shown next that4.5) implies thatz andx are jointly Gaussian. For this purpose, first notice

that @.9), together with the fact that = y — z, implies

@) = [ Fusly — ey Wy = [ Frciyoly - alu)fy )y, Yz RV, (46)
But sincex can also be written as = ys — z¢, the following holds as well:
2) = [ Fuctvely — alv)fya(w)dy. Ve € RY. @.7)
Equating 4.7) and @.6) yields
[ fuctvely— 2l @ity = [ froyew - el iy, e, @8)

From the fact thatzc andy are jointly normally distributed, it follows thaf, ., (z|y) is the

PDF of a normally distributed random vector, saywith fixed variance and meaR x, v, KLGy =
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KxyKly, vy € Ni,. see, e.g., [154 22.1]. This, together with the fact thd (y) = fy.(y) =

0,Vz,Vy ¢ Nﬁyl, allows one to write4.8) as

/ falll = Kxy Ky — ) fye(y)dy, = / folll - KxyKlly — ) fy(y)dy, Ve eRY.

The integrals in this equation are convolution integralsonk this fact, and noting that the Fourier
transform off,, is nonzero everywhere, we have thatg implies fy (y) = fy.(y), Yy € RY. The
latter and 4.5 imply f,y(2,y) = fzc.yo(2,y). Thus, we have shown that equality h.4) implies

z ~ N(0, K .) with z andx being jointly Gaussian. The converse, that is, the fact fhgt(z,y) =
freye(2,9), Vz,y € RY implies equality in 4.4), can be readily verified fron¥(4). This completes
the proof. O

Remark 4.1. We note that Lemmé.1 generalizes Lemma 11.2 in [155], by relaxing the requiremen

used in [155], of having: andz independent o, to the requiremenk x , = K 5. A

We can now address the problem of characteriZipg(D) for Gaussian sources. We begin with the

scalar case.

4.3 WCMSE-RDF for Gaussian Scalar Sources

For a Gaussian, zero mean random scalar souneeEonstructed ag, the reconstruction error is the

random variable
z2y—x. (4.9)
Irrespective of how is generated; canalwaysbe decomposed into a source-uncorrelated term,

uzz —U;Q’Z X, (4.10)

X

and the remainder—u = (oy ,/02) x, which depends linearly oxn. Notice that the random variable

is orthogonal te, i.e.,
Eux] =0. (4.11)

Upon defining

Ox,z

2
X

VEe_

g

1 The variance of the random variahle2 7'y, wherev € N, s E[(vTy)(vTy)T] = vT Kyv = 0. By noting that
E[("y)(v"y)"] = [(v")? fy (y)dy, it follows that fy (y) = 0,Vy & N .
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and then substitutingl(10 into (4.9), the reconstruction can be written as
y=01-V)x+u. (4.12)

From @.11) and @.12), it is clear that the source-uncorrelated and the souacaHlpl components of the

WCMSE are given respectively by

Dt =42 (4.13a)
DIl =v242, (4.13b)

Thus,
Das(x,y) = aD* + D = ac? + bV 262 (4.14)

This allows us to define the WCMSE RDF for scalar random sy follows:

Definition 4.1 (Information-Theoretic WCMSE-RDF for Scalar Source$he Information-Theoretic

WCMSE rate-distortion function for a scalar random souc€ééfined as

R.(D) £ min I(x;x+12),
’ z:Dg p(x,x 4+ 2)<D

whereD,, (-, -) is as defined irt4.14). A
The following theorem characterizé, ;, (D) for scalar Gaussian sources.

Theorem 4.2(R, (D) for Gaussian Scalar Sourced)he rate-distortion function for a scalar source

x ~ N(0,02) with respect to the WCMSE distortion metric with weights is

1 2
Roy(D) = 5 1n (max{l, ‘%H—%}), D >0, (4.15)

whereD = D, ;(x,y). A reconstruction error random variableachievesR, ,(D) if and only if it is

jointly Gaussian withk and

T o2
bo2

X,Z D D
Dt =% - 22(=4?) :max{(), — (1 )}, D >0, (4.16a)
a
D2

}, D > 0.
A

Proof. We first note that for anyD > boZ, the choiceV = 1 ando2 = 1(D — bo2) yields
Dap(x,x+2) = bo? andI(x;y) = 0. Thus,R,,(D) = 0, VD > bo2. Secondly, the mutual in-

formation betweem and(x + z) is given by

I(x;x+7) = h(x+2) — h(x+z|x) =h(x+2) — h(=Vx+u|x) =h(x+2) — h(u|x) (4.17)
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where Propertieg.1 and 2.6 have been used (see Sect@d). In view of Lemmad4.], the optimalz
must be Gaussian. It thus follows that the optimahust be jointly Gaussian witk. The fact thatu is

Gaussian, together witi (11), implies thatu is independent of. Thus, from 4.17),2

I(x;y) = h(x+2) — h(u) = %IH(QWGU)QHLZ) - %1n(27re012])
= %111([1 —VPe2 +02) - %m(aﬁ). (4.18)

For any given and fixed value @ > 0, the noise variance? can be expressed in termsi6f as follows

2,2
52— D —-bV Ox (4.19)
a

Substituting this into4.18 one obtains

L (4.20)

1 D — bV252 1 D —bV?%52
I(x;y) = 5111 ([1V]20,2(+70X) (TUX).

a

The value ofi” that minimizes 4.20 needs to satisfy

oI(x;y) —02[1-V] - %J)Q(V 73052(‘/
0= oV = [1 _ V]20_2 + D—bV202 o D—bV202 A

0= (—03[1 —V]- gaﬁv) (D —bV?02) + Saﬁv (a[l = V]P0 4+ D —bV30})
=—01-V](D-bV?0}) +boV[1 - V]* =1 - V] (=D +bV?02 + boi[1 — V]V)
=[1-V](boZV — D) +=
1 , in any case, or

V= (4.21)
D if % <ol

Z
bo2

But for any givenD, the right hand side of(19 must be non-negative. Thug.21) becomes

Vmin{%,l} (4.22)

Substituting 4.22) into (4.13 yields @.16. Finally, substitution 0f4.22 into (4.20 yields @.15. This

completes the proof. O

The rate-distortion function characterized above is agtiike only when the source is a scalar mem-
oryless process, by encoding (infinitely) long sequencets sée Sectiod.8. In this case, each source

element can be taken as a different realization of a singllascandom variable.

Notice thato? is non-zero; otherwise, unlegs= — x, the mutual information betweenandz 4 z would be unbounded.
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@ (b)

Figure 4.1: Geometric locus of the realizations of the rate distortion for a scalar Gaus-
sian source x and (a): MSE as the distortion metric; (b) WCMSE with weights a, b as the

distortion metric, according to (4.25. In all plots, 02 = 1 and b = 1.

4.3.1 Geometrical Interpretation

For a Gaussian, zero-mean, scalar random sayreed using MSE as the distortion metric, any real-
ization of Shannon'®(D) is always such that the reconstruction eurds Gaussian and independent of
the reconstruction random variable® This can be seen as a consequence of the well known fact that,
minimum MSE filtering (in this case, scaling), applied to asycsignal, leaves a reconstruction error

which is uncorrelated to the noisy signal, so that

o2 03 + 02, (4.23)

< =

A geometrical interpretation of this fact is shown in Figl-(a). In this figure, the vectors labeled with
the lengthsr,, oy ando,, represent, respectively, the source, the reconstryaimhthe reconstruction
error. The squared norms of these vectors are preciselyatiances of the variables they represent.
Sincey = x + z, and in view of .23, their respective vectors form a right-angled trianglghw being

the hypotenuse. Therefore, for all possible values of th®dions?2, the corresponding outputs describe

3In arealization of the quadratic Gaussian RDF, the recoasiin error must be jointly Gaussian with the output (restarcted)
signal. Thus, if the latter were not independent from th@wotsignal, then a Wiener filter applied to the output signalila reduce
the MSE, whilst preserving the mutual information. The Hésg reconstruction error from a Wiener filter is uncortethto the

output of the filter, which, for jointly Gaussian signals ples independence.
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a semi-circle, such as the one shown in Hig-(a). In other words, every point on the circle represents
a point on theR(D) curve ofx. This type of plot gives a clear idea of the statistical ielehip between
source and reconstruction error. Thus, for example, asighertion becomes smaller (smallef), the
right-angle vertex of the triangle slides to the right aldng circle. This implies that the reconstruction
errorz not only becomes smaller, but also becomes more orthogatihategpect to the source. In these
cases, most of the distortion will be comprised of additigesa, uncorrelated to the source. Conversely,
for large distortions the right-angle vertex moves to thg kend the reconstruction error increasingly
resembles the negative of the source. This can be seen ag swarce attenuation (linear distortion)
plus a small amount of source-uncorrelated error. In akksathe circle shown in Figh.1-(a) determines
the balance between source-uncorrelated and sourcdgbarabrs for all possible realizations &f( D).

The situation with the WCMSE rate-distortion function idfelient to the one just described. As
will be shown below, the geometric locus of all pairs of pblsivalues D+, DIl), stemming from the
realization of R, ,(D) for a Gaussian scalar sourggis a family of ellipses irR?. To see this, recall,
from the definition of the WCMSE (seé.)), that

aD* + 0D = D, 4(x,y). (4.24)

On the other hand4(16), implies that, when?, ,(D) is realized,D, , = bo2v DI . Substituting the
latter into @.24 we obtain, after some algebra, that

2 a o
Du_&) Ipt - %
( 2 +b 4

2
X (4.25)
This equation describes a family of ellipses whose vertiiameter/horizontal-diameter ratio is given
by \/b/T. Three of these ellipses are illustrated in Fdl-(b). Whena = b = 1, the ellipse obtained is
a circle (solid line in Fig4.1-(b)), and WCMSE equals standard MSE. Whe# b, source-uncorrelated
errors are less important that source-parallel errors tlamsithe realizations aR, ;(D) lie on ellipses
whose vertical axis (perpendicular ) are larger than their horizontal axis. The opposite sibuat
occurs wher > b. Itis also interesting to see that whes b, and ifb/a < oo, the reconstruction error
that realizesR, (D) is neither orthogonal to the source nor to the reconstractio the limit situation
in which a is bounded and — oo, the ellipse degenerates into two parallel vertical liries, left line
at —oo, the right line passing by the point of tlg vector. For this extreme case, all the realizations of
R, (D) are such that the reconstruction error is completely ohagto the source.

The plot of R, (D) for a fixed value ot and several values of the paramétés shown in Fig4.2
For all these curves;=1. As expected from4(15, the distortion level at which the rate becomes zero

(and the source is reconstructed simply by its mean valugdleghe value 0b. In the limit asb — oo,
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the plot of R, ;,(D) approaches zero only asymptotically/as— oo.

35 :
“““““ alb=2
——alb=1
-~ —ab=05]
- — a/b=0.1
2
é 4
a
ey ]
©
o
15 2 25 3

Figure 4.2: R, for a unit-variance Gaussian scalar source. In all plots, a=1.

4.3.2 Convexity of R, (D)

It will be shown below that the WCMSE rate-distortion furocticharacterized above not convex for
some choices of weighis b. For this purpose, we take the first derivativeRf (D). Specifically,

differentiation of @.15 yields

dR.p(D) 1 ao? ,
dlapD) 1 x D < bo2.
dD 2 ao2D+[1- 2D =

Differentiating again,

d*R, (D) B ac?
aDpz 2

Thus, for distortions within the interval, bo2],

d? R, 4(D)

Thr 20— 0< ao? +2[1 — 1D (4.26)

b

If a > b, thenR, (D) is convex. Otherwise, the condition i4.26 becomes

aao.

2
&Ry (D) wl
2[3 —1]

d D?

2
X

>0 < —aos <2[1— 4D (4.27)
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As can be seen from4(27), if b < a, thenR, (D) is convex only over the union of intervals

(0, ac?/(2[$ — 1])] U (boZ, 00). Therefore R, (D) is convex over the positive real line if and only if

> bo? 2 > 2<2 4.28
—U"@Q[a—b]_ = 7 < (4.28)

For future reference, we summarize the above result in the & the following lemma.

Lemma 4.3. For a zero mean, Gaussian and scalar random souftg, (D) is convex if and only if

a < 2b. A

The fact thatR, (D) is non-convex for certain choices @f b, may seem, at first, surprising. After
all, it is well known that any rate-distortion function oirigiting from a single-letter fidelity criterion is
convex, as shown in [6, Theorem 2.4.1]. However, the prodfteforem 2.4.1 in [6] relies upon the fact
that the distortion is linear in the joint probability digttion of source and reconstruction. Thus, the
possible non-convexity aR, (D) does not contradict the latter theorem since, as shown itidBekc2.1,
Dq(x,y) is notlinear inf, | . (-]-).

The dependence @&, (D) on the ratioa/b is illustrated in Fig.4.3. In this figure, four plots of
R, (D) are displayed for a unit-variance Gaussian source and a W@NSE weight value) = 1.
Each plot corresponds to a different value of the ratié. Notice from this figure that, fou /b = 2,

Ra (D) is still convex, although its plot is almost a straight lirer flistortions close téo2. On the
other hand, as predicted b4.28, the choice:/b = 10 yields a non-conve®, ;(D), as can be seenin
Fig.4.3(— - — line plot).

Because convexity aR, (D) is required for most of the results to be obtained in the seaeeshall
restrict our analysis, from here on, to weights$ such thab > a/2. In doing so, we will leave aside
situations in which the cost of source-parallel error is ibgn half the cost of source-uncorrelated error.
Although such situations could arise in practice, it can tgeied that the conditioh > «/2 holds for
many cases of interest. First, it holds whenever it is imgurto achieve, or closely approximate, a given
signal transfer function, as described in Section 1.1. Becthe fact that the use of dither in audio and
image quantization yields noise that is perceived as marepable by human listeners/observers [156—
158], suggests that the perceptual cost of source-unaterehoise in image and audio encoding is,
in general, less than that of source-parallel noise. Théeremay argue against the validity of latter
statement since, for instance, simple forms of source lghtastortion, such as a small delay (in audio)
or pixel shift (in images), are barely objectionable by a huartistener or observer. Nevertheless, loosely
speaking, from a data compression viewpoint there is littigain from such forms of distortion. (Recall
that altering the phase of a random source has no effect anitepy). In other words, it can be

conjectured that source-parallel distortion can provideaccompression only when it takes the form
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5,
‘ - --ab=05
45 ——ab=1
! alb=2
4F! -~ — ab=10

R, (D) [bits]

Figure 4.3: R, (D) for a unit-variance Gaussian scalar source. In all the plots b = 1.

of attenuation of the power of the source (in the presenceoiel), or when it involves discarding
part of its information content. The perceptual impact aftsticompressive” forms of source-parallel
distortion is likely to be at least comparable to the pergapimpact of source-uncorrelated distortion,
hence satisfying > a/2. Of course, the degree of validity of the latter assumptidlh witimately
depend on each particular application. The validity of &téel argument in lossy image compression is

supported by the sequence of images shown in the exampleiin$4.7, on pagel43

4.4 WCMSE RDF For Gaussian Vector Sources

In this section we derive the WCMSE-rate distortion funetior Gaussian vectors. Before proceeding,

we need to establish some preliminary results.

4.4.1 Preliminary Results

The following Lemma will be useful in subsequent derivation

Lemma 4.4. Letvy, vo be two mutually independent random vectors. Then, theWoilpholds:

I_(Vl,Vg; Wl,Wg) > I_(Vl;Wl) + I_(VQ;WQ) (429)
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Equality holds if and only if the random vectais £ w; — v; andn, £ wy — v, are such that

foins,vive (M1, 12,01,02) = foy v, (P1,01) fry vs (2, 02) (4.30)
almost everywhere. A

Proof. We proceed by parts. We first prow.29, and then the necessity and sufficiency 430 for
achieving equality in4.29.

1. (>): We have that

I(vi,va; Wi, Wa) = h(vi,ve) — h(vy, va|wi, wa)
= h(vi,v2) — h(ng, ng|wy, ws)
(g h(vi,v2) — h(ng|wi, wa) — h(ng|wy, ws)
> h(vy,va) — h(ni|wy) — h(ny|ws)
= h(v1) + h(v2) — h(ni|wy) — h(na|ws).
v1) + h(ve) — h(vi|wi) — h(va|ws).

vi;wi) 4 I(va; wa).
Equality is achieved itfa) if and only if the following Markov chain holds
n; «<— {Wl,WQ} —— Il9g. (431)

(See Propert2.3and Definition2.18in Section2.3) Similarly, equality holds ir(b) if and only

if n1, ny, wi andw,, satisfy the following Markov chains

Wo ¢+ W1 <« Ny, (4.32)

W1 —— Wg < N. (4.33)

This follows directly from Property2.2 and Definition2.18 see Sectior2.3. This estab-
lishes @.29.

2. (=): The Markov chain in4.3)) is equivalent to

fn17n2|w1,wz (nh TL2|’UJ1, w2) = fnl\wl,wz (TL1|’UJ1, wQ)fHQ\wl,wQ (TL2|’U)1, w2)a (434)

vnl)n25w17w2-
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Similarly, the Markov chain in4.32) is equivalent to
farwalws (N1, wa|w1) = foyjwy (N ]w1) fusjw, (w2|w1), YNy, we, ws
< fn1|wz,w1 (n1|w27w1) = fn1|w1 (TL1|’UJ1), le,’UJQ : wa\wl (’LU2|’LU1) > 07 (435)
whilst the Markov chain4.33 is equivalent to
oz wijwa (N2, w1 |w2) = fryjw, (N2 w2) fury jw, (w1 |w2),  Vno, w1, ws
= frgjwo,w: (N2|W2, W1) = fryjw, (N2|w2),  Ywi, wa: fu,|w, (wi|ws) > 0. (4.36)
Substitution of 4.35 and @.36 into (4.34) yields

fn17n2|w1,w2 (nla n2|w17 w2) = fn1|w1 (n1|w1)fn2|wQ (n2|w2),

(4.37)
Vw, ws : fwy,w, (Wi, wsz) > 0.
On the other hand, since; = vy + n; andws = vy + no, we have that
Jaymalwrws (M1, P2 W1, W2) = fo najvive (P21, N2|wi — 1y, wo — ng), (4.38a)
farjwi (R1]wi) = fo,pv, (n1|wr —ny), and (4.38D)
Faolws (R2|w2) = fy v, (n2]ws — n2), (4.38¢c)

for all n1, ny, wy, wo. Substitution of 4.38 into (4.37) yields

Foynalvive (P1, M2|W1 — My, w2 — n2) = fo |y, (R1 w1 — 1) foy)v, (R2|w2 — no),
Vng, ng, wi, w2 ¢ fw, w, (Wi, w2) >0
< foynalvive (M1, M2|V1,02) = foy v, (R1|01) fag|v, (2]V2),
YNy, na, 01,02 : fw,,w, (V1 + N1, 02 + 12) > 0.
= farmnovivs (01, 12,01,02) = fay v, (101, 01) frs v, (702, 02), (4.39)
VN, ma, U1, V2 : fay nevive (M1, N2, U1, 02) > 0.

The last implication in the above follows on multiplying batides of the preceeding equation by

Sy ve (V1,02) = fy, (V1) fv, (v2) (recall thatvy andv, are independent), and from the fact that
foimavive (M1, M2,01,02) >0 = fu, wa (V1 + 11,02 +n2) >0, Vni,na, v1, va.

It is only left to demonstrate tha#(39 implies @.30. In view of (4.39, if (4.30 does not
hold, then there must exist a set of vect@ts having non-zero measure, such that, for all

!/ ! ! !
{nla ny, vy, 1;2} € P'

fn1,n2,V17V2 (nllvn/Qavllvvé) =0 (440)
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while

Jniva (nllavll)fm,w (n/2a”/2) > 0. (4.41)

Clearly, @.41) implies thatf,, v, (n},v}) > 0 and thatfy, v, (15, v5) > 0. Since
foy v, (0], 0)) = / Jnynsvyve (M), Mo, v, v2)dnadvs, and (4.42)

fﬂ27V2(n/27v/2) = / fnl-,rl2-,V1-,V2(n1anévvlvvé)dnldvla (443)

it follows that, for all{n/}, n}, v}, v, } € P, the sets

Si1(ny, vh) £ {{n1,v1} : fa,ving v, (n1,n5,v1,v5) > 0} (4.44)
Sa(nf, vh) £ {{ng, v2} : fa, vimsv. (), n2,v7,v9) > 0} (4.45)
have non-zero measure. On the other hand, dividing botls siti@.39 by either fy, v, (15, v5)
or by fn, v, (1], v}), we obtain, for each case,
Jaywvinavs (N1, 0105, 05) = fa, v, (n1,v1),  V{ni,v1} € Si(nf, vy), (4.46)
fnz,w\nl,vl (n2,v2|nl17”11) = faove(M2,v2), V{ng, v} € gz(n/uvi)- (4.47)
From @.46 and @.44), we have:

1= Jarvi|ng,ve (1, V1|05, v5)dnidoy = fayvi (M1, v1)dnydvy.

{n1,v1}€S1(n},v}) {n1,v1}€81(n},v))
This implies thatfy, v, (n1,v1) = 0 almost everywhere outsidg (n), v5). A similar analysis

yields thatfy, v, (n2, v2) = 0 almost everywhere outsid (], v}). It then follows that

/dn’ldngdv’ldvé = / / dnlydvl, | dnldvy =0, (4.48)
ny,vy \{n5,v5}1¢82(nf,v))

and thusP has zero measure. This proves that achieving equalig.28(implies @.30.

3. («). Here it will be shown that4.30 implies that equality holds ir4(29. We have that

f(Vl,V2§Y17Y2) = E(Y17Y2) - E(Y17Y2|V1,V2)

= E(Y17Y2) - 71(111, n2|v1,v2)

B(y17y2) - iL(l’l1|V1, V2) - B(n2|V1,V2, 1'11)

(@)

S

h(y1,y2) — h(ni|vi) — h(ng|vs)

=
>

(y1) + h(y2) — h(ni|v1) — h(ng|va)

=I(vi;y1) + I(v2iy2)
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where(a) follows directly from @.30. Also, (b) stems from Propert2.3 (on page37), and from

the fact that4.30 implies fy, v, (Y1, Y2) = fy, (Y1) fy.(y2) almost everywhere. This completes
the proof.

The above lemma allows one to establish the following result

Theorem 4.5. Let {v;}¥, be mutually independent random vectors (i.e., a vector yprogource).
Let D ({v;},,{w;}}X,) be a sum distortion metric, i.e., one that satisfle¢{v;}*,, {w;} V) =
Zi:l D; (v;,w;). Denote the RDF of each vecter with respect to the distortion metriD, (-, -) as
r;(d), and assume that all the functiong-) are convex. Define the scalatg®® £ min{d : r;(d) = 0}.

