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Abstract—This paper presents novel results on perfect recon-
struction feedback quantizers (PRFQs), i.e., noise-shaping, predic-
tive and sigma-delta A/D converters whose signal transfer function
is unity. Our analysis of this class of converters is based upon an
additive white noise model of quantization errors. Our key result is
a formula that relates the minimum achievable MSE of such con-
verters to the signal-to-noise ratio (SNR) of the scalar quantizer
embedded in the feedback loop. This result allows us to obtain ana-
lytical expressions that characterize the corresponding optimal fil-
ters. We also show that, for a fixed SNR of the scalar quantizer, the
end-to-end MSE of an optimal PRFQ which uses the optimal filters
(which for this case turn out to be IIR) decreases exponentially with
increasing oversampling ratio. Key departures from earlier work
include the fact that fed back quantization noise is explicitly taken
into account and that the order of the converter filters is not a priori
restricted.

Index Terms—Differential pulse code modulation, optimization,
quantization, sigma-delta modulation, source coding.

I. INTRODUCTION

T HE term feedback quantizer (FQ) refers to a class of
analog-to-digital converter (ADC) architectures wherein

a scalar quantizer is placed within a linear feedback loop.
Well-known examples of FQs include -modulators, DPCM
converters [1] and sigma-delta modulators [2]. The latter
schemes have been very successfully applied in a number
of areas, including audio compression [1], [3], oversampled
A/D conversion [2], [4], subband coding [5], digital image
half-toning [6], power conversion [7], and control over net-
works [8].

Fig. 1 depicts a general FQ configuration. In this scheme,
may take the form of a nonuniform or a uniform quantizer [9],
the latter being either dithered or undithered1[10].

The filters and in an FQ system allow one to ex-
ploit the predictability of the input signal so as to reduce the
variance of . When compared with simple PCM con-
version, this flexibility allows one to use a scalar quantizer with a
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1In this case, the block Q in Fig. 1 represents the scalar quantizer including
the dither signals.

Fig. 1. Feedback quantization system and frequency weighting filter.

smaller quantization step. The error-feedback filter opens
the possibility of spectrally shaping the effect of quantization er-
rors on the output. In this way, one can allocate more of the quan-
tization noise in the frequency bands where it is less harmful
from a user’s point of view. Accordingly, it is convenient to
use a frequency weighted error criterion, via an error frequency
weighting filter , and to focus on the frequency weighted
MSE (FWMSE) (see discussion in [3] and [11]).

For the sake of generality, we consider the possible use of a
clipper before . This device limits the value of the quantizer
input signal so that if , and if

, where is the saturation threshold of the clipper.
This clipping technique can be used to keep from overloading,
which is helpful in reducing limit-cycle oscillations (idle tones)
in an FQ with high order filters, as proposed in [4]. On the other
hand, if we chose to be sufficiently large, then , and the
clipper has no effect on the system.

If the characteristics of and the spectral properties of the
input signal are known, then the design of an FQ converter
that minimizes the variance of amounts to choosing the filters

, and .
It is often desirable that a converter is transparent to the

system in which it is inserted. This corresponds to the wide-
spread paradigm in which the coding scheme adapts to the
application that employs it, without need to modify the latter.
A transparent converter is one whose signal transfer function
(i.e., the transfer function from input to output ) is unity at
the frequencies of interest. The design of such perfect recon-
struction feedback quantizers (PRFQs) constitutes the main
topic of the present work. PRFQs are characterized by the
property that, in the absence of quantization effects, there is no
frequency weighted reconstruction error, i.e., .
If we denote the power spectral density (PSD) of by ,
then it can be seen from Fig. 1 that the latter holds if and only
if

(1)
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Thus, in the design of an optimal PRFQ converter, only two
degrees of freedom are available: the filters and (or,
alternatively, and ).2

To the best of our knowledge, existing results on optimal
filter design for PRFQ converters either consider finite order
filters [2], [12], [13], assume (or require) that the variance of
the signal is much smaller than that of [1], [4],
[14], [15], or have a heuristic component in the optimization [2],
[3], [13], [16]–[19]. The only explicit analytical expressions cur-
rently available for the optimal performance (and corresponding
filter frequency responses) of a PRFQ converter are those given
in [14]. However, the assumption of negligible fed back quanti-
zation errors used in [14] makes these filters suboptimal. Indeed,
as we will show in the sequel, there exist situations where the
filters proposed in [14] yield large fed back quantization error,
even when a fine step scalar quantizer is used. In these situa-
tions, not only is the main assumption in [14] violated, but also
an FWMSE much larger than predicted can result due to exces-
sive quantizer overload (see, e.g., [2] and [13]).