Let R(D) be the rate-distortion function dfv; } &, with respect to the distortion metrio(-, -). Then

N
R(D) = ri(dy), (4.49)

1=1

N
D =Y d, (4.50)

=1

where distortionsl; are such that

if ri(d"**) > s, then ri(d;) =s, orelse, (4.51a)
if ri(d"**) <s, then d; = d"*", (4.51b)

for some common slope< 0. Moreover,R(D) is achieved if and only if the distortion random vectors

n, 2w, —v;,i=1,2,..., N, are such that
fnl,ng ..... ny,vi,vo,..., vN(n1;n27'-'7nN;171;1725-'-;UN):ani,vi(niavi) (452)
almost everywhere. A

Proof. From Lemma&4.4, we have that

N
({vl}z 15 {WZ 1= 1 Z ZI_ szwl (453)

with equality if and only if 4.52 holds. On the other hand, the right hand side 458, as

well as D ({vi},,{w;},) depend only on the PDF§fy,, oY Thus, for any value of

=1

4Here the notation’ (d) denotes the derivative efd) with respect tal. If 7/ (d) is discontinuous a, thenr’ (d) denotes the

left-derivative ofr(d) with respect tad.
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D ({vi}¥  {wi ), T ({vi}ily; {w;},) is minimized if and only if 4.52 holds. Therefore,

R(D) is achieved if and only if4.52 holds, and

R(D) = min j({vi}z]'\[:l; {Wz}fvzl)
{W1}7N:1D({vl}iv:1 P {Wl}iv:1)§D
N
= min I(vi;wy)
(Wil :D({vi} iy Awi L, ) <D i
N
min > ri(dy). (4.54)

N
{di},: 30 di<D =1
=1

The distortions{d;}}¥ ; that solve the minimization problem on the right-hand sifié4054) are such

that the Lagrangian

N N
z 4 Zri(di) +s <D — ri(d)> (4.55)
i=1 1

1=

is minimized, where is a Lagrange multiplier. Hence, the following must hold
ri(di)—s=0, Vi=1,2,...,N. (4.56)

Since the functions; (d) are convex, the distortion that satisfy 4.56) are unique. In addition, if for
somei € {1,2,...,N}, ri(d"**) < s, thenr;(d) has a “corner” atl = d/***, and the slope at this
point can be assumed to take any value betwéeii***) and0. This, together with4.56), leads directly

to (4.51), completing the proof. O

Remark 4.2. The resultin Theoredh.5can be seen as an extension of Theorem 2.8.1 and Corollary 2.8
in [6] to continuous random variables. However, we beliehattTheorem4.5 improves on [6, The-
orem 2.8.1], by actually showing that th@(D)-achieving probability assignments are unique, and
that (4.52 is necessary. The latter claim is indeed present the stateai@heorem 2.8.1in [6], which,
near its end, reads: “[...] Moreover, the conditional probdity assignment that yield&(D,) is the
product of the assignments that yigil, (D<) and Rz (D?)”. The latter can be understood as saying
that such probability assignment that realizR&D) is unique and thaf4.52) is necessary for achieving
R(D). However, the proof of Theorem 2.8.1in [6] only shows thathi notation of this thesi&4.52) (to-
gether with(4.51)) is sufficientfor achievingR(D). Thus, Theorem.5improves on [6, Theorem 2.8.1]
by actually showing that thé&(D)-achieving probability assignments are unique, and t#hb2 is

indeed necessary. A
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4.4.2 R,,(D) for Gaussian Vectors
For a vector random soursec RV reconstructed ag, the reconstruction error is
z2y—x (4.57)
As in the scalar case,can always be decomposed into a source-uncorrelated term
ufz+Vx,

and the remainder V'x, which corresponds to the source-parallel term. Tihear distortion matrix

V € RV*N is defined as
Ve K, K" (4.58)
Thus, the reconstruction error can be written as
z=u—Vx (4.59)

whereu is such that Eux”| = 0. From this, it follows that the WCMSE for the vector case taftee

form
Day(x ):itr{aK FOWVK VT} (4.60)
a,b\ X,y N u x . .
We can now define the WCMSE rate-distortion function for @md/ectors.

Definition 4.2. The WCMSE-Rate-Distortion Function for a random vectorsew € RY is defined

as

1
Ray(D) 2 i —I(x;
+(D) z:Da,b(Inx,lil—ﬁ-z)gD N (x;x +2)

The following theorem characterizé&s, , (D) for Gaussian vector sources:

Theorem 4.6(R, (D) for Gaussian Vector Sources)he rate-distortion function for a Gaussian ran-
dom vector source with zero mean and covariance mafix with respect to the WCMSE distortion
metric with weights:, b > 0, wherea < 2b, is given by

[ou + Joi + 11— gla] i

N
1
Ra,b(D) = ﬁ Zmax 0 s In s
k=1

«

aqoy /2

1 N
D = szln bO’i y 5 .
k=1 Ok + UkJr[l b]O‘

(4.61b)
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where

o7 2 N(Ky), i=1,...,N,

are the eigenvalues d . A reconstruction erroz = y — x achievesR, ;(D) if and only ifz is jointly

Gaussian withx and if and only if the source-uncorrelated and source-platalomponents of are

K, - K, K;'KI = K}, 2 Qdiag { max{ 0, % 1— e . Q"
(o8 + \Jo? + 11— 5o)
(4.62a)
1/4 2. 2
K, K;'Kl, = VEV" = Qdiag{ min{ o7 , (1/4)(a/b)°a QT (4.62b)

(ak—l—,/a,%—i—[l— %]a)2

whereQ is a unitary matrix having the eigenvectorsKf, as its columns. The linear distortion matrix

necessary to realiz&, (D) is

V' A K, K =Qdiag{min{1, (1/2)(a/b)a Q7. (4.62¢)
op +ory/oi +[1 - ¢la
Proof. The eigenvalue decomposition Afy is
K, = Qdiag{o7}Q",
Sinceq is invertible, the following holds

I(x;x+2z) =h(x) — h(x|x+2z) = h(QTx) — h(QTx|x +z)= h(QTx) — h(QTX|QT(X +2)).

(4.63)
Define
x2QTx, and z2Q'z (4.64)
Substitution of 4.64) into (4.63 yields
I(x;x+2z) =1(X;X + Z). (4.65)

Substituting 4.59 into (4.64) we obtain

z=QMu-Q'Vx=u-QTVQx =u- Vx, (4.66a)
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where

(1>

(4.66b)

3

||>

Q™u
Q"VQ, and (4.66¢)
0.

m

u’]

Substitution of 4.668 and @.6649 into (4.60 yields

Day(x,% +12) = %tr {aKn + bVKxVT} - %tr {aQTKnQ + bQTVKx(QTV)T}
N 1 {0Q"K.Q +1Q"VQE:QTVTQ}
N {aK FWEKLV } (4.67)
= Dy y(%,% + 2). (4.68)

where @.68 follows from (4.60 and @.66. Therefore, in view of4.65 and @.68, the problem of
finding the WCMSE-RDF fox is equivalent to finding the WCMSE-RDF far Conveniently, the latter
is an i.i.d. Gaussian random vector with covariance maifix = diag {af}. Using the fact thaK  is

diagonal in 4.67) allows one to writeD, ;(X,y) as

N
Dgy(x,y Z ani + — Z boipi = Z dy, (4.69)
k:l k:l
where
di £ ang + boipy M = [Kalkk P2 A VI V] (4.70)

From these definitions and fror.66), it is easy to see thaty, n?, andp,o; are, respectively, the
WCMSE, the source-uncorrelated distortion, and the separallel distortion associated with tteth
scalar element ok. Denote the WCMSE rate-distortion function of theh element ofk by rj(d).

From Theoren.2, we have
al a o a
r(d) = 5 In (max {1 , dok +1 , }) . (4.71)

Recall from Lemmad.3that the rate-distortion functions,(d) will be convex if and only ifa/b < 2.
From the fact that the elements®fre i.i.d., and in view 0f4.69), it is clear thatk is an/N-fold product

source and thab, ;(x,y) is a sum distortion metric. Thus, upon applying Theore we find that
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R, (D) is given by

1 N
D= > dy,
k=1
1 N
Ray(D) = ~ ];rk(dk), (4.72)

where each scalar distortieh is such that

if v}, (bop) > s, then r.(dy) = s (4.73)
if 77, (bo}) < s, then dy, = boz, (4.74)
wherer),(t) = drg‘t(t), for some common slope< 0. Differentiation of @.71) yields
1/2
T+t ! 12 d<boy
r@=1{ 4tla—3lz ke {1,...,N} (4.75)
0 , d > ba,%
Direct evaluation of the latter at= bo? yields that
1/2 a
. (bo?) = — = — ,
W) = i ey T 207

which when replaced inta}(74) yields that

a 2
7FO%SS:>dk:bo—k.

Else, if—ﬁ > s, then the right-hand-side (RHS) of.73 must hold. In view of 4.79, the latter

implies thatd;, satisfies

13 + oidy, + op/(2s). (4.76)

SIS

de + [ — $]5dp = —1/(2s) <= 0=[L -
k
If [ — 2] # 0, then @.76 holds iff

2 2 1191
op T owy/op =205 — 3l
dk:_

4.77)

In order to determine the correct sign preceding the squaoé in this equation, we recall from
Lemma4.3 that, if a < 20b, thenr,(d) is a convex function, for everi. The convexity ofr(d),
together with 4.73, implies thatZ > 0. To verify whether the latter holds, we differentiate 17

with respect tos. This yields

ddy,  Hop 20} —3l(-%) +204 (%)
ds [l—%] \/02 o[k — 1L 1
a k20 a5 a
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Thus, the only consistent option for thein (4.77) is the “minus” sign. Upon substituting by —, and

then multiplying both the numerator and denominatosy (/o7 — 2% — 1]1, (4.77 becomes

(1/2)acoy,

O'k"‘r\/ ——%% O'k-i-,/(fk 1——

where the change of variable

dy = (4.78)

2
o=——
as

has been used. On the other handiif- ] = 0, then @.76) leads directly taf, = —1/(2s) = %,
which is the same result obtained fro{8. Substitution of 4.78 into (4.71 and then |nto4.73
yields @.613. Similarly, substitution of4.78) into (4.69 yields @.61h.

From @.52 in Theoremd.5, it also follows thatR, (D) is achieved if and only i#<; and K ; x are

diagonal matrices. Thus, from.(70),
K, =diag {nj +pior}; KuxKyz' =—diag{p}; Ka=dag{ni}. (479

From Theoren.2,

a2
P =452 =, 2 al
kg togyfop+ [l - gl
and
o a
7712c = Z 1- 2
2 a
(0k+ 0k+[1—3]0<)

Substitution of 4.80 into (4.79, together with the fact that
K.=QK.Q",
K.xK'=-V=-QVQ" = QK,xK;'Q",
yields @.62. This completes the proof. O

Remark 4.3. Strictly speaking, Theored.6 characterizesR, ,(D) for i.i.d. vector processes only,
since the proof of achievability to be provided in Secdo®requires the encoding of an infinite number

of vectors.

The characterization of the WCMSE rate-distortion funefior vector sources given in Theoreh®
will be helpful in deriving the characterization &, (D) for random stationary processes. This is done

below.
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4.5 WCMSE RDF For Gaussian Stationary Processes

For a w.s.s. random sourée(k)} reconstructed as the random procgs§s) }, the reconstruction error

is the process
{z(k)} £ {y(k)} — {x(k)}.
Definition 4.3. The WCMSE-Rate Distortion Function for a w.s.s. source fsdd as

D,3(D) = lim

< min I(xM); x(N) 4 z(N))) ,
N—00 \ {z(k)}:Da,p(xV), x(N) +2(N)) <D

where the random vectors

x(M) 2 [x(=2F0), x(= 3 1), x (BTN e {25+ 1052

_ _ _ T . o
Z(N) = [Z(—%),Z(—% + 1)) oo aZ(Tl)} ) N ¢ {2] + 1}j:O .

If {x(k)} and{z(k)} are jointly w.s.s., then the WCMSE takes the form

T

Dap({x(k)} . {y(k)}) éa% : Su(ej“)dwwLb%/ \V(eﬂ’w)fsx(ejW)dw (4.81)

where

a S, x(e7¥)

V(e) W7

VYw € [—m, 7], (4.82)
is thelinear distortion frequency responsadS, (e/*) is the PSD of the source-uncorrelated distortion,

associated to the distortida(k)} and the sourcéx(k)}.

The following theorem, which characterizBs ;, (D) for Gaussian stationary sources, also states that

R, (D) is realized only wheRz(k)} is a Gaussian stationary random process.

Theorem 4.7(WCMSE-RDF for Gaussian Stationary Processés) the sourcgx(k)} be a zero-mean
Gaussian stationary random process with spectisinfe’~’) such thatSy(e’*) > 0, a.e. on[—m, 7).
Then
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(i) Forany D > 0,

Rap(D) = iﬂ / log <\/S"(ejw)l+ \/%ejw) il %]O‘) dw, (4.83a)

wherea > 0 is the only scalar parameter satisfying

1 a5 /2 e L N
o / o) + /e T E T T 2n / bSx(e")dw.

Sx>%a/4 Se<Za/4

(4.83b)

(i) The mutual information ratd ({x}; {x(k) + z(k)}) = R.,(D) iff {z(k)} is stationary, and has

the form

{z(k)} = {u(k)} — p(k) * {x(k)}, (4.84)

where{u(k)} is a Gaussian stationary random process independefit@f)} having PSD

S*(e’*) £ max{ 0, 11— a , Yw € [—m, 7],

(VE@=T + /Sem) T 3la)

S

(4.85a)
and where{p(k) }rez is a sequence of real numbers having discrete-time Foureamsform
L(a/b
, — ‘Q(IQ/ )Ja : , Yw € [—m, 7.
VEER (VBT + /B + - o)
(4.85b)

V*(e/¥) £ min {1

A

+1)

(N) < (N+1) <y (N) <, (N .
o ,VN € N, whereo ando are the smallest eigen-

Proof. It is known thato2 >
values of the Toeplitz matricek’, vy and K, (v+1), respectively (see e.g. [159, Theorem 4.3.8]). This
result, together with Lemma4.15 in the Appendix of this chapter, and the fact tifatle’~) > 0,
a.e. on—m, «], implies that| K, v | > 0, for all N € N. We can then apply Lemm&15to (4.6,
which yields

Rap(D) = % /w max {0 , log (‘/S"(ejw>l+ \/:q/%(ejw) - %]O‘) } do,  (4.86a)

—T
wherea > 0 is the only scalar parameter satisfying

LT in o ac/Sx(e1v) /2
P=a /77r {bsx( ) V/5x(e79) + \/Sx(e7) +[1 — &

b

] }dw. (4.86b)
(0%
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On the other hand,

\/Sx(ejw)ljL \/%ejw) + [1 — %]al > 1 <— Sx(ejw) > Z—ja/él (487&)
and
/ST /2 . e
\/Sx(ejw)l+ \/Sx(ej“’)'+ - %]a < bS(eY) = S (e?¥) > b—Qa/4. (4.87b)

By using @.87), we have that4.86 becomes4.83.

In addition, it follows from Theorem.6that a reconstruction error procelsgk)} realizesR,, (D)
if and only if and only if it is jointly Gaussian and jointly aionary with the source. This implies
that{n(k)} in (4.84 is also a stationary Gaussian process. On the other haad)éar from 4.83 that
R, (D) is determined only by the part 6f (e’ ) which stands above the thresh@ﬁebz/zl. This implies

that, in a realization oR?, (D), the spectral components of the source outside the setqpfdreies
A j a?
B= {w € [—m, 7w« Sx(e¥) > b—2a/4}

must be suppressed, while spectral components of the sauititia the set of frequencieB suffer
distortion, but are not absent in the reconstruction. Ii$e @vident that, in a realization @i, (D),
the reconstructed proce$g(k)} = {x(k)} + {z(k)} must have a PSD which is zevw ¢ B. From
this, it follows that if the statistics of the reconstructierror{z(k)} realize R, ;(D), then the mutual

information rate between source and reconstruction canrttiemwas

_ — Jw 25X Jw
F) s ) = 3= [ 1og (‘1 e 1) d (489)
weB
se@ Fact2.4in Section2.3. In (4.88,
jw\ A SZ-,X(ejw)
V() = W,
jw\2
Su(e7) 2 8,(e) - L (4.89)

are, respectively, the linear-distortion frequency resgoassociated (%)} and{x(k)}, and the PSD
of the source-uncorrelated distortion componenf«if)}. The fact that no spectral components of the

source associated with frequencie®iare suppressed implies that

V(™) #1, VweB,

5The expression fod ({x(k)}; {y(k)}) in (4.89 can be obtained by grouping the spectral componentS,g&’*) and
Sx(e?*) into a single continuous band and then critically decingatime result to obtain PSDs which are non-zero dver, ).
In doing this, the mutual information rate betwepn(k)} and{z(k)} is preserved, and®(40 leads to 4.89.
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and thus, from4.89, we obtain thatS, (e’“) > 0, Vw € B. In turn, the WCMSE is given by

1

Das({x(0)} fy(R)}) = 5= / aSu(ej“)+b‘V(ej”)|2dw+% / DSy (e)dw.  (4.90)

weB w¢B

Itis clear from @.88 and @.90 that an optimal/(e’~), i.e., one that minimizes({x(k)} ; {y(k)}) for
agivenD, ,({x(k)},{v(k)}), must be positive and real for all. Let

Sa(e?¥) £ aS,(e’*) —l—b|V(ej‘”)|2Sx(ejw)7 (4.91)
and define
/S (67w _
DE, 2 % / —— “ S;j(e jg /2 = % / Sa(@)dw  (4.92)
weB\/X(e )+\/X(e )+ _E]a weB

For any givenSy (e/+), it follows from (4.88, (4.92 and Theorend.2, and from the fact thal’ (e’«') <
1, Vw € B, that the optimab,, (/) andV (e/*) satisfy

wy _ Sa(e’?) Sa(e’)
Su(er) = 22 (1 - bSX(ejw)> , VwoeB  (4.93)
V(ei) = b%ix(fe];))., Vw € B. (4.94)

Substitution of 4.93 and @.94) into (4.88 yields

i 2
Sa(e’® w
(1- HEH) Sse)

_ 1
I} y0h) = o= [ log | LD |
wEB a (1 B be(eJ“’))
1 aSx(e?*) a
S 1 = 4 1-—= ) 4.
4 / og( Sa(edw) + b) dw (4.95)

weB

Let us now find the optimaby(e’~). The latter needs to be such that it minimizd<9§ subject to
the constraint4.92. In order to find such minimizer, we define, in relation 99 and @.92, the

Lagrangian

Jw
.ZAlog<%e,)+12

e 1 g) i) (90

and notice that the optimaly(e/*) is such that2Z

55, is zero for some multiplieA > 0 and for allw.
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Differentiating ¢.96),

aSy(ed?
0.7 G
98, ) a7
Saey T177
aSx(e?)

—

_ 15, (79)Sq(e7) + [1 — £]4(ei=)? +A=0

> [2 = HSa(e*)” + Sx(€) Sa(¢*) = £5x(e) = 0

Sy(e1v) o jwy 4 [L _ 174
2[17%](_ Sy (e7 )i\/Sx(e )+ (2 bh)

a

= S4(e?¥) =

_ V() ( —le 315 )
2lz -3 \ = Sy (ev) IF\/Sx(ejw)"’[%_%]%

_ 2/, (e7®) . o)
S £ 5o+~ 313
- ; SX(e]:w) 3 (4.98)

where @.98 follows from the fact that choosing “minus” for thie sign in @.97) yields Sq > bS, (e%),
Vw € [—m, ], which would contradict the optimality ¢f; (e’“’). Equating 4.98 with (4.92), it becomes

clear that% = a. Thus, the optimabg (e’~) is given by

Sq(e??) = , (4.99)

Substitution of 4.99 into (4.94 shows that the linear distortion frequency response ##itzesR,, (D)
is given by
Taay/Sx(eiv)
S(ei) ﬂ/&(eﬂ'ﬂﬂ#%}%
bSx(e7v) ’
3(a/b)a
V) (VL) + \fsuler) + 2 - 314
Similarly, the source uncorrelated noise presertifk)} that realizesk, (D) is obtained by substitut-

ing (4.99 into (4.93, which gives

V() = Yw € B.

S’u(ej‘”):g 1- a , YweB.

YU (Ve EEE T e

These equations, together with the fact that’~) = 1,Vw ¢ B, lead directly to 4.89. This completes

the proof. O
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Remark 4.4. By comparing4.83 with (3.118 and (3.12)), we see that, for any WCMSE valik the

SNR ofQ in an optimal feedback scalar quantizer satisfies
1
5 108( + 1) = Ra(D). (4.100)

In view of (2.60 (see pagel2), this implies that, for Gaussian sources and using entamed scalar
quantization with dither and optimal filters, the operatidmate exceedsz, (D) by less thar).254
bits/sample. This is a generalization of the result obtdime[15], where the MSE distortion criterion is

used, to the WCMSE distortion criterion. A

4.5.1 Distortion Spectra

It is well known that in a realization of Shannon’s rate-ditibn function for a Gaussian stationary
process sourcgx(k)} and MSE as the distortion metric, the PSD of the reconstrn@iror,S, (e/«), is
constant over the frequency bands in whiglie’) < S, (e’*) (see (.1) and Fig.1.1in Sectionl.1).
As will be discussed next, this is not the caseyr, (D), in general.

From (4.8, the PSD of the reconstruction error procésd:)} is
S,(7) = Su(e?) + [V (e7)[” S(e?) (4.101)

Substituting 4.85 in to this equation, and restricting hereafter, for simipfi to the cases in which
Sx(e7*) > 1(a/b)*a, a.e. on—, 7], we obtain

[(5)* — 1] o?
(V@) + VE@) 1= gla)

From this equation it is clear that, unless= b, the PSD ofS,(e’*) in a realization ofR, ;,(D) is not

S, (/%) = = + (4.102)

=~

constant. This is not surprising, in view of the fact thatthe WCMSE, source-uncorrelated distor-
tion (which gives rise t&, (e’“)), has a different importance than source-parallel distortgiven by
\V(ej‘*’)\2 S (e7“)). On the other hand, this reasoning would suggest that tightesl sum

Sa(e’) = aSu(e’) + |V ()] Sx(e’*) (4.103)

(already defined in4.91)), is constant. This would seem reasonable, sinc&,in(D), the distortion
metric regards source-uncorrelated distortion power agjhe/b times more “expensive” than source-
parallel error power. In terms of the geometric interpietagiven in Sectio.3.1, scalingD+ by a and
DIl by b would turn all the ellipses in Figt.1-(b) into circles, which is reminiscent of what one obtains
when MSE is the distortion metric. However, and perhapsr&ingly, it can be seen fron%#(99, that

the weighted spectrum id(103 is not constant either.



136 CHAPTER 4. THE WCMSE-RATE-DISTORTION FUNCTION

Nevertheless, there exists a weighted combinatiofi,¢é7«) and|V (e/*)| Sy (e7*) that is constant

over[—m, 7] (again, assumingy(e’*) > 1(a/b)%a, Yw € [—m,x]). Itis the following:
Sule?) + (2) V()| Su(e™) = T (4.104)

which can be readily verified by substituting. 85 into the left-hand side o#(104. Interestingly, in the
weighted sum of spectral densities #1109, the ratio of weights of source-uncorrelated/parallelprs

is thesquareof the ratioa /b.