In the present paper, we will show how to design optimal
PRFQ converters. For this purpose, as in [12], [14], and
[16]–[18], we model the scalar quantizer as a linear device that
introduces additive white noise whose variance is proportional
to that of the signal being quantized. A key departure from [14],
however, is that we explicitly take into account fed back quan-
tization noise in the feedback loop. Our main contributions are:
i) We derive one-parameter equations that relate the minimum
achievable frequency weighted MSE to the signal-to-noise ratio
(SNR) of ; ii) We show, within our model, that the frequency
weighted MSE in an optimal PRFQ where the SNR of is
fixed decreases exponentially with oversampling ratio; and iii)
We derive equations that characterize the optimal filters for
a PRFQ. Our results can be applied to any given number of
quantization levels, and to almost arbitrary input spectra and
frequency weighting criteria.

The remainder of this paper is organized as follows: In Sec-
tion II, we present our analysis model for PRFQ converters. In
Section III, we formulate the associated optimization problem.
Section IV presents a one-parameter characterization of the so-
lution. In Section V we discuss the main properties of an opti-
mized PRFQ. The case of oversampled FQ is analyzed in Sec-
tion VI. Section VII discusses the relationship to previous re-
sults and highlights the importance of taking account of fed
back quantization noise. Section VIII presents simulation re-
sults. Section IX draws conclusions. (For ease of exposition, all
proofs of our results are included in the Appendix.)

A. Preliminaries and Notation

We write “iff” as a short hand expression for “if and only
if.” The sets of all complex-valued square integrable and abso-
lutely integrable functions on are denoted by and

, respectively. Given , , we adopt the stan-
dard inner product , where

2We note that this reduction in the number of degrees of freedom (in com-
parison with an FQ with no perfect reconstruction constraint) by no means
makes the design optimization problem easier to solve. Moreover, perfect
reconstruction constitutes an additional constraint that can not be added “a
posteriori,” i.e., after the optimization is completed.

denotes complex conjugation. We denote the corresponding
2-norm as . We use as the argument of the
-transform. If is a transfer function, then we use the short

hand notation to refer to the associated frequency response
. If is a set, then we write “a.e. on ” (almost every-

where on ) for “everywhere on , except on a zero Lebesgue
measure subset of .” We use to denote the variance of a
given wide sense stationary (w.s.s.) random process ,
having PSD . We recall that if has zero mean, then

, where
is a frequency response satisfying ,

. For any functions or we write
and to denote the sets and

, respectively.
To simplify notation, we introduce the operator , defined

as follows:

(2)

where is any given function and denotes any ar-
bitrary and positive bounded value. For later use, we also recall
the following definition.

Definition 1 (Almost Constant Function): A function
is said to be almost constant iff

(3)

II. PRFQ CONVERTER MODEL

In this section, we discuss some of the main aspects of feed-
back quantization. We also describe the analysis model and the
constraints to be considered later in the search for the optimal
filters.

A. Feedback Quantizer Equations

We begin by presenting the equations that describe the be-
havior of the PRFQ shown in Fig. 1.

1) Quantization and Clipping Errors: From Fig. 1, the quan-
tization error is given by

(4)

Every practical scalar quantizer has an associated constant
such that, if , then is said to be overloaded.

When the quantizer is not overloaded, then is only gran-
ular quantization error, namely , which can be bounded
as , , for some
(see, e.g., [9]). For example, if is a symmetric, uniform, non-
dithered quantizer with levels and quantization interval ,
then one needs in order to obtain .

In general, we can write

(5)

where
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is the overload error. Clearly overload errors are bounded as
, but they cannot be bounded by a

constant unless is bounded.
As outlined in the introduction, the clipper in Fig. 1 can be

used to keep from overloading. For simplicity, we will only
consider here two possibilities, namely, that , or else

. The former choice guarantees that does not overload,
since clipping error, defined as

(6)

takes place instead. More precisely, if we have that
, and .

If, instead, , then the latter revert to
and . A key point in

using clipping is that, unlike overload errors, clipping errors are
not fed back into through . This helps to avoid large
limit-cycle oscillations arising from the overload of , see [4].
Since such oscillations are not part of the analysis model we will
use, their occurrence could increase the FWMSE significantly
above the value predicted by the model.

Using the above definitions, and from Fig. 1, we can write

(7)

which reveals that differs from by the sum of the quantiza-
tion and clipping errors.

2) Transfer Functions: From Fig. 1 and (7) we have that

(8a)

(8b)

(8c)

Notice that these equations are exact and require no assumptions
on the signals involved. From (8b) one can see that
corresponds to the signal transfer function (STF), from to ,
of the converter. Similarly, the product is the
transfer function for quantization errors, usually referred to as
the noise transfer function (NTF) of the converter3. The term

will play a crucial role in the derivation of the optimal
filters in Section IV.

3) Stability: We say that a PRFQ is Bounded-Input-Bounded
Output (BIBO) stable iff for any input sequence satisfying

all the signals in the converter are bounded.
If or if has infinitely many quantization levels, then

, , and, thus, all the other signals in the
converter are bounded. On the other hand, if , then
can be written as

(9)

If the quantizer has a finite number of quantization levels, then
is bounded. If is stable and is minimum-phase,

then it follows from (9) that is bounded. This, in turn, guaran-
tees that and all the other signals in the converter are bounded
[see (4) and (8)]. Summarizing, if all the filters in Fig. 1 are

3In noise-shaping and �� literature, where B(z) is typically a unit gain, the
term NTF is normally used for 1� F (z).

stable, and if has no zeros on or outside the unit circle,
then the resulting PRFQ is BIBO stable.

In addition, if and are stable, then the norm
of their impulse responses, namely and , are bounded.
Thus, if there exists a bounded such that

, , then a sufficient condition to ensure
, , is that , where

(10)

Therefore, for a uniform quantizer with quantization interval ,
it suffices to have or more quantization levels in order
to avoid clipping or overload errors.

B. Assumptions

The assumptions associated with our PRFQ model are de-
scribed next.

1) Input Spectrum and Frequency Weighting: The error
weighting filter in Fig. 1 models the impact that
reconstruction errors have at each frequency. This “perfor-
mance assessment” filter is application dependent, and is
assumed to be stable and given. The input signal
is a zero-mean w.s.s. stochastic process4 with known PSD

and finite power, i.e., . In
order to simplify our subsequent analysis, we shall further
restrict and to satisfy the following:

Assumption 1: The product is a piece-wise differen-
tiable function having at most a finite number of discontinuities
and satisfying , . In addi-
tion, is such that one5 of the following conditions holds.

i) There exists a constant such that
, for all , or

ii) such that . Fur-
thermore, if denotes the set of noncontiguous
and nonoverlapping intervals in such that

, then, for every ,
such that is as

.
We note that the above is a rather weak constraint, since con-

ditions i) and ii) include almost any product of practical
or theoretical interest. In particular, condition i) covers all the
cases where the product has no zeros on the unit
circle. In turn, condition ii) is satisfied if is zero over any
interval on having nonzero measure, or if is
rational and has zeros on the unit circle.

2) The Quantizer: We shall focus our analysis on the effect
that granular quantization errors have on the FWMSE. For this
effect to closely represent the actual FWMSE, we need to as-
sume the following:

Assumption 2: The variances of overload and clipping errors
are negligible, i.e.

(11a)

or

(11b)

4This excludes, for example, sinusoids or constant inputs from the analysis.
5Notice that conditions i) and ii) cannot be met simultaneously.
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In addition, and as stated in the introduction, we will adopt
an additive white noise model for . This model is widely used
for the analysis and design of data converters (see, e.g., [1]–[5],
[12]–[14], [16]–[18], and [20]–[22]), being usually described as
follows.

Assumption 3: The sequence of quantization noise
is a zero-mean w.s.s. random process, uncor-

related with the input of the PRFQ, and having constant PSD

where is the variance of .
The above additive white noise model, although not exact, is,

in general a good approximation when a signal with a smooth
probability density function (pdf) is quantized with many levels
and negligible overload (in the sense of Assumption 2 ), see,
e.g., [2]. The model can be made exact, even for few quanti-
zation levels, by utilizing a uniform scalar quantizer with ei-
ther subtractive or nonsubtractive dither6, provided quantizer
overload does not occur, see [10]. As discussed before, one
way to achieve this is to use a quantizer with a sufficiently
large number of quantization levels, so as to satisfy (10). In this
case, if the quantization interval is and the dither sequence
whitens , makes uncorrelated to when is not overloaded
and is bounded as , then any number of levels
greater than or equal to will make Assump-
tion 3 hold exactly. If a smaller number of quantization levels
are employed so that , then the use of dither with the
same characteristics as before, together with clipping (i.e., set-
ting ), will also make satisfy Assumption 3 exactly.

Assumption 3 allows one to write the variance of
as

(12)

see Fig. 1. This equation describes the effect of on through
the feedback path. However, if the scalar quantizer has a finite
and fixed number of quantization levels, then another link be-
tween these two variances needs to be considered. In order to
model this relationship, we will use the fixed SNR model em-
ployed in, e.g., [12], [14], [16], [17], and [21].

Assumption 4: For a fixed number of quantization levels, the
variance of quantization errors is proportional to the variance
of the signal being quantized, i.e., there exists such that

(13)

If no clipping is used (i.e., if ), then corresponds
exactly to the SNR of . If , then is a good a approxi-
mation of the SNR of when (11b) in Assumption 2 holds.