4.5.2 Special Cases

The Reverse Water-Filling Equations. As already noted in Sectich3.1 the WCMSE becomes the
standard MSE when = b = 1, that is, forN-dimensional random vectoss andy, D; i(x.y) =
~E[|ly — x/[?] = MSE. As a consequencg; ; (D) corresponds to Shannon’s rate-distortion function
when MSE is the distortion metric. This can be easily verifietn Theoremst.2, 4.6 and4.7. For
example, for Gaussian stationary random souree83( becomes the well known reverse water-filling

equations, described in Sectitri, with the “water-level’d being .

The Quadratic Gaussian RDF for Source-Uncorrelated Distotions. On the other hand, by letting
b — oo, all realizations of?, ; (D) are such that the reconstruction error is Gaussian and émaiemt of
the source (see Theore®£ 4.6and4.7). The rate-distortion function corresponding to the case 1
andb — oo has been recently introduced and characterized by the maththequadratic Gaussian
rate-distortion function for source uncorrelated disforts denoted byR* (D) [127]. We can define

R*(D) in terms ofR,, ,(D) as
R*+(D) £ Ry,(D),
whereR; o (D) £ limy_. R1,(D). Alternatively, R+ (D) can be defined as follows

Definition 4.4. The uncorrelated quadratic rate-distortion functi@t (D) for a random process source
{x(k)} is defined as

+ = min I({x Ax Vs .
RED)= o min TR (8 + a(k)), (4.105)

N
MmN — oo 57T . ZN E[z(k)?]<D,

where{z(k)} is a random process. A
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z(k) 2(k)
v (k)——x(k) ¥ y(k)

() @ S0 ih)  x(k) P g @ PER O
(a) (b)

Figure 4.4: (a): Frequency weighting of the error z(k); (b): Equivalent scheme.

From @.83, and takingz = 1, b = oo, we obtain

R (D) = o / 1og<\/S () \/S"(eijo‘I) do,  (4.106)

va’

—T

wherea > 0 is the only scalar parameter satisfying

V/Sx(e) do. (4.107)

4”/\/5 elw) —l—\/S elw) +a

Also, R+ (D) is achieved if and only if the errdiz(k) } is a Gaussian stationary process, independent of

the source, and having PSD

S, (e7) = % (VS@) +a — V5u(e)) Vo), ae. ori—ma] (4.108)

R*(D) can be easily extended to consider frequency weighting efsthurce-uncorrelated error
{z(k)}. For this purpose, consider the setting depicted in&ig(a). In this scheme, the error frequency
weighting filter P(z) is bi-proper, stable, and stably invertible. The seque¢g)} is the frequency

weighted reconstruction error. AssociatedR(z), we define define the frequency weighted distortion

metric
¢
J(P(2),{z(k)}) 2 elggo % Z E[Z(k)*], where (4.109)
k=1
(k) 2 P(2)z(k), VkeZ. (4.110)

An equivalent scheme is shown in Fi§4-(b). SinceP(z) is invertible, we have that

I({x(k)}; {x(k) +u(k)}) = I({x(k)} ; {x(k) +2z(k)})- (4.111)

Thus, under a constraint on the maximum average powez@f)}, minimizing I({%(k)}; {x(k) +
7z(k)}) over all processegi(k)} is equivalent to minimizind ({x(k)} ; {x(k) +z(k)}) over all processes
{z(k)}. Taking{x(k)} as the source anfl:(k)} as the noise in4.10§ and @.10%, and noting that
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Sz (ev) = ]P(ej“)\2 S, (e’#), it follows that the frequency weighted version®t (D) is

RH(D) = o / log ('P(QW S+ IP()” S4(e#) + ) du,

2w Jao
(4.112)
wherea > 0 is the only scalar parameter satisfying
D%/ﬂ a’P(ejw)’\/W Idw'
T |P(ei)| /S(e) + \/|P(ej”)|25x(ej‘“)+a
(4.113)

Also, sinceS;(e’¥) = ]P(ej“)]2 S,(e’*), we have from4.109 that R+ (D) is achieved if and only if

the error{z(k)} is a Gaussian stationary process, independent of the sandéaving PSD

S, (%) = % (\/|P(ejw)|25’x(ejw) ta | Pe)| \/Sx(ej“)> V) e orem 7.

|P(er)|

(4.114)
Notice that the expression for the frequency weighted MSErgby @.113 is identical to that in3.143,
obtained for the optimal perfect reconstruction feedbagkntgizer under the Linear Model. Notice also
that here, again} log(y+1) in (3.143 plays the same role as the RDF, this tie(D) in (4.112. (This
correspondence will be studied in detail and extended irp@hn&.) From this and fromZ.60 (page42),
it follows that for Gaussian sources, an FQ using an entropgd scalar quantizer with subtractive and
the optimal filters characterized b$.04Q, attains an operational bit-rate that exce&ds D) by less
than0.254 bits/sample.

One of the attractive aspects Bf- (D) is that it is the asymptotically achievable lower bound te th
bit-rate ofany ED pair satisfying the following two conditions: a) quation errors are uncorrelated
to the source; and b) the transfer function from source tongtruction is unity (perfect-reconstruction
property) [127,160]. In particular, whenever a PR subbasdec is analyzed assuming quantization
errors uncorrelated to the source (the Linear Model), tfferéince between the bit-rate of the subband
coder andRr* (D), for a given distortionD, can be used as a measure of rate-distortion efficiency. This
performance assessment criterion can be seen as an aletoatecoding gaincriterion. The latter
has been widely used in subband coding literature, e.g.[5%£&9, 86]. Unlike the coding gain, the
performance gap of a PR source coder, satisfying condiéiyn(ith respect tad?* (D), is an absolute
rate-distortion efficiency measure. This measure, instéddlling one how much better than PCM a
given source coder is, tells one how far the latter is frombbgt conceivable source coder.

Another interesting feature @t (D) is that, as shown by the author in [L6@ (D) can be realized
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using only causal filters. Moreover, by using entropy-cosigotractively dithered scalar quantization,
it is possible to obtain a bit-rate that exced@s(D) by not more thar).254 bits/sample, with zero
delay from source to reconstruction [160]. This propertkesit possible to exten* (D) to situations
wherein linear, time invariant feedback, exists betweenmstruction and source. This will be the subject
of Sectior4.9.

It is easy to verify thatR* (D) is the only rate-distortion function within th&, ,(D) family that
can be realized causally. To see this, notice that the oplinear distortion frequency respongge’«)
in (4.850 is real valued and symmetric. Hence, the signal transfestfon necessary to realize, ,(D),
which has frequency response- V (e/«’), can only be implemented using non-causal filters. The only
exception arises wheln — oco. In this case, the optimdl (e’“) = 0 (see #.85h), and the optimal

signal transfer function is unity, which can always be m==diwith causal filters.

4.6 WCMSE-RDF For Vector Processes

Here we extend the results of secti@gh8and4.4to vector processes. For a Gaussian stationary vector
process sourcgx(k)}, wherex(k) € RV, Vk € Z, reconstructed as the procgsgk)}, the reconstruc-

tion error is the process

{z(k)} £ {y(k) —x(k)}.

If {x(k)} and{z(k)} are jointly w.s.s., then the source-uncorrelated disiori$ given by

{u(k)} £ {2} + V() {x(k)}, (4.115)
where thdinear distortion transfer function matri¥’ (z) is defined as

V()2 —K,(2)Kx(2)"". (4.116)

From @.115, the source-uncorrelated and source-parallel distotéoms that comprise the covariance

matrix of {z(k)} are readily found to be, respectively,

Dt 2 K,

DI 2 V(o) Ky (k)V(2)" = Kypx(2) Kx(2) Ky x(2)".

) )

Although for vector process sources the reconstructioor ¢hat realizes?, (D) turns out to be
jointly stationary with the source (as will be shown in Them#.8), we cannot “a priori” assume station-

arity when definingR, (D). For this purpose, we introduce the following notation faomcatenation
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of the vectorg{x(k)}¢__, of a procesgx(k)} into a single vector of lengtf2/ + 1) N:

%(0) 2 [x(—0)T x(—£+1)T - x(0)7]". (4.117)
Using this notation, the WCMSE for vector sources is defiretha following limit:

Daa({x(0)} Ay (0)} 2 Jim Do (R(E),5(H), (4.118)

whereD, ;(X(k),y(k)) corresponds to the WCMSE for vectors defined4r6().
We can now define the WCMSE-Rate-Distortion function for atee process sourcéx(k)}, as

follows.

Definition 4.5. For a vector random process sour¢e(k)}, the WCMSE-RDF is defined as

Ra(D) £ lim I(X(0); %(0) +7(¢)) . (4.119)

1 min
L—oo Z(£):Dg p(X(0) ,x(£)+Z(£))<D

A

Theorem 4.8. Let {x(k)} be a Gaussian stationar -dimensional vector process with zero mean and

covariance matrixK «(z). Let the eigenvalue decompositionft (z) be

Kx(2) = Q(z) diag {Xi(2)} Q(2)", (4.120)

Where{)\i(z)}f;1 are the eigen-functions & «(z) andQ(z) is a unitary transfer function. Then

N VAW + VN@) 1 2o
Ray(D) = Z; o /Mw)zgia/zx In ( b dw, (4.121a)

Va
wherea > 0 is the unique scalar satisfying

N

1 JN(@) /2
p-Ly </ aa (w)/ —dw +/ b)\i(w)dw> .
21 = \Ini@ze2a/a VW) + /Ai(w) + 1= Fla N(w)<2Ea/a

i=1
(4.121b)

In addition, R, (D) is achieved if and only if the source-uncorrelated distwrthas covariance matrix
KL (&) = Q(e7) diag { S}, ()} Q(e7) ", (4.121c)
and the frequency response of the linear distortion tramnsfatrix (see(4.116) is

V() = Q(e7) diag { V() } Q(7) ", (4.121d)
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where

SE (/) £ max {0, % 1- VYw € [—m, 7]

)

(4.121e)

: 3(a/b)a
V*(e’) £ min< 1, 2 . Vw € [-m, 7] (4.121f)
VA (VAERY + aer) + (L - 44)
Proof. Let us define the stationary vector process
v(k) £ Q(2)"x(k), (4.122)
which has mutually independent elements, each of them ®8D); (e/*),i = 1,..., N. Define also

the vector processes

so that
y(k) = x(k) = Q(z)n(k). (4.123)
SinceQ(z) is unitary, we have that
Dap({x(k)}, {y(k)}) = Dap({v(k)}, {w(k)}),
I({x(k)}:{y(k)}) = I{v(k) i {w(k)}),

and therefore the WCMSE-RDFs f¢x(k)} and{v(k)} are equal.

On the other hand, since the processe&iifk)} are mutually independent, it follows that, for every
¢ > 1, the matrix of eigenvectors dk'v(,, has block-diagonal structure. Hence, from Theore6the
vectorn(¢) achievingR, (D) for v(¢) is Gaussian and is such thAly ) v() and K, are block-
diagonal. This means that in order to achiég, (D), n; (k) must be independent af (k) and ofv; (k),

for everyk € Z and for everyj # i € Z. Therefore, whemR, (D) is achieved, the following holds

I{v (k)b {w(k Zf{vz )} {wi(k)}), (4.124)

see Lemm&.4, and

N
Dap({v(k)} {w(k)}) = ZDa,b({Vi(k)}v {wi(k)}). (4.125)
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Thus, R, (D) can be regarded as a rate distortion function of a produstsowith a sum distortion
metric. Since, in addition, the scalar proces§egk)} are mutually independent, we can apply Theo-

rem4.5, which yields that

RY) (d;) (4.126a)
d;, (4.126b)

where the distortion§d; } must satisfy

o
) g = 4,127
adz Ra7b(d1) S 07 ( )
for some slope < 0, if 2 R\ (d"*) < s, whered;"** £ min{d : R")(d) = 0}, or else
d; = d"".
From @.83,
@ gy - L 21 _a) L
R, (di) = . / In (g(w) + \/g(w) +[1 b]a) 5 Ina dw, (4.128a)
92> a/4
whereg(w)? £ \;(e’¥), Vw € [—x, 7], anda > 0 is the unique scalar parameter satisfying
1 2 1 )
= / aag(w)/ ——dw + — / by(w)? (e’ )dw. (4.128b)
2m 9w) +/gw)? + 1 - §la 2m
92> a/4 g2< 3 a/4

Differentiating @.1283 with respect tav, we obtain:

1—¢]
0 RO _ 1 / 2\/2+[1- ¢ - de
g+,/g2+[1—%]a 2a

L[ Mt (o PR JI g,
20 (g+ /2 + [1— 4a) /i +[1 - Za’

—g9(9+V?+[1—4]a) "

e / 200 (g4 /? + [1 = ¢a) /? + 1 — $]a’

L / 9 dw
2m 200\/9? + [1 = ¢ '



4.7. IMAGE PROCESSING EXAMPLE 143

On the other hand, differentiation of.L28h with respect tax yields

/2 —a7,) — qg— =l
0 4 =2 / 9(9+ o7 +1- ) jgzx/guuf%]a o
Oa 27 (9+ /2 +[1— Ta)?

_ 92 / 29+ Vo + 1 —3l0) Vo 1 —Fla’— 1~ §la
209+ V@ HT—5la)? i + T ¢la

gdw

-2 29"+ 299> + L~ fla + [ fla
209+ VT §la)? /P + - gl

L (o + /PIT— 3

209+ V9 +[1 - §la)?/g® +[1 - §la

gdw

gdw

:% / J dw
27 2/ + 1= %o

Therefore,

OR\(d)  ORY), jod, 2
od;  Oda / da  aa’

(4.129)

This result, together witt4(123, (4.128 and @.126, leads directly to4.121),completing the proof. (I

4.7 Image Processing Example

The purpose of this section is threefold. First, it providesexample illustrating the applicability of the
results already presented in this chapter to the encodidgydél images. Secondly, it allows the reader
to literally see the meaning of the WCMSE rate-distortiondtion in a more tangible manner. Finally,
it supports the claim made at the end of Secda®.2 that in lossy image compression applications the
perceptual weight of source-parallel distortion is gretitan that of source-uncorrelated distortion. With
this aim in mind, the linear distortion and additive souitéependent noise required to realizg (D)
were applied to two black and white images. The results awslin Fig.4.5and4.6. More specifically,

for a fixed rate 00.05 bits/sample, fixing: = 1, and for several values of each image was distorted

according to the following steps:

1. Obtain the 2-dimensional DFT of the image.

2. Regard the DFT coefficients as samples of the power speemnsity (PSD) of a w.s.s. vector

process.
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3. Plug the DFT coefficients into the “water filling” formuld.(21a in place for the source PSD.

Find the “water level” parameter numerically.

4. Usex to find, for each frequency component, the gains that arenedjto realizeR,, ,(D), which
are given by one minus the right hand side #f1@1). These gain values correspond to samples

of the signal transfer function required to realizg (D).

5. Multiply each DFT coefficient of the source by its corresgimg gain. Apply the inverse 2-D DFT

to the result. This yields the linearly distorted image.

6. In order to generate the source-parallel noise similah#b obtained by subtractively dithered
uniform quantizers, create an image with i.i.d. pixels,famnly distributed, and obtain its 2-D

DFT coefficients.

7. Multiply each of these coefficients by the the squared obtite right hand side o#(121¢, using
the value ofo found above, so as to obtain the noise PSD of a realizatid®,@{ D). Apply the
inverse 2-D DFT to the result. This yields approximately @ization of the source uncorrelated

distortion in the pixel domain.

8. Add the source uncorrelated distortion to the linearstatied image.

In each figure, the top left image corresponds to the origiléé note again that all images were
distorted using the same target bit-rate. As expected, esalistorted using small values bfuffer
pronounced blurring and very mild additive noise. For theesa = b, the result represents what is
obtained when MSE is minimized under a constraint in thedti- As the value df is increased, edges
appear sharper and image contrast improves, at the expeinsesased additive noise.

Itis the opinion of the author and several other observertsithFigs.4.5and4.6the most acceptable
images were distorted using a value@freater tham. This suggests that, for a fixed rate, the perceptual
effect of linear distortion in near-optimal image compiesss more objectionable than the effect of

source uncorrelated noise.

4.8 Achievability

In this section, a proof of achievability for the WCMSE ratistortion function is provided, for the case
in which the source is a scalar Gaussian random process. robéip based upon the use of optimal
entropy coded dithered lattice quantizESCDLQ), which have been described in, e.g., [126]. We begin

with a brief review of some of the main results related to ¢hgisantizers.
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Original

Figure 4.5: Image linearly distorted plus filtered uniformly distributed and independent

noise, in approximate accordance with R, (D) for several values of the parameter b and

for a fixed rate Rq,, = 0.05 bits/sample.



146 CHAPTER 4. THE WCMSE-RATE-DISTORTION FUNCTION

Original

Figure 4.6: Image linearly distorted plus filtered uniformly distributed and independent
noise, in approximate accordance with R, (D) for several values of the parameter b and

for a fixed rate R,,, = 0.05 bits/sample.
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4.8.1 Background on Dithered Lattice Quantization

A randomized lattice quantizer of dimensidn is an N-dimensional lattice quantize®y with sub-
tractive ditherd, followed by entropy encoding. The dith&r~ U/(V,) is uniformly distributed over a
Voronoi cellVy of the lattice quantizer. The idea of subtractive ditheoiadd the dither to the source
prior to quantization, and then subtract the dither fromahgout of the quantizer to obtain the recon-

struction vector. More precisely, the reconstructed otitpgiven by
y =0Qn(x+46) 4. (4.130)
By doing this, the quantization error
e=y—x=0n(x+d)—05—x, (4.131)
is distributed as-9 and has covariance matrix
Ke=c¢-1 (4.132)

More importantlye is independent ak. Furthermore, it has been shown in [126] that the codingahte
the quantizer, i.e.
Roy £ +H(Qn(x+6)|d) (4.133)

can be written as the mutual information between the soxi@ad its reconstructiop. More precisely,

1 1
Roy = NI(X;Y) = NI(X;X+9)7

and the quadratic distortion per dimension is givenii [[ly — x||?] = £E[|le[|?] = <, see §.132.

It has furthermore been shown that wh&rs white, there exists a sequence of lattice quantizers
{Qn} where the quantization error (and therefore also the ditieads to be approximately Gaussian
distributed (in the Kullback-Leibler divergence sense)doge N. Specifically, leie have PDFf.(-), and
letee be Gaussian distributed with the same mean and covariarclaenlimy .o & D(fell fes) =
0 with a convergence rate é‘-’r% if the sequenc¢Qy } is chosen appropriately [161].

In the next section we will be interested in the case wherdliteer is not necessarily white. By
shaping the Voronoi cells of a lattice quantizer whose dithés white, we also shapé, obtaining a
coloured dithed’. This situation was considered in detail in [161] from wheeeobtain the following

lemma (which was proven in [161] but not formally stated ia tbrm of a lemma).

Lemma4.9. Lete ~ U (V) be white, i.ee is uniformly distributed over the Voronoi céll, of the lattice

quantizerQy and K, = eI. Furthermore, lee’ ~ U(V), whereV{, denotes the shaped Voronoi cell
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L ={xeRY: M 'z € Vy} and M is some invertible linear transformation. Denote the cisace
ofe’ by Ko = MMTe. Similarly, leteq ~ N(0, K. ) having covariance matri¥ .., = K. and let
e, ~ N(0,K. )whereK, = K.. Then there exists a sequence of shaped lattice quantizels s

G G G

that
DUl fey) = © (log(N)/). (4.134)

A
Proof. The divergence is invariant to invertible transformatisimeeh(e’) = h(e) + log,(|M). Thus,

D(fe’er’G) = D(fmellfmec) = D(fe| fes) foranyN. U

4.8.2 Achievability of R, ,(D)

In order to establish the achievability &, ;(D), the following lemma is needed:

Lemma 4.10. Letx, x’, z andz’ be mutually independent random vectors. keandz’ be arbitrarily
distributed, and lek andz be Gaussian having the same mean and covariancesamlz’, respectively.

Then

Ix;x' +2') <I(x;x+z)+ D(Z|2). (4.135)
A
Proof.
I(x';x'+2') = h(x' +2') — h(z)
@ j(x +2) — h(z) + D(Z||z) — D(X' +2'|x + 2) (4.136)
< I(xix +z) + D(2'2),
where(a) stems from the well known resul?(x’||x) = h(x) — h(x’), see, e.g., [63, p. 254]. O

Remark 4.5. For a uniform scalar subtractively dithered quantiz@ the net quantization noiseis
uniformly distributed. In this case, if; ~ N(0,02), thenD(e|| ec) = 0.254 bits. Hence, the scalar
entropy of the quantized output conditioned on the ditheee®s thescalarmutual information obtained

whenQ is replaced by a channel with Gaussian AWN of variang¢®y 0.254 bits. A

We can now prove the achievability &, ,(D).
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Theorem 4.11.[Achievability of R, ;,(D)] Let x be an infinite length Gaussian random vector with zero

mean. Define the sequence of vectors

XN 2 [g(— By (DL gy (AT N e {2j+ 112, (4.137)

Denote the covariance matrix &f") by K (x). If
ngnoo max {\; (Kym)} < 00, (4.138)
thenR, (D) is achievable for allD > 0. A

Proof. Let the eigenvalue decomposition &f, (v, be
K,v =Qydiag{o} ,} QY. k=12,...,N. (4.139)

From Theoremt.6, the WCMSE-rate-distortion function forlN), sayR((l{\g)(D), is achieved when the

reconstructed vector™) has the form
y N = u®™ (1 — v y)x), (4.140)

whereu™) ¢ RY is a zero mean, Gaussian random vector with covariancexsatisfying @.623, and
where the linear distortion matrik y € RV*" satisfies 4.629, assuming the source ™). These

covariance matrix ofi™) and the matri¥y”  have eigenvalue decomposition

Ko = Qy diag {nfjv)} Qr (4.141)
Vv = Qyding {p"} QF, (4.142)

where

PN <1, Vke{l,...,N}

pM =1 = p) =0 <= o, <4la/b)?a™, VEke({l,... N}, (4.143)

and wherex™) > 0 is the scalar that satisfied.618 when the eigenvalues of the source aﬁgk.
Notice that, if the latter are fixed, ther™) is a function only ofD. To make this dependence explicit,

we write
o) = o)D) (4.144)

The realization ofR,, ;, (D) described by4.14Q can also be accomplished as follows: We first multiply

the sourcex™) by Q% obtaining the random vector

%N 2 QT (V). (4.145)
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which has covariance matriK ; vy = diag {afm}. Then, thek-th element ok (") is multiplied by a

scalar gain. — p,gN), for eachk € {1,..., N}, yielding the random vector
™) 2 giag {1 - p,gN>} %), (4.146)

A Gaussian noise vecteng), independent oY) and having covariance matrd _v) = diag{n,iN)},
G

is added tak ("), which yields
FN) = o) 4 5N, (4.147)

Finally, V) is multiplied by the unitary matri 5, yielding the reconstructiop™¥). More precisely,

QNN =Qy [e(GN) + 5<<N>} —Qy [egN) + diag {1 - p,@} 5<<N>} (4.148)
O [ef) + g {1 ) QG ] (4149
=u™ 4 (I - Vy)x™) =y, (4.150)

We also have that
RO (D) = Tx™; y ™)) = Tx™; 3M) = I, 3 = [0, 2™ 1 6)  (4.151)

Now, instead of adding the Gaussian ncéé@) to x,"N), we can apply an ECDLQ to quantize the non-
zero elements at("V). Denote the number of elementsihY) having non-zero variance by the function
L(N, D) (see 4.143 and @.144). Then, the ECDLQ would have dimensidn< N. If the cell of
this ECDLQ is shaped so that the source-independent etrodinced by it, namelg(™), has the same
covariance matrix as the vector formed by fhaon-zero-variance elementse:gv), then the end-to-end
WCMSE would be the same as the one obtained wﬁw i.e., it would be equal td. Denote this
quantizer byQ . From @.133, the entropy rate of; would be

1 _
Ro, (D) £ ZH(Qu(xE +85)|8%) = I(x":x™) + ™) (4.152)
Whereic(LN) is the vector formed by removing the zero-variance elemeings™). Subtracting 4.157

from (4.152, we have that
Ro, (D) — RN)(D) = I(x™;x™) + ™)) — I(zV; V) 4+ elV)). (4.153)
Applying Lemma4.10to the latter,

1
FH(Qw) — R (D) < D(e™leg”) (4.154)
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If, for a givenD > 0,
Nlim L(N,D) =0 (4.155)

holds, thenl, — oo asN — oo, and thus from Lemmd.9we have thapD (e™)[[e!})) — 0 asN — oc.
Thereforelimy_, Ro, (D) = Rq (D). Else, if for a givenD we have thatimy_... L(N, D) < oo,
and if (4.138 holds, then (x; k™) +-e(™)), and thus (x; V) +e!1")), tends to zero ay — oo. In
view of (4.152 and @.15)), this implies thab = limy .o, Ro, (D) = limy_ Rg}) (D) = Ra (D).