In our model, is assumed fixed and given. Strictly speaking,
depends on the pdf of , on the number of quan-

tization levels of , and on how quantization thresholds and
levels are distributed along the dynamic range of . In practice,
for a given number of quantization levels, should be chosen
such that the dynamic range of is used efficiently, whilst en-

6Here and in the sequel, we assume the dither is such that n is white and
uncorrelated with x when Q is not overloaded.

suring a low probability of quantizer overload or clipping. For
example, for the often cited uniform quantizer with levels and
loading factor7 equal to 4 we obtain (assuming
that has a uniform pdf and neglecting overload er-
rors). We note that for large , and provided overload errors
are negligible, a quadratic relationship between and holds
for most types of scalar quantizers (see, e.g., [9]). This is indeed
the well-known rule of “6 [dB] reduction of quantization noise
variance per additional bit of quantizer resolution.”

In the sequel, we refer to the model of PRFQ determined by
Assumptions 2, 3, and 4 as The Linear Model. Summarizing,
the Linear Model is exact if the PRFQ uses a dithered quan-
tizer having enough quantization levels to avoid overload. If
not enough quantization levels are available and dither is used
jointly with clipping, then the model is exact in predicting the
effects of granular quantization errors, and is a good approxima-
tion in predicting the total FWMSE if Assumption 2 also holds.
If the scalar quantizer is undithered, has a small quantization in-
terval (relative to ) and enough quantization levels to avoid
overload, then the Linear Model can be expected to yield a good
approximation of the total FWMSE. Perhaps surprisingly, the
Linear Model turns out to predict with remarkable accuracy the
FWMSE of an optimal PRFQ when few quantization levels and
clipping are used with a loading factor big enough to satisfy As-
sumption 2, even without dither, and even for a 1-bit quantizer.
This can be observed from the simulation results presented in
Section VIII.

C. Optimization Constraints

The filters , and in Fig. 1 are design choices.
We shall restrict the search for the optimal filters to those satis-
fying the following constraint.

Constraint 1:
1) and satisfy (1).
2) and are stable.
3) is stable and strictly causal (i.e., ).

As foreshadowed in Section I, the first constraint enforces
perfect reconstruction. As discussed in Section II-A-3, the sta-
bility constraints on , and are a necessary con-
dition for the converter to be BIBO stable. The additional re-
quirement on , namely strict causality, is needed for the
feedback loop in Fig. 1 to be well defined (see, e.g., [2, ch. 4]).
Notice that we will not a priori require to have zeros
only inside the open unit disk. Instead, we will show that the
latter property arises naturally from the solution of the design
optimization problem.

An additional constraint on arises from the value of ,
as explained next. The ratio between the variances of and
imposed by the feedback can be obtained by dividing (12) by

, yielding

(14)

One can see from the above that if , then any pre-filter
or scaling of the quantization intervals of will yield

7The loading factor corresponds to the ratio between half the dynamic range
of Q and the standard deviation of its input.
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, thus, making large overload (or clipping) inevitable. This
would increase overall distortion and, if no clipping is used, may
lead to large limit-cycle oscillations. We, thus, conclude that the
use of feedback imposes the following constraint.

Constraint 2:

If the above constraint is met, then can be found by sub-
stituting (13) into (14). This gives

(15)

III. OPTIMAL PRFQ DESIGN

Given the model described in the previous section, we can
now evaluate the quantity that we aim to minimize, namely, the
frequency weighted mean squared error (FWMSE). From (8c),
and Assumptions 2 and 3, it follows that the FWMSE is given by

. Thus, in view of (15), the minimization
of the FWMSE in the Linear Model can be stated as follows.

Optimization Problem 1: For given , and for given and
satisfying Assumption 1, find the frequency responses ,

and satisfying Constraints 1 and 2 that minimize

(16)

The following proposition allows us to further reduce the
number of unknowns in (16) by characterizing the optimal
for a given choice of .

Proposition 1: For any satisfying Constraints 1 and 2,
the infimum of the achievable FWMSE is given by

(17)

The filters that achieve the infimum, namely and
, satisfy

(18a)

(18b)

where is an arbitrary real constant. If
satisfies condition i) in Assumption 1, then and
can be chosen stable; else, if satisfies condi-
tion ii) in 1, then one can achieve an FWMSE arbitrarily close
to with causal and stable filters , such that

(19a)

(19b)

a.e. on , where

by making .
As a consequence of Proposition 1, the optimal PRFQ design

problem reduces to that of finding the filter which mini-
mizes in (17).

It is convenient to rewrite (17) more compactly by introducing
the following change of variables:

(20a)

(20b)

Substituting (20) into (17) allows us to rewrite the infimal
FWMSE for a given choice of as

(21)

We next translate the restrictions on , stated in Con-
straints 1 and 2, into equivalent constraints on . For this pur-
pose, we note that, by definition, needs to satisfy ,

, and that, since (see the
proof of Proposition 1 in the Appendix ), Constraint 2 is satis-
fied iff . In addition, a stable and strictly causal

(i.e., one satisfying Constraint 1) always leads to a func-
tion , see (20), which satisfies8

(22)

This result follows directly from Jensen’s formula [23] (see also
the Bode Integral Theorem in, e.g., [24]).

On the other hand, as we shall see in Section IV, if Assump-
tion 1 holds, then the optimal within the set of functions de-
scribed by (22) and the requirement turns out
to be piece-wise differentiable on , has at most a finite
number of discontinuity points, and satisfies

(23a)

(23b)

Under these conditions, it is always possible to find a stable
and strictly causal filter such that approxi-
mates arbitrarily well on , as stated in the following
lemma.

Lemma 1: Suppose that is piece-wise differentiable on
, that it has at most a finite number of discontinuity

points and that it satisfies (23). Then, for every , there
exists a (finite order) rational, strictly proper and stable
such that .

8Notice that (22) dictates a fundamental tradeoff in the noise-shaping capa-
bilities of feedback quantizers, namely, that one can remove noise from one fre-
quency band only at the expense of increasing it on another. This is also known
as the “water bed effect.” We discuss further implications of (22) in Section VII.
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Using the above results, Optimization Problem 1 can be re-
stated as follows.

Optimization Problem 2: For given and known and
for satisfying Assumption 1, find

(24)

where is as in (21) and

The optimizer characterizes the optimal feedback filter,
say , via (20) (see also Lemma 1). In the following sec-
tion, we will show how to solve this optimization problem.

IV. SOLUTION OF THE PRFQ OPTIMIZATION PROBLEM

It would be desirable to provide an explicit analytical solution
to Optimization Problem 2. Unfortunately, and as will become
apparent in the discussion later, developing a closed form solu-
tion, for arbitrary functions , appears infeasible. Nevertheless,
we can provide a one-parameter characterization of the optimal
function in (24) as follows.

Theorem 1: For any given satisfying Assumption
1, and for any , the function in (24) belongs to the
one-parameter family of functions , where

(25a)

and

(25b)
Here, , is the lower bound of feasible ’s,
and , if it exists, is the unique scalar such that

. If such a scalar does not exist, then we choose .
Note that the above result provides an explicit analytic ex-

pression for , once the optimal , defined as

(26)

has been found, i.e., . Expression (25a) also gives
insight into the structure of .

Theorem 1 can be used to develop an efficient algorithm to
solve Optimization Problem 2. The key point is that substitu-
tion of (25a) into (21) changes the search space from the infi-
nite-dimensional set to the real interval . More
precisely, Optimization Problem 2 is turned into the simpler
problem of finding the minimizer of the single variable non-
convex scalar function

(27)

We will show next that the global minimizer of , i.e.,
, (and hence the solution of Optimization Problem 2) is

unique. Furthermore, can be obtained by finding the root
of a scalar, convex, and monotonically decreasing function.

Theorem 2: Let satisfy Assumption 1, and sup-
pose that is not almost constant, see (3). Then, for any ,
the parameter defined in (26) satisfies

(28)

On the other hand, if is almost constant, then any
is optimal.

Theorem 3: The right-hand side (RHS) of (28) is a convex and
strictly decreasing function of . Furthermore, the following
holds

(29)

(30)

Thus, and are related through a bijective function.
Moreover, it follows from Theorems 2 and 3 that, for any sat-
isfying Assumption 1, and for any , the global minimizer
of (27) exists and is unique9. In addition, these results guarantee
that can be easily found by solving (28), via, for example,
the bisection algorithm [25], or any other convex optimization
method [26].

We can now express and the minimum achievable
FWMSE, namely , in terms of , and . Indeed, com-
bining (28) and (25a) with (21) yields (after some algebraic
simplification) that

(31a)

whilst the associated optimal feedback filter is characterized via

(31b)

, see (20). Note that applying (49b) (see the Ap-
pendix ) to the above it follows that ,

. Thus, as expected, Constraint 2 is satisfied. Notice also
from (31b) that if satisfies Assumption 1, then satis-
fies the conditions of Lemma 1.

It can be seen from (31a) that is a monotonically in-
creasing function of . In view of Theorem 3, this implies
that, as expected, is monotonically decreasing with in-
creasing . As a consequence, the converse of Optimization
Problem 1, namely, finding the optimal filters and minimum
required SNR of for a given target distortion, can be solved
by using (28) and (31). Moreover, since the RHS of (31a) is
a concave, monotonically increasing function of , this
parameter can be easily found by using standard iterative
algorithms, as in the original optimization problem.