This completes the proof. O

Remark 4.6 (Achievability for other Gaussian sources)

1. For zero mean stationary Gaussian random sourées; (D) is achieved by taking in Theo-

rem4.11to be the complete input process.

2. For vector processes, the achievabilitydf , (D) follows by buildingx in Theoren4.11from the

concatenation of infinitely many consecutive source vector

4.9 R*(D) Within Feedback Loops

In this section we extend the definition and results regardiri (D) to cases where a feedback path
exists between the reconstruction and the source. Weateistei analysis to stationary processes only.
The situation under study is depicted in Fg7. In this setting,{z(k)} and {r(k)} are two random
processes external to the loop. The transfer functi®ng), G2(z), Gs(z) are linear, causal, and such

that
G(2) £ G1(2)G2(2)Gs5(2), (4.156)

i.e.,G(z) has a delay of at least one sample.

The transfer function&, (z), Ga(z), G3(z) arenot necessarily stableMore specifically, we only
requireG(z) to be such thal /(1 + G(z)) is stable, i.e., such that the closed loop system is stable.
Our motivation to consider possibly unstable transfer fioms stems from the fact that one of the main
applications of feedback is precisely the stabilizatioopén-loop unstable systems [69].

In this setting, we regard the procesgk)} as the source, and the procé€ssk)} is the reconstruc-
tion. Before we extend the definition &~ (D) for this scheme, we will need to adapt the notions of rate

and distortion to feedback scenarios. This is done next.
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Figure 4.7: Source {x(k)} and reconstruction {y(k)} within the external feedback loop

closed by the strictly causal transfer function Gs(z).

4.9.1 The Directed Version ofR*(D)

The existence of a feedback path frgg(k)} to {x(k)} imposes the need to modify three fundamental

aspects in the definition gt (D):
1. the notion of mutual information to use;
2. the extent of the distortion un-correlation constraémig
3. the signal whose variance is to be regarded as the d@storti

Each of these aspects is discussed below.

Directed Mutual Information When there is feedback frorfiy(k)} to {x(k)}, the standard no-
tion of mutual information needs to be replaced by thatdwécted mutual informatiorf162]. In
our case, this means th&t- (D) needs to be redefined by using ttieected mutual information rate
I({x(k)} — {y(k)}) instead of[ ({x(k)}; {y(k)}). For two random vectors, y € R”, thedirected

mutual informatiorfrom x to y is defined as [162]:

I(x—y) ZIle ) v* Y (4.157)

For random processes, the above definition can be extendleeldoected mutual information rate

14
T(x(R)} = fy () 2 Jim 37 165y y4 ), (4.158)

k=1

If y depends causally ox, and if there is no feedback fropto x, then the following Markov chain
holds:

X oxb oy 1<k<j<N. (4.159)
When Markov chain4.159 holds, we have that

I(x—y)=1(xy). (4.160)
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Consequently, mutual and directed mutual informationbethy andx are equal ify depends causally

onx and there exists no feedback from the former to the latter.

Un-correlation Constraint. The second fundamental aspect ®f (D) that needs to be modified
whenever feedback is in place is the requirement of un-kadioe between nois€z(k)} and source
{x(k)}. Assuming thaf{z(k)} is uncorrelated tdr(k)}, and without feedback (i.e., 5(z) = 0), one
would have{x(k)} uncorrelated with{z(k)}. On the contrary, when there is feedback, the processes
{x(k)} and{z(k)} are not uncorrelated, since each elemeii contains past samples of the process
{y(k)} = {x(k)} + {z(k)}. However, due to the linearity and (strict) causalityf:), we have that if
{r(k)} and{z(k)} are uncorrelated, then tlieth sample of the innovations process{afk)}, namely

w(k), is indeed uncorrelatetb each of the samplesc (i) }i<y, i.€.,
Ew(k)x(i)] =0, VieZ:i<kVkeZ (4.161)

We shall use this condition as the key constraint in our “beatk version” ofR (D), instead of requiring

that{x(k)} and{z(k)} be uncorrelated.

Weighted Quadratic Distortion. In the general scheme depicted in Fily7, the forward channel
{v(k)} = {x(k)} + {z(k)} forms part of a bigger system. For this reason, it makes sensen-
sider as a distortion metric the variance of, not only{=(fk)}, but optionally, the variance diz(k)} as
it appears in other signals in the system, in the form of noi$és can be accomplished by considering
the frequency weighting distortion metrit(P(z), {z(k)}) defined in 4.109. In this case, the error
weighting transfer functio®(z) represents the transfer function frdm(k)} to some given node in the
system.

Based upon the above observations, we extend Defirdtidfor the case of stationary random pro-

cesses with feedback, as follows:

Definition 4.6. In relation to the channel with feedback shown in FHg7, and for a given transfer
function P(z), we define thejuadratic rate-distortion function with source-uncorrated distortion
innovationsas

RE(D) 2 min T({x(k)} — {x(k) + z(k)}), D >0, (4.162)

(2(k)}:J (P (=) {=())})<D,
Elx(k) w(4)]=0,Vj2keZ

where{w(k)} is the innovations process underlyifigf k) }, and where the frequency-weighted distortion

metric J(P(z),{z(k)}) is as in(4.109. A
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4.9.2 The Gaussian Case

In this section we characterizléj(D) for the cases wherér(k)} in Fig. 4.7 is a Gaussian stationary
process. The requirement of finite-delay imposed by feddpaecludes the possibility of quantizing
infinitely long sequences of samplesxof Hence, the achievability for this minimum informationeat
seems impossible (unless infinitely many feedback loopsad@én parallel, which would allow one to
use infinite-dimensional vector quantization without aclucing delay). Nevertheless, it is possible to
get at least as close @254 bits/sample of this minimum rate by using subtractivehhdied scalar
quantization, see Remadks.

The analysis will be carried out on the system depicted in4i§ This system is equivalent to the
one shown in Fig4.7 in terms of the signal transfer functions betwde(%)}, {x(k)} and{y(k)}. In

particular, it can be easily verified that

2_ 2(k), (4.163)

as before, wheré&'(z) is as defined in4.156. Notice also that betweeft(k)} and{y(k)} extends a
perfect-reconstruction noise-shaping system, which easden as a special case of the source coders

studied in Chaptes.

Figure 4.8: System equivalent, from {r(k)} to {x(k)} and {y(k)}, to the one shown in
Fig. 4.7. The transfer function G(z) corresponds to G1(2)G2(2)G3(2).

The following is a key theorem for subsequent results, aedfitist main result of this section. It
states the relationship between the directed mutual irdtom from{x (%)} to {y(k)} and the mutual
information betweerdt(k)} and{y(k)}. The main difficulty in the associated problem arises from th

possible instability of7(z).

Theorem 4.12(Inner and Outer Information Rates Differ by the Entropyi@aifi (1 + G(z))™!).
Consider the system depicted in Fg8, where{t(k)} and{z(k)} are random processes. Assume that

the initial state ofG(z) is a random vector having finite covariance matrix. I({%(k)}; {y(k)}) is



4.9. R*+(D) WITHIN FEEDBACK LOOPS 155

bounded, then

22, (4.164)

I({x(k)} = {y(k)}) = I({x(k)}: {y(k)}) + Z log
pFeP

whereP is the set of unstable poles@f z). Equality is achieved ifi(k)} and{z(k)} are independent.
A

Proof. For any integersn, ¢ > 1, we have that

= > [hy®)IyF ) = hyE)Iy D] = [h(Y(j)| yi ) =y G)lyihH)

k=1 j=1
m 14

=Y hy@)yi L) = D h(y(R) yE ) = AT + h(y?), (4.165)
=1 k=1

n(k) £ y(k) —i(k), VkeZ. (4.166)

n(k) = ——— 2(k) (4.167)

and sincewéﬁ is biproper. In addition, ifz(k)} depends ot (k)}, it does it causally, and without

feedback from{z(k)} to {t(k)}. Therefore, the following Markov chain holds:

S L g L (4.168)
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We then have that, for every, ¢ > 1,

7j=1 k=1

m 4

(a) ~j _

= @)yl H) = Y ek [y xd)
7j=1 k=1

®) m ] 14

=Y @) ) = Y k) A4 X))
7j=1 k=1

© m ) 4

= hmG)n]ThE) =D hak)| 2 )
7j=1 k=1

() m 4

= @) gL = Y k() A4 E)
7j=1 k=1

= R0, 7") — h(F}") — h(z],11) + h(i)
= A(E | nf") + h(n") — h(F") — h(t1] 21) — h(z]) + h(F])

= h(nf") — h(z}) + I(¥;25) — I(F";nf") (4.169)

In the above(a) and(b) hold sincey(k) = n(k) + t(k) andy(k) = x(k) + z(k). (c) follows from
the fact that, ifz’f*1 is known, then knowledge aoff is equivalent to knowledge af (see Fig.4.8
and recall thatlfé—z()z) is stable). (d) stems from the Markov chai®(168. (e) stems from the chain
rule of differential entropy (see Proper®8in Section2.3). (f), (¢) and(h) follow from the property

h(a,b) = h(alb) + h(b) and from the definition of mutual information, s€233. Substituting 4.169
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into (4.165, and using4.158,

I({x(k)} — {y(k)}) — I({i(k)} : {y(k)})

1 1
= lim ~I(xf —»y{)— lim —I(F"y™)

l—oo { m—oo M
@ 1o ¢ I . m
= lim -I(x] —y7)— lim —IF" —y1") (4.170)
l—oo l m—oo M
1 1 1 1
D Jim —h(n") —Zlirn zh(z{) +élim ZI(f{;Z{) — lim —I(F%;nf")

m—oo M m—oo M,

R G, 1y,
+ lim Eh(}ﬁ )*elinolo h(y1)

m—00 *g

9 R0 ) — B D + Jim 7 [1652) - 100)]

¢
(ﬁ) h({n(k)}) — h({z(k)})

© i / og | —— : w = 0] _
o 1g‘1+6(ej“) = azepl s

where(a) follows from the fact that there exists no feedback frénik)} to {r(k)}, and thus mutual
information and directed mutual information are equé).follows from substituting4.169 into (4.169
and then into4.170 (c¢) follows from the definition of differential entropy rate,es€.28. (d) follows
from the Markov chain4.168 and from the Data-Processing Inequality, see Ragbn page40. No-
tice that equality holds irid) if {t¥(k)} and{z(k)} are independent(e) follows from applying 2.27)

to (4.16%, and from the fact thahé—(z) is stable with a finite variance initial-state. The last diqya
follows from Jensen’s formula [144] (see also the Bode IraEgheorem in, e.g., [145]). This completes

the proof. O

The above theorem shows that the “internal” directed munfatmation ratel ({x(k)} — {y(k)})

. The latter is a

pf

exceeds the “external” mutual information rdtg7(k)} ; {y(k)}) by at leasf_ log
non-negative quantity corresponding to the entropy gaimeftransfer functiori /(1 + G(z)). Notice
also that Theorerd.12does not requir¢i(k)} or {z(k)} to be stationary, and thiatholds even if {7(k)}
and {z(k)} are correlated.

The next lemma will be useful to prove the second main reduttis section:

Lemma 4.13(Mean Power Gain of Stable Filters for Non-Stationary Psses) Assume that

A
A, = max max
l i

A (Kﬁ“)‘ < .

If two stable filtersP(z) and P(z) satisfy

2

|P(e)]* = |P(e)|* < M, a.e.on—m,], (4.171)
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for some bounded constahmf, then

J(P(2),{z(k)}) = J(P(2), {z(k)})- (4.172)
A

Proof. The cost measuré(P, {z(k)}) can be written in matrix form as follows:

J(P(2), {z(k)}) 2 lim % tr {szpfpg} (4.173)

{—o00
whereP; is thel x ¢ lower triangular Toeplitz matrix having the impulse respenf P(z) (truncated
to the first¢ samples) along its first column. Using this expression, edkute value of the difference
between the left and right hand sides 4f1(79 can be bounded as

1 1 o
lim Ztr{KZ(e)Png} —éliz&ztr{f(gapfpg}

£— 00

| T(P(2) {z(k)}) — J(P(2), {z(k)})| =

(2)5\ . 1
= 243205

tI‘{P?Pe — Ffﬁg}‘

<A, Jim |P{P,~ P, P, (4.174)

Hs'
where|-| ;¢ denotes the weak matrix norm, see Definitib on page34. Inequality(a) follows from
Corollary4.17. The last inequality in4.174 follows from applying Jensen’s inequality t8.6).

In order to show that the last limit is(174 is zero, we will demonstrate th&’ P, andP, P, are
asymptotically equivalent (see Definiti@n7).

For this purpose, define

filw) £ PEY), Vw:|P(E¥)| <M, (4.175a)

fa(w) £ PY), Vw:|P(Ee¥)| <M, (4.175b)

with f1(wo) = M, forallwy € [—m, 7] such that P(e/~0)| > M, andfz(wo) = M, forallwy € [—m, 7]
such thaltP(e/~)| > M. Notice from @.171 that

i) =), ae. on—m,x]. (4.176)
The matrices?, and P, can be written as

Py=T(f1), (4.177)

P, =T(f2), (4.178)
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whereT(f1) andT,(f2) are Wiener class Toeplitz matrices specifiedfbyand f», according to Def-
inition 2.6. From the functiong; and f,, also define the sequences of circulant matrig@s( 1)},
and{C(f2)}22,, according to Definitior2.6 (see Sectior2.2). SinceP(z) and P(z) are stable, their
associated impulse responses are absolutely summable, tdgether with the fact thaf; and f>
are bounded by\/, implies that the sequences of matrid@S,(f1)}7°,, {Te(f2)}2, {Ce(f1)}2,
and{C(f2)}72, are uniformly bounded in the strong norm (see Definit®4). Hence, from [129,

Lemma 11] the following asymptotic equivalences hold:

To(f1) ~ Cu(f1), (4.179)
To(f2) ~ Ce(fo). (4.180)

Direct application of [129, Theorem 1] yields

To(f1)"To(f1) ~ Colf1)"Co(fr) (4.181)
Ty(f2)"To(f2) ~ Co(f2)" Co(f2). (4.182)

On the other hand, fromi(175, (4.173, and using [129, Lemma 10], we obtain

Cu(f)Cu(f1) = Cu(fi 1) = Cu(f5 f2) = Ce(f2)" Cu(fo), (4.183)
which gives

To(f)To(f)" ~ Colfifl') = Colfofs') ~ Te(fo)Te(f2)". (4.184)

By virtue of [129, Theorem 1]4.184 leads directly to

To(f1)Te(f1)" ~ To(f2)Te(f2)" (4.185)

which, by definition, implies that the limit on the right haofl (4.179 is zero. This completes the
proof. 1

Based upon Theoreth12and Lemmat.13 we can now state the second main result of this section.

Theorem 4.14(RT(D) for Gaussian Stationary Loop-External Signal€pnsider the closed-loop sys-

tem shown in Fig4.7. If {r(k)} is a Gaussian stationary process, then

— 7 \VIG1P* 8. 4+ o + |G P| /S
RL(D) = 2 /log( bl G2 P )derZilog‘pﬂ, (4.186)

o

—T

6In these expressions the argumeftt of the functions in the integrands has been omitted fortglari
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whereP(z) is a frequency weighting transfer function and where- 0 is the unique scalar satisfying

1 s
D= E/ (\/|G1P|QSr +a —|GyP| \/Sr) |G P|\/S; dw. (4.187)

—T

Moreover,I ({x(k)}; {r(k) + z(k)}) equaIst(D) if and only if{z(k)} is Gaussian, stationary, inde-
pendent ofr(k)}, and has PSD

X <\/|G1P|25r ta —|G.P| \/Ts;) G1| /5,

*(@IW) — — _
Sy(e’) 5 P , a.e.on—m,ml. (4.188)

A

Proof. Define the error process

a 1

Let H(z) be a bi-proper, stable, transfer function, having a stahlerse, and such that
|H(e')| = [1+ G(e/)| |P(e™)], Vw € [-m,a], (4.190)

whereP(e’) is the error weighting frequency response of the frequeresghting filter P(z) associated
to RT(D). From @.112 and @.113, if {n(k)} is uncorrelated with{t(k)}, then the minimum of
I({t(k)}; {f(k) +n(k)} subject to the constraint(H (z), {n(k)}) < D is given by

min I({F(k)}; {f(k) +n(k)}) (4.191)

{n(k)}:{n(k)} L{r(k)}
J(H(2),{n(k)})<D

S 27 NG

—T

= jw)[2 Q. 'wl jw ' (aJw a
1 bg(wﬂw P o)+ 11| JFET T )dw, (4192)

wherea > 0 is the unique scalar parameter satisfying

B 4i o |He)] V5] duw. (4.193)
T (o) /B 4y [H o) S(ei) +

From (4.114, the minimum in 4.192 is achieved if and only if the errdm(k)} is a Gaussian stationary

process, independent §i(k)}, and having PSD

5u(e) = 5 (VIH@) P si(e) + o 1) VBT ) e ae. ool

(4.194)
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On the other hand, from4(189,

H(z)n(k) = % 2(k) = P(2) 2(k), (4.195)
where
Bl L H(z)
P() 2 (4.196)

Notice from @.190 and @.196 that
|[P(e)| = |P(e’)], Vwe€ [-m, ] (4.197)
Thus, for any procesg(k)},
J(H(z),{n(k)}) = J(P(2),{z(k)}) = J(P(=), {z(k)}), (4.198)
where the last equality follows from Lemmdal3 In view of Theoremt.12 (4.198 implies that

min T({F(k)Y; {F(k) + n(k
{n(k)}:{n(k)} L{¥(k)} (xR} s {x (k) (k)})
J(H(2),{n(k)})<D

(4.199)
= min I k)}idx(k) +z(k)}) — lo lG .
PRTRNN (1 ({x(k)}; {x(k) +z(k)}) Z g |pf’|
J(P(=) {=(1)})<D
In addition,
2 : 2
. . P(el¥ )
() = ’_; S, (e7) = Msz(ew), Vw € [, ] (4.200a)
1+G(eJ‘”) |H(er)|
and
) Jw 2 ) G (79 P(eiw 2 _
s;(eW)}Le_) sr(eW):’ ()] (62 ) S.(e), Vwe|-ma]  (4.200b)
1+ G(edv) |H (e/)]

Substitution of 4.20Q and @.199 into (4.199 yields @.186. Since @.199 holds, @.18% follows
from substituting 4.200 into (4.193. Finally, substituting4.200 into (4.194, it follows that a process
{z(k)} minimizesI({x(k)} — {x(k) + z(k)}) subject toJ({z(k)}) < D if and only if it is Gaussian,
stationary, independent §f (%)} and has the PSD given i4.(L89. This completes the proof. O

The following example illustrates the applicability of tiesults obtained in this section for networked

control problems.

Example: Figure4.9-(a) shows a model of the closed-loop control system intcedtin Fig.1.3 (see

Sectionl.1). The controllerC(z) and the plantZ(z) may be unstable, but the closed loop system is
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dfk)
(k) = 0 — (=) o) |——f‘>(k)
y() ? (k)
z(k)
(a) (b)

Figure 4.9: (a) Closed loop control system; (b) Equivalent scheme.

stable. The controller is bi-proper, and the plant has ivaategree one or more. The reference signal
{u(k)} is zero, and the disturbandel(k)} is a Gaussian stationary process with PSge’v). In
Fig. 4.9(a) the encoder-decoder pair has been replaced by a chaitheldditive noise{z(k)}. This
noise is the error introduced by the ED pair. An analyticalfyiivalent system is shown in Fig.9-(b).

We are interested in finding the PSD of an error prodess)} uncorrelated to{d(k)}, such that it
minimizes the directed mutual information rat€{x(k)} — {y(k)}) subject to the constraint that the
variance of{ii(k)} is smaller thanD. The variance of i(k)} is the tracking error variance. In order
to apply Theoren#.14 we need to determine the corresponding frequency weighamgfer function
P(z). Since we aim to minimize the variance pf(k)}, P(z) needs to be the transfer function from
{z(k)} to {x(k)}. From Fig.4.9, this transfer function is

C(2)G(2)

R EEEE)

(4.201)

The minimum ofI ({x(k)} — {y(k)}), subject to having a tracking error variance smaller tharfor
anyD > 0, can be found directly by substituting the right-hand sitigld207) for P(z), G(z) for G1(z),
andSy(e’v) for S, (e’*), in Theoremd.14

4.10 Summary

In this chapter we have defined the rate-distortion functiien the WCMSE is used as the distortion
metric. We have characterized this RDF for Gaussian scalarss, Gaussian vector sources, and Gaus-
sian stationary process sources. The achievability of tiIRMSE-RDF has been shown for Gaussian
scalar and vector processes. We have seen that the WCMSHEB&DmMes Shannon’s RDF for Gaussian
sources when = b = 1. It has also been verified that setting= 1 andb = oo renders the WCMSE-

RDF equivalent to the quadratic Gaussian RDF for sourcewelated distortions, denoted B/ (D),
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recently introduced by the author in [127]. We have extenlédD) to situations in which there exists

linear, time-invariant feedback between reconstructimhsource.