9If g is almost constant, then� is not unique. Nevertheless, in this case, the
minimizer of D(f) is unique. (It is f(!) � 1, see the paragraph immediately
after (78) in the proof of Theorem 1 in the Appendix.)
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Fig. 2. Progression of f (!) (solid lines) for � 2 f0:01;1;100g. In this
example,


 (z)P (z)=
z � 0:3549z � 1:313z + 0:1723z+ 0:5776

z � 1:223z + 0:8192z � 0:196z
:

It is also interesting to note that (28) and (31a), which relate
and via the parameter , have a structure akin to the

well-known reverse water-filling equations (see, e.g., [27, pp.
108–123], and [28]). The latter characterize the rate-distortion
function for Gaussian sources.

To summarize, we have given an explicit analytic expression
for the optimal and , once has been determined.
Furthermore, we have shown that the parameter always
exists, is unique, and can be easily found using simple numerical
methods.

In the following sections, we will provide additional insight
into the consequences of these results, as well as into some prop-
erties of optimal PRFQs,

V. PROPERTIES OF OPTIMAL PRFQ

In the sequel, we say that a PRFQ is optimal or optimized if
its filters , satisfy (19) for negligibly small values of

and , and is such that , a. e.
on , with as defined by (24).

A. The Effect of the SNR of

It follows from Theorems 2 and 3 that, for any given
satisfying Assumption 1, in (25a) describes the family of all
noise shaping characteristics that are optimal for some .

As we will show, adjusting from 0 to (equivalently,
from to 0) allows one to undergo a smooth progression from
“full” noise-shaping to no noise-shaping, in an optimal manner.
An example of this progression is shown in Fig. 2. Note in this
figure how (solid lines) approaches a unit transfer func-
tion as (the quantizer SNR for which in the figure),
becomes smaller (and gets larger). It can also be observed
that approaches the inverse of as is increased.

Such asymptotic convergence does indeed take place in general,
as the following theorem shows:

Theorem 4: For any satisfying Assumption 1, the
functions defined in (25a) converge uniformly to

(32)

as . Similarly, for any function satisfying condition i)
in Assumption 1, the functions defined in (25a) converge
uniformly to

(33)

as .
Note that in (32) corresponds to the choice of no feedback

( ), which reduces the PRFQ to a PCM converter. In
view of (30), this no-noise shaping scenario is asymptotically
optimal as . In turn, defined in (33) corresponds to the
full whitening feedback filters proposed in [1], [14], [15]. From
(29) and (33), is optimal iff . See also the discussion
in Section VII.

B. Signal Spectra

1) The Output of the Quantizer: By looking at Fig. 1 and
using Assumption 3, we find that the PSD of in
an optimized PRFQ is given by

, . Applying (18) to the latter result
yields

(34)
Comparing (15) and (16), it is easy to see that

. If satisfies (18), then we have
. With the choice , and using

(31) and (28), we conclude that the variance of the quantization
noise in an optimized PRFQ is given by10

(35)
Substitution of this expression into (34) yields

, , where
(25a) has been used. Substitution of (49a) and (28) into this
expression leads to

(36)
which is independent of . Therefore, under Assumptions 3 and
4, the output of the quantizer in an optimized PRFQ is white.
This suggests that near optimal coding of the quantizer output
can be achieved with a memory-less entropy coder.

2) The Frequency Weighted Reconstruction Error: The PSD
of the frequency weighted reconstruction error is given by

10Note from (35) that if � is fixed, then the value of � is no longer arbitrary.
This ensures that (13) is satisfied.
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, . Substitu-
tion of (18) into the above yields .
Applying (35) to the latter, we obtain

(37)
Thus, we conclude that the frequency weighted quantization
error in an optimized PRFQ is not white. This fact stands in
stark contrast to the conclusions reached when the FQ filters
are optimized without the perfect reconstruction constraint
(1), see, e.g., [22]. It also differs from the result obtained
when the feedback filter is optimized ignoring fed back quan-
tization error, as in [14] and [15]. Note that, as is made
larger, not only becomes smaller, but its PSD asymptoti-
cally approaches11 a constant function over the frequencies

.

VI. OVERSAMPLED FEEDBACK QUANTIZATION

It is well known that oversampling (i.e., sampling a band-
limited continuous-time signal at a frequency above its Nyquist
rate) allows one to achieve a smaller MSE error for a given, fixed
number of quantization levels. For instance, the MSE of simple
scalar quantization (without feedback) is known to decrease as

, see [29], where is the oversampling ratio, given by

In turn, it has been shown in [4] that feedback quantizers can
attain an MSE that is as , where is
the order of the feedback filter (see also recent work in [20]).
From a rate-distortion viewpoint, the inversely polynomial error
decay of this error estimate is ”too slow” to compensate for the
increase in the overall bit-rate due to oversampling (which is
proportional to ). To be more precise, let us consider a scalar
quantizer with quantization levels, where denotes the
quantization resolution in bits per sample. If the additional bit-
rate caused by oversampling was utilized instead to increase ,
then the MSE would decay as , i.e., exponentially12.