4.11 Appendix

Lemma 4.15(Theorem 4.5.2 in [6]) Let A, be an infinite Toeplitz matrix with entry, € r on the
k-th diagonal. Then the eigenvalues Af,, are contained in the intervah < A < M, wherem and
M denote the essential infimum and supremum, respectivehe @inctionf (w) = Y77 age 7+,
Moreover, if bothm and M are finite andG()) is any continuous function of € [m, M], then

N ™

Jm 3 G0f) = o [ atreie,

—T

where thex(™) are the eigenvalues of the sub-matet™) € RV*N of A centred about the main

diagonal of A . A

Theorem 4.16(From [163]) If A and B are N-square normal matrices with eigenvalugg A) and
Xi(B),i=1,...,N,then

N N N
min R {Z Xi(A) Ay (B)} <R {Z )\Z—(AB)} < maxR {Z Xi(A) Ay (B)} . (4.202)

i=1 i=1

where “max” and “ min” are taken over all permutationg of the eigenvalues dB. A
From this theorem, the next corollary follows immediately:

Corollary 4.17. If A and B are N-square Hermitian matrices, with eigenvalugg A) and \;(B),

1=1,...,N,where
Ai(A) > \j(A); and  \(B) > )\;(B), Vi>j, i,j€{l,....,N}, (4.203)
then
N N
min » " Ai(A) Avy1-i(B) < tr {AB} < max Y _ \i(A) \i(B), (4.204)
1=1 1=1

where “max” and “ min” are taken over all permutationg of the eigenvalues dB. A
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Chapter 5

Using Realizations of the RDF to

Design Optimal Source Coders

The ten thousand questions are one question. If you cutghrou
the one question, then the ten thousand questions disappear
Zen proverb.

5.1 Introduction

In this chapter we study how, and when, it is possible toagiknowledge of a realization of the rate-
distortion function, for a given source and distortion rieetto design optimal (or near-optimal) source
coders. The source coders considered here comprise fdlboahsubband source coders based upon a
quantizer and linear processing around it.

We will begin with an illustrative comparison. Consider fleedback quantize{FQ) architecture
shown in Fig.3.1 We have seen that, given the Linear Model defined in Se@&iar®, the weighted
correlationMSE (WCMSE)-optimal filters in this scheme, under a constran the quantizer SNR, are
characterized by3(117. If P(e’*) = 1, then the PSD of source-uncorrelated reconstruction €rror

obtained with these filters is

«

Su(e) £ 62| B(e)|” f(e/)? = 2 <1 - : ' '
| | 4 [VG(e)? + 11 = §lo’ + G(e/+)]

2)7 VWE[*W,W],
(5.1a)
wherea > 0 is the unique scalar satisfyin@.018. In addition, the frequency response of the signal

165
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transfer function, given by3(1178, is

A(e)B(e*) = 1 — (a/b)a/2 (5.1b)
(\/G(ejw)2 +1-2]a + G(ejw)) G(ev)

By comparing 5.1) with (4.85, we see that

Su(e??) = Sk(e’)

and
A()B(e/?) = V* (),

for all w € [—m, w]. Therefore, $.19 and 6.1b characterize a realization @i, ;(D) if source and
quantization errors are replaced by Gaussian variabldstiieping the same first and second moments.
Equivalently, the SNR-optimal filters are also such thay timenimize the mutual information between
source and reconstruction, for a given value of the WCMSE.

Clearly, if one knew beforehand that the optimal filters in@MR-constrained optimization prob-
lem also realized?, (D), then it would have been possible to derive the optimal feeqy responses
obtained in TheorerB.10with ease. However, such correspondence does not alway plade.

As an example, consider the case in which there is no feedbackwhenF'(z) = 0, see Fig3.1).
The optimal frequency responses fbfz) and B(z) for this case (which are given by Theor@btaking
f(e?) = 1), yield Sy (e?*) # Sk(e’*) and A(e’*)B(e/*) # V*(e/¥), a.e. on—m, ], see 4.853
and @.851. In other words, with the SNR-optimal filters charactediby Theoren8.5, replacing source
samples and quantization errors by Gaussian variablesivmoilyield a realization of the WCMSE rate-
distortion function (WCMSE-RDF).

The above comparisons raise the following questions:

e Why is SNR minimization at times, but not always, equivalenénd-to-end mutual information

rate minimization?

e Why does the use of feedback in the first case examined abeleSNR minimizing filters that

also realize the (WCMSE) rate-distortion function?

e |s it possible to know, a-priori, when such correspondenkes place in other schemes, such as,

for example, subband coding architectures?

These are the main questions to be answered in this chapter.afswers will be given first for
the case of scalar processes (which relates to FQ schemesskgtabove), in Sectidh2, and then for

the case of random vectors, in Sect®3. In the latter case, we will see how to use knowledge of a
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{x(k)} is w.s.s. with PSD5, (e’*) {x¢(k)} is Gaussian stationary with PSR (e/*)
{n(k)} is white and w.s.s. {ng(k)} is white, Gaussian and stationary,
Ex(i)n(k)] =0, Vi,k € Z with variances?
E[xc(i)ng(k)] =0, Vi,k € Z
(a) (b)

Figure 5.1: a) Linear model of a scalar feedback quantizer. b) Forward test channel with

filters.

realization of the WCMSE-RDF to design optimal transforndexs. It will be shown that, under the
Linear Model, the use of feedback is necessary for obtaiam@ptimalcausaltransform coder. In
addition, we will show how to design optimal causal transfa@oders that are as rate-distortion efficient
as the best non-causal transform codeagll rates Finally, we answer the above questions for the case
of random vector processes in Secttod We use the answers to characterize optifittal banks(FBs),
including the possible use of feedback. It is shown thateinggal, and under the Linear Model, the use
of all threedegrees of freedom (pre-processing, post-processindesatback is necessary in order to
obtain an optimal FB. By using the results derived in thigisecit is possible to design FBs that attain an
operational rate-distortion performance that exceedsatgedistortion function by not more thar254
bits/sample. Interestingly, under the Linear Model it siout that, for optimality (which requires the use
of feedback), the majorization property is not necessaryalrticular, it is not necessary for optimality
in perfect reconstruction filter banks. In addition, we shdwhat under the Linear Model, filter banks
in which the subband signals (prior to quantization) areually uncorrelated are not optimal. These
two observations stand in stark contrast with what is oleifor subband coders that do not make use

feedback, see, e.g., [86,113].

5.2 Conditions for Scalar Processes

It will be useful to formalize the questions stated at the efittie previous section by referring to the two

systems depicted in Fi§.1, and their respective optimization problems, to be defiredova Notice that
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the only difference between the schemes in Big-(a) and (b) is that, in the latter, the souree; (k)}
and the nois€ng (k) } are Gaussian. In particular, both systems share the saevs filtz), B(z) and

F(z), and equals SNRs:

2

a

— v _ VG

Y= "o T o9 (52)
On One

sinceS,, (/) = Sx(e/*), Yw € [—m, 7], andSy, (e/*) = Sy (e’¥) = 02, Yw € [~7, 7.

Assuming tha{n(k)} represents the sequence of quantization errors introducadcalar quantizer
9, the scheme in Figh.1-(a) can be regarded as an analysis model for feedback gaes)tas discussed
in Chapter3. More precisely, under the Linear Model, defined at the en8eaftion3.2.2 quantization
errors are white and uncorrelated with the source. In auiditf the output ofQ is encoded in a memory-
less fashion, then the associated operational bit-ratersdisomonotonicalfyon the SNR 010, i.e., ony
(see AssumptioB.4in Chapter3). Therefore, under the Linear Model, the problem of minimigzthe
operational bit-rate under the constraint that the WCMSEsdwot exceed some valdg > 0 can be

stated as follows:

Optimization Problem 5.1. In the scheme depicted in Fig.1-(a),

0_2

Minimize: v = — (5.3)
Ull

Subjectto: D, »(x,y) < D (5.4)

over all filtersA(z), B(z) and F'(z) such that the triplefA(z), B(z), F'(z)] € IF, whereF is a constraint

set. A

It must be noted that Optimization Problesl is the generalized converse of optimization prob-
lems3.1-3.8stated in Chapte3. In each case, the architectural limitations that chareeteach scenario
are embodied in the constraint et

The above optimization problem is the SNR minimization peabreferred to in the questions at the
end of Sectiorb.1 The end-to-end mutual information rate minimization pgeobin these questions can
be formally defined with the help of the system depicted in Fity(b). This system can be utilized to ob-
tain a forward test-channel realization of the WCMSE-RD$oagted with the sourceg(k)}. In this
configuration, the filters that yield such a realization mestessarily solve the following optimization

problem (see Definitiod.2in pagel25):

Istrictly speaking, this statement is accurate only if orsuases that the changes in the PDFvofstemming from varying
A(z), B(z) and F(z), have a negligible effect on the rate/SNR expressi@s4 and @.60. Nevertheless, the upper bound on

the operational rate given in i 60 associated with subtractively dithered uniform scalardization is always valid.
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Optimization Problem 5.2. In the scheme depicted in Fi§.1-(b),

Minimize: I({xc(k)}: {ya(k)}) (5.5)
Subjectto: D, p(x¢,yg) < D (5.6)
over all filtersA(z), B(z) and F'(z) such thatF'(z) is strictly causal. A

Notice that, in this optimization problem, there are no ¢aists on the filtersi(z), B(z) andF(z)
(other than the strict causality &f(z)).

The following lemma states an important relationship betwe, I ({xc(k)};{ys(k)}), and
R, (D).

Lemma 5.1. For the system in Figh.1-(b), the following holds:

DOFD @ fyoh)wak) > I(vek)) — (we)) = I({xa®)}: o)) > Rup(D).

2
(5.7)
In addition,
i) Equality holds in(b) if and only if {w¢(k)} is white, i.e., iff
Swe(€) =02, =02, VYwé€[-m,7] (5.8a)
i) Equality holds in(c) if and only if
Np C Na. (5.8b)
iif) Equality holds in(d) if and only if
11— F(e)|*|B(*)| 02, = Si(e™), Vwe[-m,7], and (5.8¢)
A B(e¥) = V*(e?¥), Vw € [~ 7], (5.8d)
whereS*(e/*) andV*(e/) are defined in(4.859 and (4.850), respectively.
A

Proof. We proceed by parts.

e Equality(a) follows from the fact tha{v(k)} and{n(k)} are Gaussian and independent.
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e Inequality(b): We have that

I(va(k);wea(k)) = h(wa (k) — hwa (k)| ve(k)) = hMwa (k) — h(ve (k) +ne | va (k)
= h(wa(k)) — h(ng (k)| va(k))
= h(wa(k)) — h(ng(k)) (5.9)
= h(wg(k)) = h(ng (k)| ng; ™) (5.10)
> h(wa (k)| wg ') — h(ng (k) ng ™) (5.11)
(

In the above,§.9) follows from the fact tha{ng (k) } and{x(k)} are independent and from the
fact thatF'(z) is strictly causal. As a consequenag,(k) is independent of (k), for all k € Z.
Similarly, (5.10 holds since the samples fi; (k) } are independent. Inequality.q.] holds from
the propertyh(x|y) < h(z), with equality if and only ifx andy are independent. This proves the

first claim in Lemmé&b.1

e Inequality(c): We have that

I({va(k)} = {wa(k)}) = h({wa(k)}) — h(we (k)| w ', vE)
= h({wa(k)}) — h(wa (k)| w ', %6) (5.12)
= I({Za(k)} = {wa(k)})
= I({Za(k)} s {we(k)}) (5.13)

Equality in 6.12 holds from the fact that, ifv’g’;l is known, therk¢, can be obtained deterministi-
cally from v’é‘l, and vice-versa. Equalitp (13 follows from the fact that there exists no feedback
from {we ()} to {Z(k)}. On the other hand(({%a(k)} : {we(k)}) = I({xc(k)}: {va(k)}),
with equality if and only ifB(z) is invertible for all frequencies for which | A(e?*)| > 0.This

proves the second claim in LemrBal

e Inequality (d) follows from the definition ofR, ;(D). The conditions for equality stated in

point iii) in Lemmab.1follow directly from Theoren®.7 on pagel30
This completes the proof. O

Itis clear from 6.7) that, in the scheme depicted in Fig1-(b), the quantity% log(v + 1) is lower
bounded byR, (D). Since there are no special constraints on the filters inn@pdition Problen®.2, it
follows that condition iii) in Lemmd.1can always be met. Indeed, the combination of filters thatesol
Optimization Problens.2 (all of which yield I ({x(k)} ; {vo(k)}) = Ra(D)) is not unique.
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On the other hand, it is always possible to chodse), B(z) andF'(z) so that thehreeconditions
in Lemmab.1are met. As a consequence, there exists, at least, oneosaioDptimization Problers.2
for which J log(v + 1) = R, (D).

These observations raise the following question: Is the VBEMRDF for{x(k)} also a lower
bound for% log(~v+1) in the system shown in Fi§.1-(a)? The answer is yes, as shown by the following

lemma:

Lemma 5.2. In the system depicted in Fi§.1-(a), the following holds:
1
5log(v+1) 2 Rap(D), (5.14)

whereR, (D) is the WCMSE-RDF for the sourdec (k)}, which is Gaussian and has the same PSD

as{x(k)}. Equality is achieved if and only if conditions (i), (ii) aiid) in Lemma5.1are met. A

Proof. The validity of the result will be shown by using a contraiotargument. Thus, suppose
that 6.14 does not hold. Then, there exist a triplet of filtersEnsuch thatD, ;(x,y) < D and
1log(y + 1) < Rap(D). If these filters are now used in the scheme of Eig-(b), then the value
of v would be the same. In addition, we have that,(xc, o) = Dap(x,y) < D (since the WCMSE
depends only on the second moments of the source and ractiitst). However, this contradicts (),

proving the validity of 6.14). O
Lemmab.2leads to the first main result of this section:

Theorem 5.3. Suppose there exists a triplet of filtdis(z), B(z), F(z)] € F that satisfie5.8). Then,
a triplet of filters [A’(z), B'(z), F'(z)] € F is a solution to Optimization Problefs.1 if and only if
[A'(z), B'(2), F'(z)] satisfie(5.8). A

Proof. If [A(z), B(z), F(z)] € F satisfies §.8), then, from Lemm&.1, it yields a value fory such that
In(y+1)/2 = R, (D). Thus,[A(z), B(z), F'(z)] yields the minimumy that can be achieved with any
filters. Therefore, a tripletd’(z), B'(z), F’'(z)] € F is a solution to Optimization ProbleB1 only if
ityieldsIn(y + 1)/2 = Rq (D). From Lemmab.1, the latter holds if and only ifA’(z), B'(z), F'(z)]

satisfies $.8). This completes the proof. O

Theoremb5.3 states an easy to verify condition under which filters thatimize the SNRy, for
a constraintD, ,(x,n) < D, would also realizeR, ;(D) if the source and the noise were Gaussian.
When these conditions are met, knowledge of the realizatidthe WCMSE-RDF can be used directly
to determine the optimal filters in a scalar feedback quantinder the Linear Model.

The next corollary follows immediately from Theorén8:
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Corollary 5.4. Suppose there exists a triplet of filtdes(z), B(z), F(z)] € F that satisfy(5.8). Then,

every solution to Optimization ProbleBnlis also a solution to Optimization Proble®n2 A

Notice that if A(z), B(z) andF(z) are unconstrained design choices, the®)(can be met for any
S* and V*(e/). In such cases, Corollary.4 implies that Optimization Problerf.2 can be solved

indirectly by solving Optimization Proble& 1

5.2.1 All Three Degrees of Freedom are Necessary

A key conclusion to be drawn from Lemn%a2 is that, in the system of Fich.1-(a), at least three de-
grees of freedom are required in order to yield the ultimat@thievable minimum foy. This stems
from the fact that the frequency responsis’), B(e’*) and F(e’“) need to satisfy the three equa-
tions 6.89, (5.89, and 6.8d), and from noting that

Su(@) = |A()[* Sx(e?) + 02 [1 — F(e)?,  Vuw € [, 7], (5.15)

As we will see next, the use of entropy coding with memorywadi@ne to obtain optimal performance

with only two of the degrees of freedom embodieddl), B(z) andF(z).

5.2.2 Entropy Coding with Memory is an Extra Degree of Freedm

Here we show that, when subtractively dithered uniformascqliantization is employed in a feedback
quantizer, then the use of entropy coding with infinite menmmstitutes an additional degree of free-
dom, apart from the three provided by the filters around thentjger. We restrict to the cases in which
the sourcgx(k)} in Fig.5.1-(a) is stationary.

In order to demonstrate the above claim, the following técddrpreliminary results are necessary.

Preliminary Results

The following result is the continuous analogue of that oigd by Kramer for discrete random vari-

ables [164, Property 3.6].

Lemma 5.5. In Fig. 5.1-(a), let{v(k)}, {w(k)} be jointly stationary random processes. If the differen-
tial entropy rates of w(k)} and{n(k)} £ {w(k) — v(k)} are bounded, then

I({v(k)} — {w(k)}) = Jim T(vi;w(k)[wi™"). (5.16)

A
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Proof. We have that

Jim 1(vksw(k)|wh ) 9 i m(wE)| whL) — Jim Aw(h)| wh vh) (5.17a)
© h(w) - Tim Aw(h)| whtvh). (5.17b)

Equality(a) holds if and only if the each of the limits on the right handesid (5.173 exist. The of these

limits, lim; oo A(w(0)| w_;

K2

), is by definition the entropy rate ¢fv (%)}, which from the requirements
of the lemma, exists. Thus, equality) holds if and only if the second limit on the right hand side

of (5.171 exists. To show that such limit exists, we note that
h(w(k)|wi™" vi) = hn(k)[wi™"vE) = h(n(k)|nf™"), vk € Z*, (5.18)

where the inequality follows from the Markov chain? =, v¥) < n¥~! < n(k). The latter stems from
the fact that the samples ¢fi(k)} are independent both mutually and with respedttt:)}; and from
fact thatw? ! andv¥ are linear combinations of the samplesn§f ' and samples ofx(k)}. Taking

limits on both sides 0f%.18 yields

Jim h(w (k)| Wi vE) > h({n(k)}). (5.19)
From the stationarity ofw(k)}, it follows that h(w(k)|wh~! v¥) decreases monotonically with
increasingk. This result, together with519 and the fact that/h({n(k)})| < oo, implies
that limy, ., h(w(k)| wh~1 v¥) exists. This proves thatb) and (¢) in (5.17 hold, and that
limy o0 1(vH; w(k)| wh™1) exists. The validity of%.16) then follows directly by virtue of Cesaro mean

theorem, see., e.g., [63, Thm. 4.2.3]. This completes thefpr O

Lemma 5.6. In Fig. 5.1-(a), assume thafx(k)} is a stationary source, and thdh (%)} is i.i.d. noise
introduced by a subtractively dithered uniform scalar gtizer (SDUSQ)Q. Let the proces$q(k)}
denote the quantized output@f Then

1

NN v a0 = T({v(R)} — {w(k)}). (5.20)
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Proof.

Nk
. 1 N
Y= 2 Hla®la o)
i=N(k—1)+1
1 Nk 4 _
=5 2 Ha®la.e)

i=N(k—1)+1

1
~ H(aNi-n

Nk
1 . i— 7 - i— )
=~ > [H@la6) - Ha@)lay ™61, vi)]
i=N(k—1)+1
1 Nk . _
=5 > I(viali) a6
i=N(k—1)+1
1 & _
=~ > [hilah 6 = h(vi [y, 6)]
i=N(k—1)+1
1 Nk o o
¥ X [T a@) = h(vi [ wh))
i=N(k—1)+1
1 Nk o -
25 Y Y = b | w)]
i=N(k—1)+1
1 Nk . _
=5 2 ehw@lwh (5.21)
i=N(k—1)+1
In the above(a) follows from the fact that all dither samples i, are independent of all samples
qt, foralli € ZT. Equality (b) stems from the fact thaf() is a deterministic function of (i) and
§(i), which yieldsH (q(i)| g}, 6}, vi) = 0. Equality () holds from the fact that knowledge of(i)
is equivalent to knowledge ofq(i), (i)}, Vi € Z*. The latter is a consequence of the fact that the
reconstruction levels a® are the midpoints of intervals of lengtk, together with the fact that the dither
in an SDUSQ satisfiels(i)| € (-5, 5 ), Vi. Equality(c) follows from the fact that, in and SDUSQ, the

dither samplé (i) is independent of! and independent of .

Taking the limit ask — oo, we obtain

Nk
. 1 o . i . i—
Jim S H (N v [l YY) = lim o= Y (v w(i)wiT)
i=N(k—1)+1
= lim I(v%;w(i)|wi™h) (5.22)

where £.22 follows from the fact tha{v(k)} and{w(k)} are jointly stationary. Finally,5.20 follows
directly from (.22 upon applying Lemma&.5. This completes the proof. O
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Theorem 5.7. In Fig. 5.1-(a), assume thafx(k)} is a stationary source, and thdh(k)} is i.i.d. noise
introduced by a subtractively dithered uniform scalar gtizer (SDUSQ),Q. Let Rf}z’, be the mini-
mum expected codeword length per symbol achievable wheli@igcV -length bIocksﬁZ_N+1 of the
quantized output 0f, whenk — oo. Assume that both encoder and decoder have knowledge ef dith

samplegiV* and of past quantized outpui$’*~". Then

1

I({v(k)} — {w(k)}) < R, < I({v(k)} — {w(k)}) + - (5.23)

In addition,
R3 £ lim Ry, = I({v(k)} — {w(k)}). (5.24)
Proof. From [63, Theorem 5.4.2], it follows directly that

1 _ 1
_H(Q%Q—NH lq "N o) + —  (5.25)

1 b .
_H(Q%Q—NH |Cliv Na(S{Vk) < Ré\; < khjgo N N

lim
k—oo IN
Substitution of §.20 into the above yieldsy.23, from which 6.24 follows immediately. This com-
pletes the proof. O

Entropy Coding with Memory is an Extra Degree of Freedom

From Theorenb.7, and if{x(k)} is a Gaussian stationary source, it follows that the mininagtrievable
operational rate when using SDUSQ together with entropyngpdith memory,R57, in bits/sample,

satisfies
I{va(k)} — {wa(k)}) < Ry < I({va(k)} — {wa(k)}) 4 0.254. (5.26)

This means that the minimal achievable operational bé-tEcouples from the SNR and from the
scalar mutual informatiod (v (k); we(k)). Only conditions (ii) and (i) in Lemmd.1 need to be
met in order to minimizd ({vg(k)} — {wg(k)}). Therefore, if we associate the operational rate with
the upper bound in526), thenonly the two equation.8d and 6.89 need to be satisfied in order to
minimize R,,. As a consequence, when SDUSQ is employed in a scalar fdedbaatizer encoding

a stationary source, the use of entropy coding with memaoyvalone to attain the minimal achievable
operational bit-rate without any of the three degrees addoen associated with the filters(z), B(z)
andF(z) (see b.83, (5.89 and 6.89).

Results similar to those obtained in this section,can baioéd for the cases where the source is a

random vector, as discussed next.
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x € RN has covariance matrik

n € RY has covariance matrix
K, = diag{n(k)*}
K,.x=0

»

(a) (b)

Figure 5.2: a) Linear model of a transform coder. b) Forward vector test channel.

5.3 Conditions for Vector Sources

In this section we derive results analogue to Lem&idsand5.2, Theorem5.3 and Corollarys.4, for
the cases in which the source is ndimensional random vector. For this purpose, considesystem
shown in Fig5.2-(a). In this figurex andn are zero mean random vectors, ahdB andF' are N x N
matrices. The elements of the random veet@re mutually uncorrelated, amdis uncorrelated withx.
This system could be regarded as an analysis model for gdramsoder with feedback [57,120, 165].
Using the Linear Model would represent the error introduced Nyparallel scalar quantizers. In order
to avoid algebraic loops, the matriX needs to be lower triangular with zeros along its main diadjon
(i.e., F needs to bstrictly causa). This constraint is analogous to requiring the feedbatdeff'(z) in
the systems in Figh.1to be strictly causal.

Let us define theector of signal-to-noise ratios

v & (1), 7(2), .., v (N)]T, (5.27)
where
A U?/(k)
men%P,k:LZHWN (5.28)

denotes the scalar SNR in theth channelaf(k) is the variance of th&-th element ofv and
n(k)> £ E k)], k=12,...,N, (5.29)

is the variance of thé-th element im.

We define the following optimization problem:
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Optimization Problem 5.3. For the system depicted in Fi§.2(a),

N
1
Minimize: N ;; logy (y(k) + 1) (5.30)
Subject to:D, ,(x,y) < D, (5.31)

over all sets of non-negative noise variandesgk)?}4_, and over all matricesA, B and F such that

F is strictly causal andA, B, F'| € I, whereF is a constraint set of matrix triplets. A

The second system, depicted in Fig2-(b), differs from that of Fig5.2-(a) only in that the source
and the noise are the Gaussian random vectgrandng, having the same covariance matricexas
andn, respectively. Since bothg andng are Gaussian, the un-correlation conditiii,, x¢ = 0
implies thatxs andng are independent. Similarly the fact thAt, ., is diagonal implies thats has
mutually independent elements. This system can be seenoawarfl vector channel realization of the
WCMSE-RDF for vector Gaussian sources, as characteriz&bdation4.4. From Definition4.2, the
matricesA, B and F' that yield a realization oR?, ;(D) for x; must necessarily solve the following

optimization problem:

Optimization Problem 5.4. For the system depicted in Fi§.2(b),
Minimize: %I(Xg;yg) (5.32)
Subject to:D, »(xc,yc) < D, (5.33)

over all sets of non-negative noise varian¢esk)?}~_, and over all square matriced, B and F such

that F' is strictly causal. A

Clearly, the vectors of SNRs in both systems in E@ are the same, since, in both systems, corre-
sponding signals have the same second moments. The fofjdarimma, which is the vector version of
Lemmab.1, establishes a key relationship betweeandR, ;(D):

Lemma 5.8. In the system depicted in Fi§.2-(b), the following holds:
(®) _ () _ (d)

N N
% l;log(’Y(k) +1) @ %]gf(vc(k);wc;(k)) > I(ve — wa) > [(xg;ya¢) > Rap(D)

(5.34)

In addition,
i) Equality is achieved irfd) if and only if Ky, is a diagonal matrix.

ii) Equality is achieved ir{c) if and only if Vg C RY.
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i) Equality is achieved in(d) iff

B(I-F)K,.(I-F)"B" = K, (5.35a)

BA=1-V"* (5.35b)

whereK}, and V™ are as defined ii{4.62.

Proof. We proceed by parts.

e Equality (a) follows from the fact thak andng are Gaussian and independent, together with

the fact thatF' is strictly causal.

e Inequality(b): We have that

I(va(k);wa(k)) = h(wa (k) — h(wa (k)| va(k)) = h(wa (k) — h(va(k) + ne (k)| va (k)
= h(wa(k)) — h(na (k)| va (k)
= h(wg(k)) — h(ng(k)) (5.36)
= h(wa(k)) = h(ng(k)ngi ™) (5.37)
> h(we(k)|way™!) — h(ng(k)ngy ™) (5.38)
= liIVG‘ )iwa(k) > I(ve — wa)

In the above, %.36 follows from the fact thatns and x¢ are independent and th#t(z) is
strictly causal. As a consequeneg;(k) is independent of(k), forall k € {1,..., N}. Sim-
ilarly, (5.37) holds since the samples af; are independent. Inequalit$.88 holds from the
propertyh(x|y) < h(zx), with equality if and only ifz andy are independent. This proves state-

ment (i) in Lemmab.8.

e Inequality(c): We have that

I(ve — wa) = h(wg) — h(wa(k)|lwai !, vah

= h(wg) — h(wa(k)|lwe " Xa) (5.39)
=I(Xg — wWg)
= I(Xa;wa) (5.40)

Equality 6.39 holds since, iwa’f‘1 is known, therks¥ can be obtained deterministically from

vG’f 1 and vice-versa. Equalitp(40 holds from the fact that there is no feedback frem to
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Xc. Onthe other hand(X¢; wa) > I(xq;ye) with equality if and only if the null space d8 is

contained within the space orthogonal to the rangd of his proves statement (ii) in Lemn3a8.

e Inequality (d) follows from the definition ofR, ;(D). The conditions for equality stated in

point iii) in Lemmab.8follow directly from Theoren.6.

This completes the proof. O

As in the scalar case, we can see frdn¥) that, in the scheme depicted in Fi§2-(b), the quantity
one 22[21 log(v(k) + 1) is lower bounded byR, (D). Also, condition iii) in Lemmab.8 can always
be met, since there are no constraintsgnB and F' other thanF' being zero-lower-triangular. Indeed,
the combination of matrices and noise variances that sopteriiration Problen®.4is not unique, since
achieving equality ir{d) of (5.34) requires to satisfy only the two matrix equationssn39, while there
are three matrices to be chosen, two of them with completsltnn. Of course, all the combinations
that solve Optimization Problef4yield I (x¢; ye) = Ra,(D). Moreover, it is always possible to find
matricesA, B and F' so that allthreeconditions in Lemm&.8are met. As a consequence, there exists,
at least, one solution to Optimization Probl&mfor which 5k S, log(y(k) + 1) = R, (D).

Notice that there are no explicit requirements on the nags@wcesn(k)?}2_, in order to achieve
equality throughoutg.34). In particular, it is not necessary that all noise variaroe equal. Notice also
that, in condition (i) of Lemm&.8, the random vector whose components need to be independent is
and notv. That is,it is not required thatA “de-correlate” x.

Similarly to the scalar case, the WCMSE-RDF fagg; also constitutes a lower bound for
o Zszl log(v(k) + 1) in the not-necessarily Gaussian system shown in%:iy(a). This is formally

stated in the following lemma:

Lemma 5.9. In the system depicted in Fi§.2-(a), the following holds:

1 N

3N 2oy 08(V(R) +1) = Rap(D), (5.41)

whereR,, (D) is the WCMSE-RDF for the soureg;, which is Gaussian having the same covariance

matrix asx. Equality is achieved if and only if conditions (i), (i) aiid) in Lemma5.8are met. A
Proof. The proof is essentially the same as the proof for LerBr2a O
With the above lemma, we obtain the following theorem.

Theorem 5.10. Suppose there exists a triplet of matrides B, F'| € T that satisfy conditions (i), (ii)
and (i) in Lemma5.8 Then, a triplet of matrice$A’, B', F'] € F is a solution to Optimization
Problem5.3if and only if[A’, B’, F’] also satisfies conditions (i), (i) and (iii) in Lemn%a8. A
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Proof. If there exists a triplet of matricégl, B, F'] € F that satisfies the three conditions of Lemig
then, from Lemm&.8, [A, B, F] yields ;& chvﬂ log(v(k) +1) = Ra.(D), which is the lower bound
for 5% S°n_, log(v(k) + 1) achievable with any matrices. Therefore, a trifldf, B', F'] € T is
a solution to Optimization Proble®.3 only if it yields 5% Sl log(y(k) + 1) = R, (D). From
Lemmab.8, the latter holds if and only ifA’, B’, F'] satisfies the three conditions of Lem®.& This

completes the proof. O

The next corollary follows immediately from TheoresrlQ

Corollary 5.11. Suppose there exists a triplet of matri¢es B, F'| € T that satisfies conditions (i), (ii)
and (iii) in Lemmab.8 Then, every solution to Optimization Probl&n3is also a solution to Optimiza-

tion Problem5.4. A

Optimal Transform Coder Design

We will next apply the above results to the design of optimahsform coders [58, 120, 166]. For that
purpose, itis necessary to link the quang%;y chvﬂ log(~+1) to the total operational bit-rate associated
with the N quantizers in the transform coder. More precisely, degatie total operational bit-rate by
R,,;,, there must exist a monotonically increasing function R — R, independent of the matrices
A, B andF, such that

N
Rop =L <Zk_1 log(y + 1)) . (5.42a)
In addition, in order to apply Lemma&s8 5.9 and Theorenb.10to the design of optimal transform

coders, we need to assume the following:

Elv(k)n(k)] =0, Vke{1,2,...,N} (5.42ba)
Elv(k)n(i)] =0, Vk+#ikie{l,2,...,N} (5.42bb)
En(k)n(i)] = ks Vk,ic{1,2,...,N}. (5.42hc)

whered, ; denotes the Kronecker delta function. The expressions.#42(impose requirements on the
scalar quantizers for which the above results can be used.clear that 5.42h can be satisfied by
using dithered scalar quantizers [85, 126,132, 134]. Weshidw below that dithered quantization also
satisfies $.423.

Suitable Scalar Quantizers

Conditions 6.42b3, (5.42bb) and 6.42bg can be satisfied exactly by using uniform scalar quantpati

with dither, both subtractive and non-subtractive. Fas thihold, the dither signals applied to each scalar
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quantizer must be independent both mutually and frorRurthermore, in the case of subtractive dither,
the dither has to be uniformly distributed over the quanitzeinterval [126,132]. In the non-subtractive
case, the dither needs to either have a uniform PDF over thetigation interval or its PDF must be an
m-fold convolution of such uniform PDFs (with. > 2), see [85, 134].

In relation to the SNR/bit-rate requirement imposed .42, we will show that by using uni-
form scalar quantization with dither (both subtractive ah+subtractive), the operational rate is well
approximated by the following expression:

N

N
Ryp = % D gy (v(k) +1) + > (fom), (5.3)
k=1

k=1
where%'(-) is a functional which depends on the type of dither technigiilized andf, ) is the PDF
of the k-th component ofv. Thus, assuming that the change in the PDRg), due to variations in
A, B and F, has a negligible net effect oﬁjfle € (fviry), the rate-SNR expressio’.@) satisfies
condition 6.423. We next discuss the validity o6(3) for uniform scalar quantizers with dither, both

subtractive and non-subtractive.

e Entropy coded uniform scalar quantization with subtraetilither (SDUSQ)In this case, utilizing
entropy coding conditioned on the dither, the operatioai® of each scalar quantizer is:

1

=1

5 ogy(v(k) + 1)+ 0.254 — D(v(k)|| va(k)). (5.4)

Tk =

This result follows directly from2.58, (2.57) (on page42) and from @.136 (see the proof of
Lemma4.100n pagel4d. Notice that 6.4) is a special case ob(3. Thus, assuming that the
effect of the matricesA, B and F' on the divergenc®(v(k)|| vg(k)) can be neglected, SDUSQ
satisfies all the conditions stated i5.42. We note that the assumption that the effect of the
matrices transform coder matrices on the PDFs of the sub&igndls is negligible is often used
in the analysis and design of transform coders, both withvatitbut feedback, see, e.g., [57,111,
120,165, 166].

e Entropy coded uniform scalar quantization with trianguRIDF non-subtractive ditherThe scalar
entropy rate of the output of the quantizer in this case itgadian Fig.5.3for Gaussian input (solid
line), Laplacian input (dashed line), and uniformly distried input (dashed dot line). It can be
seen from Fig5.3that for the three input PDFs considered, the entropy raffes 8y not more
than 0.2 bits/sample, for all entropy rates beldwhits/sample (equivalently, for af < 100).
Moreover, all these plots can be closely approximated byfuihetion % logy(y + 1) + 1, also

plotted in Fig.5.3with dashed line and filled circle markers. The approxinragaor associated



182CHAPTER 5. USING REALIZATIONS OF THE RDF TO DESIGN OPTIMAL SIRCE CODERS

—— Gaussian input

N\ Laplacian input
W ‘ ‘ ~ . _ 1/2log,(y+1)+1

.
& N pwo
T

W w
o
7~

N : : —-— Uniform Dist. inpuf

o 3.4

T
s

p7

i

w
N
T

T

T

T

Entropy (rate) [bits/sample
N N NN
N N DO W
T

=R
N A O 0
T T T T

[N

|
N

[y
o

2, 2_
a, / crn—l/y

Figure 5.3: Output entropy rate of uniform scalar quantization with triangular non-

subtractive dither.
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with 1 log,(y 4+ 1) + 1 is smaller thar.12 bits/sample, for all input PDFs considered, and for

all entropy rates below bits/sample (equivalently, for all < 100). Thus, the operational rate of

each scalar quantizer can be closely approximated by:
1
=g log, (y(k) + 1) + 1. (5.5)
With this approximation, uniform scalar quantization withn-subtractive triangular dither satis-
fies all the conditions stated i5.42).
Solving the Equations

Assuming the use of dithered uniform quantization, optitrezisform coders can be easily designed by

using Lemmab.9or Theorenb.1Q From these results, it holds that, if the following thre@&tipns can

be satisfied:
BA=1-V* (5.6a)
B(I — F)diag {aﬁ(k)} (I-F)"BT = K%; (5.6b)
B diag {afv(k)} BT =K, £ (I-V)K(I-V")" + K (5.6¢)

whereK £ (I - V)KL (I — V*)T, then the solution characterizes an optimal transformicode

One possible path for solving these equation is:

1. First choose anyB such thatB' diagonalizesk ;. This will yield diag{afv(k)}.

2. Then, choos# such tha(I — F)~' diagonalizesB" K, (B')”. This will yield diag{o? ,, }.
3. Finally, setA = B'(I — V*).

Notice from 6.63 that if V'* is not lower triangular, then it is not possible that bethand B be
lower triangular matrices. SincE* is symmetric for all WCMSE weighta/b > 0, it follows that
R (D) cannot be achieved causally unléss: oo, i.e., unlessz, ,(D) coincides withR1 (D).

On the other hand, using a KLT matrix followed (preceededjiagonal scaling matrices a% (and
B), constitutes a solution tcs(6) when F = 0. This stems from the fact that™ and K}, and thus
K7, are diagonalized by the same matrix. This also revealsittetiat, for random vector sources, the
subband expansion inherent to transform coding can sutestiie lack of feedback, effectively yielding
three degrees of freedom in the design. However, if additioanstraints are imposed ohor B, then

feedback becomes necessary for optimality, as illustiatéte following situation.
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Causal Transform Coder Design Example. In order to design an optimal perfect reconstruction
causal transform coder, one must first determine the valtigea$calar parameterin (4.613, by solv-
ing (4.613 (or (4.61b) for the desired rate (or distortion). Then, the matriB&sandV* can be obtained

from (4.623 and @.628, respectively. Following this, the matri8 can be chosen as:
) 1/2
B-1L (dlag {afv(k)}) , (5.7)
whereL is the a lower triangular matrix such that
* T
K} =LL (5.8)

is a Cholesky decomposition &, = (I — V*)K (I — V*)7 [159]. Then chooset = B~', which
is lower triangular. Finally, choosd — F) to diagonalizeB~' K B~". Such a choice ofI — F),
which is constrained to be a unit-lower triangular matrikyays exists, and can be found by using,
e.g., [41, Lemma1]. SincA andB are lower triangular, the resulting transform coder is eau$ndeed,
itis zero-delay.) We note th&;, and K}, cannot be diagonalized by the same triangular matrix unless
K, = BK}, for some scalag > 0. This implies thatjn order to obtain an optimal causal transform
coder, the use of a feedback matrix (and hence of all threeeds@f freedom) is necessafyotice also
that, in an optimal causal transform codée components of are not uncorrelated

For Gaussian sources, and for any source-uncorrelatedseaotion MSE valueD > 0, the op-
erational rate-distortion performance of the causal faans coder obtained from the above equations
will exceedR; (D) by Zszl € (fv(r)), see §.3. In particular, if entropy coded SDUSQ is used, the
operational bit-rate will excee®, (D) by not more thar).254 bits/sample (see2(60Q on page4?).
Moreover, if the variations oEff:l % (fv(r)) produced by different choices of matrices is negligible,
then the obtained causal transform coder will be optiméahiwithe family of all transform coders using
scalar quantizers with the same rate-SNR function. Thisym#aat, using entropy coded dithered quan-
tizers and with the matrices obtained frof€), causal transform coding is as rate-distortion efficient a

non-causal PR transform codirgg,all rates

5.4 Conditions for Vector Processes

In this section we extend the results derived in sect@sand5.3to the cases in which the source is
an N-dimensional vector process. For this purpose, considgesyistem shown in Fig.4(a). In this
figure, {x(k)} and{n(k)} are zero mean, jointly w.s.s. random vector processesAdny, B(z) and

F(z)areN x N transfer functions matrices. Thé parallel processeg;(k)},i = 1,2,..., N, which
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{x(k)} has covariance matrik « (z)
{n(k)} has covariance matrix

Kn(z) = diag{n}
K,x(z)=0

)

(@) (b)

Figure 5.4: a) Linear model of an encoder for vector processes. b) Forward vector test

channel.

comprise{n(k)}, are white, mutually uncorrelated, afd;(k)} is uncorrelated withx;(k)}, for all

i#j€{l,2,...,N}. More precisely, we have

Kn(z) =diag{n?}, Vi=1,2,....N (5.9)
K,nx(2) =0, (5.10)

where
n £ Em(k)?], i=12,...,N, (5.11)

is the variance of théth process ifn(k)}.

The system in Figh.4-(a) could be regarded as an analysis model for an ED paiefctov processes.
If the processes$x;(k)} are the result of a polyphase decomposition of a scalar rargtocess, this
model can represent a filter bank with feedback [28, 61, 115,167]. In this case, and using the Linear
Model,{n(k)} would represent the error processes introduce¥tparallel scalar quantizers. As in the
transform coder case, in order to avoid algebraic loopd) ement inF'(z) must be a causal transfer
function, andF'(z) needs to be lower triangular with zeros along its main diagi¢ire., F'(z) needs to
bestrictly causa).

Thevector of signal-to-noise ratias this case is defined as

v 2 el (5.12)
where
0.2
Vi &=, i=12,...,N (5.13)
3
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denotes the scalar SNR in tixh channel, and were?, is the variance of theth process ofv(k)}.

Under the above conditions, we can define the following ojztition problem:

Optimization Problem 5.5. For the system depicted in Fi§.4-(a),

N
Minimize: % ; logy (i +1) (5.14)
Subjectto:D, »({x(k)}, {y(k)}) < D, (5.15)

over all w.s.s. processesi(k)} and over all transfer functiongl(z), B(z) and F'(z) such thatF'(z)
is strictly causal andA(z), B(z), F(z)] € F, whereF is a constraint set of matrix transfer function

triplets. A

The second system, depicted in F5gé-(b), has the same transfer functions as the system obHg.
(a), but differs from the latter in that its source and noise the Gaussian random vector processes
{x¢(k)} and{n¢(k)}, having the same covariance matrice§=aék)} and{n(k)}, respectively. Since
both {x(k)} and{nq(k)} are Gaussian, the no-correlation conditiBh, , xc(z) = 0 implies that
{x¢c(k)} and{ng(k)} are independent. Similarly, the fact thht, . (z) is diagonal implies that the
scalar processes img(k)} are mutually independent. The system can then be seen asadovec-
tor channel realization of the WCMSE-RDF for Gaussian veptocess sources, characterized in Sec-
tion 4.6. From Definitiond.5, the transfer function matrice4(z), B(z) andF'(z) that yield a realization

of R, (D) for {x¢(k)} must necessarily solve the following optimization problem

Optimization Problem 5.6. For the system depicted in Fi§.4-(b),
Minimize: I({xq(k)}; {yc(k)}) (5.16)
Subjectto:Dg »({xa(k)}, {ya(k)}) < D, (5.17)

over all stationary Gaussian vector proces$esk) } and over all transfer function matrice4(z), B(z)

and F'(z) such thatF'(z) is strictly causal. A

Clearly, the vectors of SNRs in both systems in FBiglare the same, since, in both systems, corre-
sponding signals have the same second moments.
Before extending lemméas 1and5.8to vector processes, it is convenient to note that, for tiseesy

of Fig 5.4(b), the directed mutual information rate frojw(k)} to {w(k)} takes the following form:

N
I({v(k)} — {w(k)}) = I(v* — w(k)|w" ™) = ZI (VFh v (k)L s wa(k) W wk)T)

(5.18)

Using this fact, we can state the following result:
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Lemma 5.12. In the system depicted in Fi§.4-(b), the following holds:

1 & @ 1 ®) _
N > log(yi +1) = N > I(vei(k)iwai(k) = I({va(k)} — {wa(k)}) (5.19)
k=1 =1
(¢) (d)

> I({xc(k)}i {yc(k)}) > Rap(D).  (5.20)

In addition,

i) Equality is achieved irb) if and only if K, (¢’“) is a constant diagonal matrix.

ii) Equality is achieved ir{c) if and only if Vg C RY.

i) Equality is achieved in(d) iff

B(e)(I ~ F(¢) Ko (¢7)(I ~ F(e))" B(e™)" = K () (5.21a)

B(e/)A(e) =T - V*(el¥), (5.21b)

where K, (e/“) and V*(e’*) are as defined iig4.12J).