A faster decay of the MSE of oversampled FQ with can
be achieved by selecting a different feedback filter (with pos-
sibly different order) for each oversampling ratio. An example
of such a family (of 1-bit converters) was given in [31].
Here, the continuous-time reconstruction error can be uniformly
bounded by , where is independent of . This
bound guarantees an MSE that decays with as ,
which is faster than any inverse polynomial, but still far from

11Substitution of (49a) into (37) yields

S (!) = (� =4)[2g(!)=( g(!) + � + g(!))]:

Thus, S (!) < � =4 for all ! 2 [��; �], and S (!)! � =4 as� !

0 , 8! such that g(!) > 0.
12Strictly speaking, this only holds for signals whose pdfs have finite

support. Indeed, it has been shown that for several infinite support pdfs, the
MSE of uniform quantization decreases asymptotically with b not faster than
(ln 2) b 2 , where a > 0 is a constant independent of b, see [30].

exponential. Based on this result, the family of 1-bit con-
verters reported in [32] achieve an MSE that is , i.e.,
exponentially decaying with increasing . Notably, the results in
[31] and [32] were obtained using an exact, deterministic model
of quantization.

We will next show that, within the Linear Model, if the op-
timal infinite order filters characterized in Section IV are used
for each value of , then one can achieve an exponential decay
of with the oversampling ratio, provided is kept constant.

If the input sequence is obtained from sampling
a band-limited analog signal, oversampling would cause [de-
fined in (20)] to vary with . To capture this effect, we replace

by the family of functions , defined as

if
if .

(38)

In (38), denotes the square root of the PSD of the frequency
weighted input without oversampling, and . Notice
that , that is, the total power of (in units of variance per
sample), remains constant for all . This ensures a uniform
comparison basis for the distortion figures.

We can now make explicit the dependence of on and
by writing

(39)

see (21), where

(40)

corresponds to the output-SNR of . Interestingly, it is pos-
sible to establish a precise “exchange” formula for and .
Indeed, in terms of minimal achievable distortion, the effect of
increasing oversampling is equivalent to an exponential increase
in the output-SNR of . This is shown in the next theorem:

Theorem 5: Under the Linear Model described in Sec-
tion II-B, for any function , and for any , ,
the minimum achievable FWMSE satisfies:

(41)

If we assume that depends exponentially on the number
of bits per sample, then Theorem 5 suggests an FWMSE that
decays exponentially with , provided the Linear Model holds
and that optimal filters , and (characterized by
(18), (25a) and (28)) are employed for each . The following
simple example illustrates this idea:

Example: (Flat Weighted Input Spectrum) Consider an input
signal and a weighting filter such that
is constant , without oversampling. For this setup,
the optimal for our model of PRFQ is (

), i.e., a PCM converter. From (21), the minimum FWMSE
without oversampling (i.e., with ) becomes
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where . To analyze oversampling behavior of
in this case, we apply Theorem 5 to the above expression.

This gives that , and, thus

(42)

for all . Note that, to achieve (42), needs to be
synthesized according to (31b) and (20). Therefore, for this ex-
ample, the MSE of an optimized PRFQ with fixed exhibits an
exponential decay with the oversampling ratio (since, by defini-
tion, ).

If we further assume to depend on the number of bits per
sample as (which would correspond to
being a uniform quantizer with many levels and operating with
a loading factor of 4), then (42) becomes

(43)

The term in (43) is negative for all . This
implies that the decrease of with , although exponential, is
slower than . Thus, the use of oversampling in this case is
rate-distortion inefficient. In particular, taking , and sup-
posing that Assumptions 3 and 4 hold, we obtain from (43) that

is lower and upper bounded by terms proportional to
. For loading factor values of 6, 10, and 20, the expo-

nent in the latter expression changes to , and
, respectively.

The next theorem shows that the exponential decay of the
FWMSE obtained in the example above can be extended to
arbitrary (band-limited) input signals and frequency weighting
criteria.

Theorem 6: For any and function satisfying
Assumption 1, the following holds:

(44)

where denotes the optimal for .
Thus, under the Linear Model, we have that the FWMSE of

an optimized PRFQ decays exponentially with .
Remark 1: We recall that Theorem 6 is exact within the Linear

Model described in Section II-B. Here it is convenient to present
some further observations regarding the validity of that model
when the oversampling ratio tends to infinity, for different im-
plementations of a PRFQ.