Proof. We proceed by parts.

e Equality(a) follows from the fact tha{x (k) } and{ns(k)} are independent Gaussian stationary

random vector processes, together with the fact Bat) is strictly causal.
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e Inequality(b): We have that

Z I(vai(k);wai(k)) = Z h(wai(k)) = h(wai(k)| vai(k))

I
.MZ

s
Il
—

h(wai(k)) = h(ngi(k)| vai(k))

=
KMZ

@
Il
i

h(wai(k)) = h(ngi(k))

1=
.MZ

s
Il
—

h(wai(k)) = h (nai (k) [wét wa (k)T ve ! va(k)))

I
.MZ

s
Il
—

h(wei(k)) = h (wei(k)lwe ™ wa (k)™ v va (k)

—~
Q
—~

-

o
Il
-

h(wGi(kj)ka_laW(k)iil) —h (WGi(k/))lWéilv WG(k)iila V]é;la VG(k)Zl)

I
.MZ

-
Il
—

I (Vg_la VG(k)Zl 5 WGi(k”Wé_lawG(k)i_la Vg_lva(k)Zi)

—~

 I({vo(k)} = {wa(k)})

In the above, equalitye) follows from the fact tha{nq(k)} and{xs(k)} are independent and
from the fact thatF'(z) is strictly causal. As a consequenag (k) is independent of ;; (k), for
alli € {1,..., N}. Similarly, equality( f) holds sincen; (k) is independent ok, !, we (k)i ™+,
vE Tt andvg(k)i, Vi € {1,2,..., N}, Vk € Z. Inequality(g) holds from the propertji(z|y) <
h(z), with equality if and only if Ky (e/*) is a constant diagonal matrix. Equality) follows

directly from (6.18. This proves statement (i) in Lemrbal2

e Inequality(c): We have that

I{va(k)} — {wa(k)})
= h(wei(k)[W" 1, w(k)7™") = h (wai(k)lwg " we (k)™ ve ve(k)1)
= h(wei(k) W wk)7™h) = h (wei(k)lwg ™ wa(k)i™ Xg " Xa (k)))

»y Xa
= I({Xg(k)} — {wa(k)})

where equality(i) follows from the fact that, ifw’, ' andw(k):~! are known, therxt, * and

% (k)i can be obtained deterministically from;*~! andv(k)i, and vice-versa. Equalitf)

follows from the fact that there exists no feedback frow; (k)} to {xs (k) }. On the other hand,
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I({xc(k)}; {wa(k)}) > I({xa(k)}; {yc(k)}) (data processing inequality), with equality if and
only if the null space ofB is contained in the space orthogonal to the rangd ofThis proves

statement (ii) in Lemm&.12

e Inequality (d) follows from the definition ofR, ;(D). The conditions for equality stated in

point iii) in Lemma5.12follow directly from Theoren%.8.

This completes the proof. O

Since in Optimization Problers.6the transfer function matrice4(z), B(z) andF(z) are not sub-
ject to any constraint, aside frofi(z) being strictly causal, it follows that condition iii) in Lema5.12
can always be satisfied. Moreover, there exist infinite coins of transfer function matrices
and noise variances that solve Optimization Prob@ Of course, all these combinations yield
I({xc(k)}; {ye(k)}) = Rap(D).

Of greater practical importance, we note that it is alwayssfie to find transfer function matrices
A(z), B(z) andF(z) so as to satisfy athreeconditions in Lemm&.12 This means that there exists
at least one solution to Optimization Probl&for which 5k S=N  log(v; + 1) = R4 (D).

Notice that there are no explicit requirements on the no@emces{n?}~ , in order to achieve
equality throughoutg.19. In particular, it is not necessary that all noise variaroe equal. Notice also
that, in condition (i) of Lemm&.12 it is {w(k)}, and not{v(k)}, the random vector process whose
components need to be independent. More precisely, whestribly causal feedback matrix transfer
function F'(z) can be chosen freely, théns not required thatA (=) de-correlates the processes within
{x(k)}.

The result stated by Lemn#al2for the Gaussian system in Fig.4-(b) has an important implication

in the not-necessarily-Gaussian system of big-(a), as stated in the following lemma:

Lemma 5.13. In the system depicted in Fi§.4-(a), the following holds:

1 N
IN . log(vi + 1) > Ra (D), (5.22)

whereR,, (D) is the WCMSE-RDF for a sourdexc (k) }, which is Gaussian, stationary, and has the
same covariance matrix afx(k)}. Equality is achieved if and only if conditions (i), (ii) arii) in

Lemmab.12are met. A

Proof. The proof is essentially the same as the proof for LerBr2a O

The previous lemma allows one to state the following result:
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Theorem 5.14. Suppose there exists a triplet of transfer function matricé(z), B(z), F(z)] € F
that satisfy conditions (i), (i) and (iii) in Lemm&.12 Then, a triplet of matrix transfer function
[A'(2), B'(z), F'(z)] € Fis a solution to Optimization Problet5if and only if[A’(z), B(z), F'(z)]

also satisfies conditions (i), (ii) and (iii) in Lemngal2 A

Proof. If there exists a triplet of transfer function matrices, §4yz), B(z), F(z)] € F, that satisfies the
three conditions of Lemm&.12 then, from Lemm&.12, [A(z), B(z), F(z)] yields 7% Zf.vzl log(v; +

1) = Rau(D), which is the lower bound fogk: Zf’:l log(y; + 1) achievable by any transfer func-
tion matrices. Therefore, a tripl¢A’(z), B'(z), F'(z)] € F is solution to Optimization Probler.5
only if it yields & lgv:1 log(vi + 1) = Rap(D). From Lemmab.12 the latter holds if and only if
[A'(2), B'(z), F'(2)] satisfies the three conditions of Lem®ad 2 This completes the proof. O

The next corollary follows immediately from Theoresril4

Corollary 5.15. Suppose there exists a triplet of transfer function masrie¥(z), B(z), F(z)] € F that
satisfies conditions (i), (ii) and (iii) in Lemnt&12 Then, every solution to Optimization Probl&is

also a solution to Optimization Proble&6. A

Optimal Filter Bank Design

If the vector proces$x(k)} originates from the polyphase transformation of a scalecess, ther ()
andB(z) would constitute the analysis and synthesis polyphasdeeatf a filter bank [59, 60, 168]. If
independent scalar quantizers are utilized in the subbarittiseither subtractive dither or triangular non-
subtractive dither, together with memoryless entropyiegdihen the operational rate can be assumed to
be a monotonically increasing function% Z;L log, (vi+1) (see the results discussed in SecBa3).

In these cases, the results obtained in this section leadtlito the optimal choice foA(z), B(z) and
F(z), as discussed next.

It follows from Theorenb.14that, if the following three equations can be satisfied,

I - V*) = B(e?)A(e?); (5.23a)
K (/%) = B(e/*)(I — F(e/¥)) diag {aﬁi} (I — F(')' B(e/*)"; (5.23b)

B(*)ding {03, } B(e™)" = K3(") £ (I - V() Kx(&)(I - V()" + K()
(5.23¢)

then the solution will characterize an optimal filter banlkr Bny given target rate or distortion, which
will yield K7 (e?*) andV *(e/*) via (4.129), a possible path for solving (23 is the following:
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1. Firstchoose anB(e’*) such thatB (/)T K} () [B(e?*)T]7 yields a constant diagonal matrix.

This matrix will bediag{c?Z, }.
2. Then, choos# (/) such that
(I = F(e/)) ' B(e) K (/) (B(e) ) (I — F(e/) ™
gives a constant diagonal matrix. This will ﬂ'exg{aﬁi .
3. Finally, setA(e’*) = B(e/*)T(I — V*(e/¥)).

Notice that, in general, if no feedback is used (i.eF'ifz) = 0), then optimal performance cannot
be attained. To see this, notice thatB{e’*) is such thatB(e/*)T K} (¢/*)[B(e/)]" is a constant
matrix, thenB (e’* )" K7 (e7“)[B(e“)T]* will not be a constant matrix, unlesds, (e/“) is constant,
see 4.121¢. Thus, without feedback, all three conditions in LemBnb2cannot be simultaneously met.
In view of this observation, Theoreml14implies that, under the Linear Model, and with the operatlon
bit-rate depending on the SNRs of the quantizers in eachasubbs in $.423, not using feedback is
rate-distortion suboptimal. More generally, it is easyde that, except for special cases, not being able
to exploit any of the three degrees of freedom discussedatid®el. 1.3 herein embodied i (z), B(z)
andF(z), entails a rate-distortion penalty.

On the other hand, when feedback is used, it is necessarpfionality thatthe signals entering each
scalar quantizer are mutually correlated his stands in stark contrast with the case of subband godin
without feedback, where it has been shown that un-corogidtetween subband signals before quanti-
zation is a necessary condition for optimality, see, €28, §6, 113]. Notice also that the optimal filter
bank, obtained by solvings(23, does not necessarily satisfy the majorization propéerhis property

consists of having the spectral densities of the scalargss®s i{v(k)}, sayS,, (e/“), to satisfy
Svp(m)(ej”) > Svp(n)(ej”), Yw e [-m,7],VN >m>n>1, (5.24)

for some permutatiop(-). Majorization has been shown to be a necessary conditioagmality in
subband coders without feedback, see, e.g., [26, 86, 11#] fact that it is not necessary when uncon-
strained feedback is used can be explained by noting thedntérg spectral components of the source
as in 6.24) yields subband signals having a flatter PSD. This is bemfgince the rate-distortion effi-
ciency of scalar quantization (possibly with memorylegsagy coding) is increased as the spectrum of
the signal being quantized becomes more flatter [55]. Howyexreen optimal feedback is used together
with scalar quantization, the resulting performance isdeptendent on the spectral density of the source,

see Remark.4on pagel3s
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5.5 Summary

In this chapter, sufficient conditions have been derivedenn¢hich knowledge of a realization of the
WCMSE-rate-distortion function can be directly used toaibthe optimal linear processing elements
around scalar quantizers. The conditions established .gswscalar processes, in Sectog lead di-
rectly to the optimal filters characterized for feedbackmjizrs characterized in Secti@9. In the
vector case, which was treaded in Secto8 these conditions yield the matrices for rate-distortipn o
timal transform coders utilizing dithered scalar quanszeln Section5.4, we have briefly illustrated
how the conditions derived for the case of w.s.s. randonovgebcess sources directly yield the optimal
transfer function matrices in a filter bank. It has also bdews that, under a linear model of quanti-
zation errors, and except for particular cases, feedbankdsssary to attain rate-distortion optimality
in filter bank encoder-decoder pairs. Under these assungptibwas also shown that for optimality
(which requires the use of feedback), the majorization @riyps not necessary. In particular, it is not
necessary in perfect reconstruction (PR) FBs. It was alsashn Section5.4 that, under the Linear
Model, filter banks in which the subband signals are mutuailgorrelated (prior to quantization) are not
optimal. These two observations stand in stark contrast witat is obtained for filter banks that do not
use feedback, see, e.g., [86,113].



Chapter 6

Bounds to the Causal Rate-Distortion

Function for Gaussian Processes

Never do today what you can put off till tomorrow.
Delay may give clearer light as to what is best to be done.

Aaron Burr, former vice-president of the United States oBAoa.

If you make delay even ambrosia turns into poison.
Telugu proverb.

6.1 Introduction

The operation of an encoder-decoder pair consists of engddi(k)} into a binary sequence, which
is then decoded to generate the reconstrucfioft)}. The end-to-end effect of any ED pair can be

described by a series eéproduction functiong f; }7° ;, such that, for every € Z*,

v = fr(x3°). (6.1)

As already outlined in Sectidh2.3 an encoder-decoder pair is deemed causal if the recotistrac the
current sample in the decoder is a functanly of the current and past samples of the source, see [125].

To be more precise, we adopt the following definition fromgJL2

1The analysis in [125] considers two-sided source procegsés) 1> _ . and the reconstruction of the source samples
{x(k)}$° only. Here we restrict to one-sided source processes titdéeithe connection with the definition of entropy rateg se
Definition 2.13in Section2.3.1

193
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b(k)

A 4

x° —» ENCODER DECODER|——»

Figure 6.1: Representation of an ED pair at the instant the output sequence y* is generated

by the decoder.

Definition 6.1 (Causal Source Coderpn ED is said to be causal if and only if its reproduction fuons

are such that
fe(x3°) = fr(35°),  wheneverx! =xV,  Vkezt (6.2)
A

Thus, the fact that a given ED pair is causal can be made moiieieby re-writing (6.1) as
vi = fu(xb), vkezt. (6.3)

It also follows from Definition6.1and Definition2.18(on page39) that an ED pair is causal if and only

if the following Markov chain holds:
x° - xF sy VkeZ (6.4)

This can be easily seen by noticing that the Markov chain isvadent to the conditional independence
situation fyx oo |t (U7, 25°|25) = fyr |0 (U7 |2F) froo | (25°|2F), i.€., upon knowledge off, it holds
thaty’ is independent o5 and, in particular, independent ofc ;. Having thaty} is independent of
xp5.1, Upon knowingx¥, is a necessary and sufficient condition f612 to hold.

We defineL; (x°) to be the total number of bits that the decoder has receivemittgenerates the
output subsequengé. Letb(k) € {0,1}“*) be the random binary sequence that contains the bits that
the decoder has received whehis generated. Notice that, is, in general, a function of all source
samples, since the binary coding may be non-causalyf.enay be generated only after the decoder has
received enough bits to reprodugg, wherem > k. This is illustrated in Fig6.1 We highlight the fact
that even though (k) may contain bits which depend on samptgs | with m > £, the sequences®
andy* may still satisfy 6.4), i.e., the ED pair can still be causal. Notice also thatx$°) is a random
variable, which depends otf°, the functions{ fx} and on the manner in which the ED encodes the
source into the binary sequence sent to the decoder.

For further analysis, we define tlawerage operational ratef an ED pair as [125]

Py ()} (x(R))) 2 Jim sup L E (L)), (6.5)
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In the sequel, we focus only on the MSE as the distortion metnd on Gaussian stationary process

sources. Accordingly, we define theerage distortiorassociated with an ED pair as:
. 1
d({x(k)} {y(k)}) 2 lim sup -E [|xf —y5)7] . (6.6)

The notions of average operational rate and average distatiow us to define the operational causal

rate-distortion function as follows.

Definition 6.2 (Operational Causal Rate-Distortionfhe operational causal rate-distortion function for
a source{x(k)} is defined as [125]:
R (D) & inf r({fid Ax(k)})- (6.7)

{fx} causal
d({x(k) }{y(K)})<D

A

We note that the operational causal rate distortion funaliefined above corresponds to thimal
theoretically attainable performan¢®©PTA) of any causal ED pair.

In order to define an information theoretical counterparRdf (D), we notice from [63, Theo-
rem 5.4.2] that

LELLe) >

- H(b(k)), VkeZ". (6.8)

> =

Also, from the Data Processing Inequality (see Rabbn paget0 of Chapter2), we obtain
H(b(k)) = I(b(k);b(k)) > I(x{%;y1) = I(x};¥7), (6.9)
where the last equality follows from the fact that, for a @uED, (6.4 needs to hold. Thus, combin-
ing (6.5), (6.8 and 6.9,
Py ()} (x(B)) 2 Tim 2Tk vh) = () s (v (1)), (6.10)

This lower bound motivates the introduction of an inforraattheoretic (as opposed to operational)

causal rate distortion function, as defined below.

Definition 6.3 (Information-Theoretic Causal Rate-Distortion Funcjioifhe information-theoretic
causal rate-distortion function for a sourdex(k)}, with respect to the MSE distortion metric, is de-

fined as
RH(D) £ inf I({x(k)}; {y(K)}), (6.11)

where the infimum is over all processggk)} such thatd({x(k)},{y(k)}) < D and such tha{6.4)
holds. A
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The above definition is a special case of the informatiomititic rate distortion function with delay
introduced by Pinsker and Gorbunov in [169], which was thHews) to converge to Shannon’s RDF, for
Gaussian stationary sources and in the limit as the ratetgdefinity [170] .

Since an ED pair matches Definitiénl if and only if its output{y(k)} satisfies §.4) when the input
is {x(k)}, it follows from (6.7) and 6.10 that

R(D) = RI(D). (6.12)

Itis known that the mutual information across an AWGN chamteoducing noise with varianc®,
say Rawen (D), exceeds Shannon's rate-distortion functiBGD) by at most0.5 bits/sample, see,

e.g. [126]. Thus, we have:
R(D) < Rawan (D) < R(D) +0.5. (6.13)

This performance gap is consistent with the results regantgl 71], where the gain produced by allow-
ing for non-causal reconstruction in DPCM converters wamébto be a MSE reduction of at most
[dB].

In the sequel, we propose an iterative procedure to obtairpger bound forzé (D) for Gaussian

stationary process sources. This bound can be defined as$oll

Definition 6.4 (Information-Theoretic Causal Stationary RDH)he Information-Theoretic Causal Sta-

tionary Rate-Distortion functio®* (D) is defined as
RE(D) £ inf I({x(k)}: {y(k)}), (6.14)
where the infimum is over all processgg k) } such that:
) d({x(k)} {y(k)}) < D,
ii) the reconstruction errofz(k)} = {y(k)} — {x(k)} is jointly stationary with the source, and
iii) Markov chain(6.4) holds.
A

We also find below that an upper bounding function ff* (D) can also be obtained from this

iterative procedure, by showing that, for Gaussian statipsources, it holds that

RoP(D) < RE(D) +0.254, VD > 0. (6.15)
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From Definition6.4, it follows that kit (D) is a tighter upper bound oR? thanR sy ¢ (D), for all

distortions. To see this, recall that

47

—T

1] (e
Rawen(D) = — /log2 (S (g ) + 1) dw, 0< D<o (6.16)

On the other hand, simply placing an optimal scalar gairh tie valuer2/ (o2 + d), after the output of

the AWGN channel with varianag the distortion is reduced 6 = 02d/(o2 + d) or, equivalently,

2
Ix g, (6.17)

2 _ g
o2 —d

d =

Notice that applying a non-zero scalar gain after the ED pe#serves the mutual information rate
between source and reconstruction. Thus, the mutual irsfoom rate of an AWGN channel with
the optimal scalar gain at the decoder end, as a functioneoflistortion, sayR’,,, (D), is given
by Rywan(D) = RAWGN((,;—;DD)- Since Rawan (D) is monotonically decreasingD < o2

(see 6.16), it follows that R,y on (D) < Rawen (D). From this and €.13, and noting that

R < Ry an (D), we conclude that
Ril(D) < R(D) + 0.5 bits/sample (6.18)

From Definition6.4, it is also clear that, if there exists a realizationijf (D) in which the recon-
struction error is jointly stationary with the source (wiiseems to be a reasonable conjecture), then
Rit(D) actually coincides withRi (D).

6.2 Obtaining the Stationary Causal RDF

Here we show that, for Gaussian stationary sources, thersaay causal RDRR (D), introduced in
Definition 6.4, can always be obtained by iteration. More specifically, wappse an iterative procedure
which is guaranteed to converge to the causal stationary. Rb&ddition, this procedure yields a char-
acterization of the filters in a feedback quantizer that@ahian operational rate that equals the upper
bound on the right hand side @&.(5.

To derive these results, we first consider a scheme corgsistam AWGN channel and a set of causal
filters, as depicted in Figh.2 In this scheme, the sourde(k)} is Gaussian and stationary, with PSD

S, (e“). From this, we define, as in Chap&r

(7)) 2 \/Su(ed), VYw € [~7, 7). (6.19)



198 CHAPTER 6. BOUNDS ON THE CAUSAL RDF FOR GAUSSIAN PROCESSES

Figure 6.2: AWGN channel with causal filters.

In Fig. 6.3 {n(k)} is Gaussian noise with i.i.d. samples, independertdk)}. Thus, betweer (k)
andw(k) lies the AWGN channek (k) = v(k) + n(k). The filtersA(z) and B(z) are casual and stable.
The filter F'(z) is stable and strictly causal.

As in Chapte3, we define

2 2
s Oy Ow

K22 41=25 (6.20)

fe) &£ [1=F(¥)|, Vwe[-m,mn]. (6.21)

The signal transfer function and the PSD of source uncde@ldistortion for the system in Fi§.2are

given respectively by

W(z) 2 A(2)B(2), (6.22a)
Su(€) 2 [B(e?)|” f(e7)202. (6.22b)

In turn, the PSD of w(k)} is given by
Su(€) = O ()2 [A(e)|* + 02 f(/)?,  Vw € [—7, 7], (6.22¢)

From 3.23 (see pag&3), we obtain that the MSE is

o 1 A|?|[BF|?

MSE = D,
K — | f[]?

+ [[(AB - 1)Q,|? (6.23)
From this, we define the following

Optimization Problem 6.1. For any given(, (e’*), and for any givenk > 1, find the causal filters

A(2), B(z) and F'(z) that minimizeD... A

Based upon the results obtained in Chaptere next show that solving Optimization Probléni

amounts to finding the stationary causal rate distortiortion of Definition6.4.
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Figure 6.3: AWGN channel within a “perfect reconstruction” system and causal de-noising

filter.

Lemma 6.1. If the filtersA™(z), B"(z), andF" () solve Optimization Problet®.1and yield distortion
Dy, then

% In(K) = Rit(D}). (6.24)
A

Proof. Let S;, andWW’ be, respectively, the PSD of the source uncorrelated naigkthe signal transfer

function of a realization oRf (D) (see 6.22). Then

S In(k) = 16k wlk) S T} — fwih)) 2 T} by S RED,). (625

In the above, the first equality follows from the fact tHatk)} is Gaussian. Inequalitigs) and (b)
follow directly from Lemma5.1 Lemmab5.1 also shows that equality is achieved(im) if and only
if {w(k)} is white, and in(b) if and only if Nz C Ny, i.e., if and only if B(z) is invertible for all
frequenciesw for which |A(e*)| > 0. Inequality (c) follows from the definition ofRi (D). From
Lemma4.1, the reconstruction error that realiz&§ (D) needs to be Gaussian. Since, in the system of

Fig. 6.2 the distortion is Gaussian, equality is achieveddniff

Su(e?*) = Sl (e?¥), Vw € [~m, 7], and (6.26a)
W(e') = W' (&), Vw e [—m, 7). (6.26b)

We note that, despite the causality constraints on thedfjl{er26 can be met while yielding., (e/*)
constant, for any,, see 6.29. Thus, 4" (z), B™(z), andF " (z) solve Optimization Probler8.1if and
only if they yield 1 In(K) = R#(D.). This completes the proof. O

For any choice of filtersl(z), B(z), andF(z), the system in Fig6.2is equivalent to the one depicted
in Fig. 6.3 In Fig. 6.3
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A(z) = A(2), (6.27a)
F(z) =F(2), (6.27b)
B(z) =A(2)"!, and (6.27¢)
W(z) = B(2)B(z)"" = B(2)A(=). (6.27d)
Thus,A(z) andB(z) satisfy the perfect reconstruction condition
A(?)B(e?¥) = 1, (6.28)

andWV (z) is the signal transfer function of the system, as before.@rther hand, the net effect of the
AWGN channel and the filterd(z), B(z) and F'(z) is to introduce Gaussian stationary additive noise,

independent of the source. We also have that

y(k) = W(z)x(k) + WB(2)(2)[1 — F(2)]n(k). (6.29)
From this, the PSD of source uncorrelated nofsge’), is given by

jw 7 mjw 2 jwy |2 w2 2
Su(el) = ‘W(ej )’ |B(e)|* 1 - F(e7)| o2. (6.30)

n

Thus, W(z) can be seen as a de-noising filter utilized to reduce the MS& Ghussian stationary
source{x(k)} corrupted by additive Gaussian stationary noise with B§R’«). Substituting 6.27)
into (6.23, the MSE can be expressed as

2 A|?|WB|”
K117
whereo? is the variance of the source uncorrelated reconstructiam. e

In addition to .28, for any givenF'(z) andW (=), the filtersA(z) and B(z) in Fig. 6.3are chosen

De= 02+ (W — 1)y ? = | 7 — D2, (6.31)

S0 as to minimize the variance of source uncorrelated nbisethis purpose, from the viewpoint of the
subsystem comprised of the AWGN channel and the filtsrs), B(z) andF'(z), the fiIterW(z) acts as
a frequency weighting filter. Thus, for arfy(z) andW(z), the filtersA(z) and B(z) that minimizeo?
can be found from Theore®3 (see pag&6), by settinga = b = 1, W(e/*) £ 1, andP(z) = W(z).
This yields thatd(z) and B(z) satisfy

A@e)] = i/ [P(e7)] [0 (e7#) ! f(e3%) |W (e[, a.e. on—, ], (6.32a)

[B(e5)] = /| P(ei)["! [@(ei)] Flei)L W ()], ae. o], (6.320)

wherex > 0is an arbitrary real constant. Also, frod.42 (pages6), the variance of source uncorrelated
error when 6.32 holds is given by

Q[ W|, f)
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On the other hand, the filté?(z) needs to be such that

T

/log f(e?)dw > 0, (6.34)

see B.76 on pages4.
Thus, if one wishes to minimize the reconstruction MSE byadiing appropriateausalfilters in the

system in Fig6.3for a given value of’, one needs to solve the following optimization problem.

Optimization Problem 6.2. For any given{2,(e’*), and for any givenK > 1, find the frequency

responseW(ejw) and the frequency response magnityfde’>’) that

. AW, )2~
Minimize: D, £ W, /)7 +[[(W = 1)Q? (6.35a)
Subject to: We H, (6.35b)
/ In f(e?*)dw > 0, (6.35c)

whereH C G denotes the space of all frequency responses that can bmebtaith causal filters. A

Recalling that the system in Fi§.2 can always be re-arranged in the form of the system in6:g).
with filters satisfying 6.27), it becomes clear that Optimization Problér2is equivalent to Optimization

Problem6.1 We put this fact in the form of a lemma for future reference.

Lemma 6.2. For any givenQ2, and K > 1, Optimization Problen6.2 is equivalent to Optimization
Problem6.1

The advantages for the analysis that the system of8=&has over the system of Fi§.2will become
evident after we state the following lemma, which is key fgbsequent results in this chapter. It will play
a central role in demonstrating the convergence propesfitee iterative procedure that yieI@(D),

to be proposed later.
Lemma 6.3. Define the sets of functions
Frx 2{f:[-m 7] =R |fIP< K}, (6.36)
G2 {G:[-7n] —C}, (6.37)

wherekK is some positive constant. Then, for @iy WandK > 1, the costfunctional? : Fx xG —

R{, defined as

2
#0201 ap (6.38)

is convex. A
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Proof. Choose any two arbitrary paifg, g1) and(f2, g2), and a third arbitrary paitfo, go) satisfying

(fo,90) & A(f1.91) + [1 = A(f2, 92)
for some\ € [0, 1]. Defining
nEfa—fi; 029 — g,

any duplet along the “line” betwed(f1, g1) and(f2, g2) can be written in terms of a single parameter
via
(fvg) = (fo +7757 9o +95>5

wheres € [A — 1, \]. Substitution into §.38 yields

a (aJr bs + d52)2

F(f,g9)=J(s) #-FR-FGS-FH@HQSQ (6.39)
where
a = (fo,]gol) (6.40)
b = (fo,100) + (lgol . m) (6.41)
d £ (n,0]) (6.42)
D = K —|foll®=2(fo,m)s — lInl|*s* (6.43)
e £ 2R{{90—G, 0)} (6.44)
R 2 |gol® + GI* = 2R {{90,G)}, (6.45)

whereR{z} denotes the real part of. We next show that# (-,-) is convex along the line between

(f1,91) and(f2, g2). For this purpose, we first take the derivative/gf) with respect te;, yielding:

2 (a+ bs + ds?) (b+ 2ds) D — (a + bs + ds? D

Differentiating again and evaluating all termssat 0, we obtain

{2(6? + 2ad) Dy + 2abD}y — 2abD}y — a>D{j} D2 — 2(2abDy — a>Djy) Do D},
Dj

 2°D? + 4adD? — a®>D} Dy — 4abDy D}y + 2a*(D})>

- o

2 (bDy — aD})* + dadDo — a® D + 2(|6]2 D3

= A4
B , (6.46)

J"(0) = +2[0||?

+2[0||?
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where

Dy = D|_,=K—|fl? (6.47)
oD
D, & = = -2 4
b 5 | (fo, ) (6.48)
02D
Dy & —| =-=2|n* 6.49
0 52 | o [ (6.49)

Substituting 6.49 and 6.42) into (6.46),

B; (bDo — aDy)” + 2a(n, |0]) Do + a?|[n||* + 0] D3
D22
55 (bDo — aDy)” + [[na + 0] Do||?
D2/2 =

JN(O) _

Thus, the costZ (-, -) along the “line” betweetif:, g1) and(f2, g2) is convex. Since the latter holds for

any arbitrary pair of pairs, if follows thaj? ( f, g) is convex. This completes the proof. O

Lemma 6.4. For all 2, and for all K > 1, Optimization Problen®.2is convex . A

Proof. With the change of variable§' £ Q, andg £ Q. W, we obtainD. = 7 (f,g). With this,
Optimization Problen6.2amounts to finding the functionsandg that

Minimize: 7 (f,g) (6.50a)
Subjectto: g € W, f € B. (6.50Db)
where
W2 {g=QW: : W c H} (6.51)
B2 {f eFgk: /7r In f(e/*)dw = o} . (6.52)

Clearly, H is a convex set. This implies th&Y is a convex set. In additior is also a convex set, and
from Lemma6.3, 7 (f, g) is a convex functional. Therefore, the optimization probktated in .50

is convex. This implies that Optimization Problén®2is convex, thus completing the proof. O

We can now define an iterative procedure that, as will be shaten yields the information theoretic

causal rate distortion function:
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Iterative Procedure 1
For any target information theoretical ratg,
Step 1: Sek = 22F,
Step 2: SetV(e/v) = 1.
Step 3: Find the frequency response magnitfigeB that minimizesD,. for givenW.
Step 4: Find the causal frequency respo%ee H that minimizesD.. for giveny.

Step 5: Return to step 3.

Notice that after solving Step 3 in the first iteration of #&ive Procedure 1, the resultis" (D), i.e.,
the MSE is comprised of only source-uncorrelated distortitep 4 then reduces the MSE by attenuat-
ing source-uncorrelated noise at the expense of introddiciear distortion. Each step reduces the MSE
until a local (or global) minimum of the MSE is obtained. Bdsegon the convexity of Optimization
Problen6.2 the following theorem, which is the main technical resuilttiis chapter, guarantees conver-
gence to the global minimum of the MSE for a given end-to-entual information. Since all the filters

are causal, this global minimum actually corresponds toiiat joo theR_ff(D) plot.

Theorem 6.5(Convergence of Iterative Procedure 1ferative Procedure 1 converges to the uniglie
and IV that realizeR‘ (D). More precisely, if the MSE obtained by the procedure forte 7, in the

limit as the number of iterations tends to infinity,), then we have? = Rit(D’). A

Proof. The result follows directly from the fact that Optimizati®moblem6.2 is convex inf and W,

which was shown in Lemm@.3, and from Lemma$.2and6.1 O

The above theorem states that the stationary informatieor#tic causal rate-distortion function can
be obtained by using Iterative Procedure 1. In practice,ittéans that an approximation arbitrarily close
to R.(D) for a givenD can be obtained if sufficient iterations of the procedurecareed out.

The feasibility of running Iterative Procedure 1 dependgtanfeasibility of solving each of the
minimization sub-problems involved in steps 3 and 4. We &xiw how these sub-problems can be

solved.
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Solving Step 3

If W(ej“) is given, the minimization problem in Step 3 of Iterative &dure 1 is equivalent to solving
a feedback quantizer design problem with the constra{al B(z) = 1 and with error weighting filter

P(edv) = W(e/*). Therefore, the solution is given by Theor@adQ with the choicez = 1, b = oo,
and settingP(z) = W(z).

Solving Step 4

Finding the causal frequency respo@e{ejw) € H that minimizesD.. for a givenf is equivalent to

solving

min _Z(f,g) (6.53)

g:9€W
for a givenf, whereW is as defined in@.51). SinceW and ¢#(-,-) are convex, §.53 is a convex
optimization problem. As such, its global solution can ala/he found iteratively. In particular, W(z)
is constrained to be ai/-th order FIR filter with impulse respongec RM+1 such thatl (e/*) =

F {c}, whereF{-} denotes the discrete-time Fourier transform, then

Y(c) = J(f, Flc}) (6.54)

is a convex functional. The latter follows directly from thenvexity of ¢ (-,-) and from Lemma5.6
(see pag06). As a consequence, one can solve the minimization prolteStap 4, to any degree
of accuracy, by minimizingZ(c) over the values of the impulse response%fej“), using standard
convex optimization methods (see, e.g, [147]). This apgi@so has the benefit of being amenable to

numerical computation.

6.3 Upper Bound on the Operational Causal RDF

By using entropy coded scalar quantization with dither, dperational rate of an FQ with the filters
obtained via Iterative Procedure 1 is guaranteed to exéggd) by less thar).254 bits/sample, see

Remark4.5after Lemmat.100n pagel48 Thus, we have the bound

RP(D) < Ri#*(D) 4 0.254  bits/sample (6.55)

We note that the feedback quantizer thus obtained corrésgonhe ED pair yielding the best operational
rate-distortion performance achievable by any ED pairtkeas only LTI filters and subtractively dithered

scalar quantization.
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If the requirement of zero-delay, which is stronger than tiaausality, was to be satisfied, then it
would not be possible to apply entropy coding to long seqesitquantized samples. This would entail
an excess bit-rate not greater thiabit per sample, see, e.g., [63, Section 5.4]. As a consegustthis,

the upper bound on the operational bit-rate with zero-delayR?/}, (D), would be

RY?,(D) < R¥(D) +0.254+1 bits/sample (6.56)

The0.254 bits at the end of§.55, commonly referred to as the “space-filling loss” of scajaanti-
zation, can be reduced by using vector quantization [6, M8tor quantization could be applied while
preserving causality (and without introducing delay) & ttamples of the source welé-dimensional
vectors. This would also allow for the use of entropy codimgraV-dimensional vectors of quantized
samples, which reduces the exirdit/sample at the end o6(56 to 1/N bit/sample, see [63, Theo-
rem 5.4.2].

6.4 Summary

In this chapter we have shown that an upper bound on the irfitomtheoretic causal rate distortion
function for Gaussian stationary sources and MSE distoitiiterion, denoted by?¥, can always be
found iteratively. For that purpose, we have introducedtaeraiive algorithm which converges to the
minimum mutual information rate between source and recoctsbn achievable by any stationary error
process having a given varianée We have named the associated minimum as the stationarglcaus
rate distortion function, denoted ¥t (D). If there exists a realization of the causal RDF for Gaussian
stationary sources and MSE distortion metric in which trenstruction error is jointly stationary with
the source, theR_}j(D) = R(D). The proposed method also yields the frequency responke ftfters

in a feedback quantizer, using entropy coded scalar quaiatizwith subtractive dither, with which the
operational rate exceed@(D) by at most0.254 bits/sample. This constitutes an upper bound to the

operational rate of any causal encoder-decoder pair.

6.5 Appendix

Lemma 6.6. Let% : H — R be a convex cost functional. L&t: X — H be a linear mapping, where

X is some given vector space. Then, the functional
G(x) =€ (Tr+0) (6.57)

is convex.
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Proof. Letx1, 22 be any two vectors iiX. For any scalar parametgre [0, 1],

Gty + [1— Naa) = €(T (\zy + [1 — Nan) +b) (6.58)
W G (AT w1 +b)+ 1 — N(Tza + b)) (6.59)
¢ AC(Txy +b) +[1 — NE(Tay +b) (6.60)
= XY (z1) + [1 — ND(22), (6.61)

where(a) stems from the linearity df and(b) follows from the fact tha#’(-) is convex. This completes

the proof. O
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Chapter 7

Conclusions

Previously | did not understand why | got no answer to my qoest
today | do not understand how | could believe | was capableskiray.
But | didn’t really believe, | only asked.

Franz Kafka, Bohemian novelist.

Each problem that | solved became a rule,
which served afterwards to solve other problems.

Rereé Descartes, French Philosopher, in “Le Discours de lathbde”.

7.1 Overview

This thesis has presented several novel results on therpenfice and design of both entropy and res-
olution constrained coders and decoders for stochasticesu We next give a summary of the main

contributions and point at directions of future research.

7.2 Main Contributions

We have introduced in Sectidn3.1a new distortion metric, which extends the standard meaarequ
error (MSE). This extension has been given here the nagighted correlation mean squared error
(WCMSE). This is the distortion metric considered througthmost of the thesis. The WCMSE is a

weighted sum of two terms:
1. The first term is the component of the MSE which is uncoteel¢o the source.
2. The second term is the remainder of the MSE.

209
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By giving different weights,a andb, to each of these terms, the WCMSE can take account of, for
example, the different impact that each component of the M@k have in some applications, such as
image processing, parallel quantization schemes, andonled@ control systems. This is the first, and

preliminary, contribution of this thesis.

The second contribution is the characterization of therfileround a scalar quantizer with given
signal-to-noise ratio (SNR) that minimize the WCMSE. Thiasanthe subject of Chapt8r These re-
sults were obtained by modelling quantization errors agewaind uncorrelated with the source. This
assumption is referred to as thanear Model The associated optimal performance (SNR-distortion)
trade-off for this class of encoder-decoder pairs has a¢sm lestablished, and is summarized in Ta-
ble 3.30n pageB7, for several architectural constraints. The rate-diginnperformance of oversampled
feedback quantization has also been analyzed in Se8tidh In particular, we have shown that, for a
fixed quantizer SNR, and when quantizer overload errorsegkgible, the frequency weighted MSE of
optimal perfect reconstruction feedback quantizers égesa® exponentially with the oversampling ratio,
A. This result implies that, when entropy coded scalar gaatitin with subtractive dither and sufficient
guantization levels to avoid overload is employed, the M&iElee made to decay withasO (2717462,
when\ — oco. We also obtained an extension of this result for the caselutfactively dithered scalar
quantization with a (finite) number of quantization levélattis insufficient to avoid quantizer overload.
For this case, it was shown that for a subtractively dithedar quantizer wittV levels, the MSE can
be made to decay with asO(e*CoAl/S), when\ — oo, wherecy 2 [0.5(N —1)]%/2. In order to achieve
this asymptotic decay rate, it is necessary to balance tti@nwa of clipping and granular errors in the
quantizer, for each oversampling ratio, by adjusting tlaeliog factop asp = 4=1/3/3' (N —1)2/3)\1/3,

To the best of the author’s knowledge, this is the only reswdtilable in the literature combining quan-
tization with overload and oversampling. It also seems tthedfirst decay rate bound for the MSE of

oversampled quantization that holds for sources with itgigiipport.

The third main contribution of this thesis was the charazégion, in Chapted, of the rate-distortion
function (RDF) for Gaussian sources wherein WCMSE is usetthaglistortion metric. We denoted
this RDF byR, (D). First we showed that the WCMSE cannot be expressed as tleetaxipn of a
distortion measure in the usual sense, see Sedtihh The case of scalar Gaussian sources was studied
in Section4.3 It was shown that, for scalar Gaussian sourégs, (D) is convex if and only ifa < 2b.

In Section4.4 we characterize®, ; (D) for the case of vector Gaussian sources. This result allowed
us to find R, (D) for stationary Gaussian sources in Sect#§, and for Gaussian stationary vector
process sources in Sectidr6. We studied special casesBf, ,(D) in Section4.5.2 More specifically,

it was verified that, as expecteRl; 1 (D) = R(D), whereR(D) denotes Shannon’s quadratic Gaussian
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rate distortion function. Similarly, it was also verifiedatt; .. (D) = R*(D), where the latter denotes
the quadratic-Gaussian rate distortion function for seuns-correlated distortions. In SectidrB, we
extended the characterization Bf-(D) to cases in which there exists linear time invariant feelbac
from reconstruction to source. Part of the difficulty, angortance, associated with this result stems

from the fact that we include the possibility of having utéal Tl filters in the feedback loop.

The fourth main contribution of this thesis, contained ira@ter5, was the derivation of necessary
and sufficient conditions under which the optimal filters 8MR constrained ED pairs, using scalar
quantizers and the Linear Model, are such that they yielékzagion of R, (D) when the scalar quan-
tizer is replaced by an AWGN channel. The case of stationesggsses was solved in Sectibr2. It
was shown that, in this case, the sufficient conditions agezl amount to having sufficient degrees of
freedom to: i) whiten the output of the scalar quantizeryigld the unique signal transfer function of a
realization ofR, (D), and iii) generate source-uncorrelated noise with theusjgpwer spectral den-
sity required to realiz&,, , (D). Sufficient conditions for vector sources were establish&kction5.3.

In this case, the SNR constrained scheme corresponds tesfara coder with feedback and individual
scalar quantizers in each subband. The SNR constraint canyb@onotonically increasing function of
13" logy(v(k) + 1), wherey(k) is the SNR associated with the quantizer in Ahin subband. For this
case, the conditions can be summarized as having enougindestdom so that: i) the output signals
of the scalar quantizers are uncorrelated with the outputeoother scalar quantizers, ii) the signal
transfer matrix must equal the unique matrix that realizgs (D), and iii) the covariance matrix of the
source uncorrelated reconstruction equals the uniquéiaeldioise covariance matrix required to realize
R, (D). Interestingly, these conditions imply that, under thedanModel and when feedback is used,
the signals that enter the scalar quantizers in an optinslatéransform coder must be correlated, at all
rates. This conclusion departs from the situation‘ with4cansal transform coders, in which, under the
Linear Model, analysis matrices that achieve total unelation of transform coefficients can be opti-
mal, see, e.g., [58] and the references therein. Sufficeamditions for vector processes were derived in
Section5.4 The SNR constrained setting in this case corresponds indnaset of parallel scalar quan-
tizers combined with a pre-filter matrix, an error feedbalkt&fimatrix, and a post-filter feedback matrix.
The SNR constraint may take the form of any monotonicallydasing function of >, log, (v + 1),
where~y; is the SNR associated with the quantizer in khth subband. It was shown there that these
conditions amount to being able to: i) make the output of ttedas quantizers to have a diagonal and
constant covariance matrix; ii) achieve an end-to-endadizansfer matrix that equals the unique signal
transform matrix characterizing, (D), and iii) yield a source-uncorrelated reconstruction iewith

a covariance matrix that equals the unique covariance xnaftsource uncorrelated distortion required
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to realizeR, (D). When this scheme is associated with a filter bank, this résylies that, when
feedback is available, an optimal filter bank does not neestisfy either the un-correlation condition
or the majorization condition. In all cases, part of the aggtlility of this result stems from the fact that
it allows one to find the optimal filters, matrices, or filtertnizes, for ED pairs that minimize distortion
for a given operational bit-rate.

The last main contribution of this thesis, developed in G, is the introduction of an iterative
procedure which allows one to obtain upper bounds on theataai®-distortion function for Gaussian

stationary sources under the MSE distortion criterion. Bbend obtained with this procedure, denoted

by the functionRit (D), is tighter than0.5 bits per sample, at all rates. To the best of the author’s
knowledge, this is the tightest general bound for Gausdiatineary sources with memory available
in the literature. Moreover, it was shown that, if there s realization of the causal rate distortion
function, denoted byr‘ (D), in which the reconstruction error is jointly stationarythvihe source, then
Ri(D) = Ri*(D). The iterative procedure proposed here also yields a ctesization of filters which,
when employed in a feedback quantizer using entropy codadrsguantization and subtractive dither,
achieve an operational rate that exceﬁfs{D) by not more thard).254 bits/sample. This operational
rate constitutes an upper bound on the minimum operati@bt@alachievable by any causal source coder

for Gaussian stationary sources and MSE distortion coiteri

7.3 Directions for Future Research

The results presented in this thesis are related to a nunflvetated unsolved problems, opening the
door to possible solutions. The following is a list of a fewtloése problems, some of which are already

being considered by the author.

1. There are several optimal filter design problems unddrt@atural constraints that haven't been
treated in this thesis. A particularly challenging caséédne in which one can only measure the
output of the scalar quantizer, but not inject signals affemnd one can only inject signals before
the quantizer, but not measure signals before it. Thistsitnds more restrictive than the design
optimization problem solved in Sectid6, where it was possible to inject and measure signals
before quantization. The former problem is of practical aripnce, for example, when only one
sensor is available (the one in the encoder), and where dhsfar function from the quantized

signal to the reconstructed signal has been fixed and caeraitdred.

2. The optimal filters characterized in Chap8were not subject to complexity constraints such

as filter order. In some cases, as it happens when optimibmghtree filters, the expressions
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obtained correspond to non-rational filters, which can be@pmated arbitrarily well by using
rational filters of sufficiently large order. It would be uskfo obtain bounds on the performance
degradation that would arise from imposing constraintshenarder of the filters. Characterizing
the optimal, un-restricted order filters first, and then agpnating their characteristics with finite-
order filters would provide a (top-down) design method fasigeing> A modulators, alternative
to the (bottom-up) design methodologies usually describebe literature, see, e.g., [43,45, 78,

172]. The merits of such method are yet to be determined.

. The asymptotic decay rate of the reconstruction MSE withdversampling ratio for dithered

guantization with clipping obtained in Secti8riL2.3involved the use of several loose inequalities.

This suggests that faster decay rates could be obtained.

. A challenging and important direction of future resedscthe characterization of the WCMSE-

RDF, with arbitrary weights, for situations in which theseliT| feedback between reconstruction
and source, and where one or more transfer functions in tgeisounstable. Solving this problem
would be an important step toward finding a solution to thengpeblem of optimal design of

networked control loop systems under data-rate conssraint

. It would be of practical interest to find the weights of th€WSE that better represent perceived

distortion in image processing applications. Once suclgktsiare determined, it would be pos-
sible to design WCMSE-optimal image coders based on thétsgmesented in Chaptedsand>5.
The perceived distortion-rate performance of such imagleisocould then be assessed by subjec-

tive or objective tests and compared to “state of the art'gen@ompression methods.

. As discussed in Chaptér the stationary causal RDF introduced in Definiti®&4 would corre-

spond to the information-theoretic RDF if there exists dization of the latter in which recon-
struction error is jointly stationary with the source. Thasgence of such a realization seems a

reasonable conjecture, which, to the best of the authodg/dedge, has not been proven.

. Arefinement of the iterative procedure introduced in Gaigp(page204) could be obtained if the

convexity of the following optimization problem could berdenstrated: In relation to the scheme
shown in Fig.6.3 for a given SNRy = 02 /02 and a given feedback filtér (z), find the optimal
causalfilters A(z), B(z) and W(z). If the latter optimization problem is convex, then Step 4
in Iterative Procedure 1 could be carried out by repeatiagiively the following steps: a) first
makeW (z) be the causal Wiener filter for the sourfe(k)} correlated by additive noise with
PSDo? \B(ej“’)]2 |1 — F(ej“’)]Q, then, b) use TheoreB15to find the optimald(z) andB(z). In
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comparison with the method for solving Step 4 described ge a5 the former procedure has

the advantage of being, although iterative, more analytica
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