1) As already mentioned in Section II-B, if is bounded
and a sufficiently large number of quantization levels to
avoid overload is used together with dither, then the Linear
Model is exact. Nevertheless, there is no guarantee that the
number of necessary quantization levels to avoid overload
remains constant as increases. If such number increases
with , then can only be kept constant by increasing the
number of quantization levels in the quantizer.

2) If the number of quantization levels is insufficient to avoid
clipping/overload errors, and if dither and clipping are

used with a fixed loading factor, then there exists a cer-
tain finite value of beyond which Assumption 2 is vio-
lated. This arises from the fact that, for any fixed loading
factor, the effect of clipping errors in the output does not
decay with , thus, becoming the dominant component in
the FWMSE for sufficiently high oversampling ratios. Fur-
ther reduction of the FWMSE would then require one to
balance clipping and granular quantization errors by in-
creasing the loading factor. If the number of quantization
levels is fixed, this would necessarily reduce the value of

, clearly increasing the component of the FWMSE due
to granular quantization errors13. Nevertheless, if clipping
and dither are used (with ), then the Linear Model
and Theorem 6 is exact in describing the FWMSE due to
granular quantization errors.

VII. THE IMPORTANCE OF TAKING ACCOUNT OF FED BACK

QUANTIZATION NOISE

If one tried to optimize the filters of a PRFQ neglecting
fed back quantization noise, i.e., by trying to minimize

(compare to (16)), then one would
obtain a (sub optimal) feedback filter, namely , which
satisfies

(45a)
where

(45b)

provided , [see (87) in the proof of
Theorem 1]. This corresponds to the result obtained in [14],
which was restricted to the cases where . For the case

, the noise transfer function magnitude
is also equivalent to that derived in [15]. The latter is optimal in
the sense of minimizing the ratio , but not in the sense of
minimizing for a fixed quantizer SNR .

As shown in Theorem 4, , in general, does approach
as . One can then expect to be near optimal

in situations where , see (16). The latter is often
satisfied at high bit-rates (i.e., when many quantization levels
are available). However, for any given number of quantization
levels, it is easy to find practical situations where is such
that is comparable to (or greater than) . More precisely,
from (22), and recalling that (see Ap-
pendix B), one can show that, if over a set of fre-
quencies in with measure , where is some positive
scalar, then

(46)

This means that a large is obtained for any product
whose magnitude becomes significantly small (in relative terms)

13As an extension of the results presented in this section, the authors have
recently derived an asymptotic decay rate of the FWMSE with � that includes
the effect of clipping errors. For Gaussian inputs, this asymptotic decay rate is
faster than any inverse polynomial. These results are beyond the scope of the
current paper.
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over certain frequency bands. (An example is included in Sec-
tion VIII.) A direct consequence is that, for these cases, and in
view of (16), trying to match to will yield
a performance far from optimal, also increasing the risk of in-
curring large limit-cycle oscillations if no clipping is employed
(see, e.g., [2] and [13]).

The (possibly unbounded) increase of as
approaches was already observed in [12]. Sev-
eral heuristic solutions have been proposed since then (see,
e.g., [2], [3], [13], [15], [17], and [18]). In contrast to these
approaches, the method derived in the present paper allows one
to characterize the true optimal filters, by explicitly taking into
account in the cost functional to be minimized [see (16)].
Our method not only guarantees that , but also yields
the actual optimal filters. Our proposal also has the advantage
of being applicable to arbitrary input spectra and frequency
weighting functions, regardless of how small the quantizer SNR

may be, within the scope of validity of the Linear Model.

VIII. SIMULATION STUDY

To illustrate our results, we have designed the filters of a
PRFQ aimed at digitally encoding audio signals in a psychoa-
coustically optimal manner. The details of the simulation model,
as well as the results of both the simulations and the numerical
optimizations are given later.

A. Simulation Setup

The PSD of audio signals was modeled as unit-vari-
ance zero mean white Gaussian noise filtered through

. The mag-
nitude of the frequency response of is depicted in Fig. 3
(solid line). The frequency weighting filter considered
had a frequency response magnitude which approximated the
psychoacoustic curve derived in [3, Table 1], thus, modeling
the sensitivity of human hearing to noise14. The corresponding
frequency response is plotted with dotted line in Fig. 3 (the
sampling frequency is 44.1 [kHz]). The resulting
for these and is also shown in the same figure (dashed
line). For this choice of , and in view of (46), one could
expect the norm of a full whitening feedback filter to be very
large. This is indeed the case: . Thus, the
suboptimal feedback filter characterized by (45) requires the
use of a scalar quantizer with at least 18 bits in order to become
feasible (see Constraint 2).

In the simulations, was chosen to be a uniform mid-rise
quantizer with quantization interval . Several values
of were considered for the simulations, calculated as

, where and where
denotes the loading factor. Two different loading fac-

tors were considered: 4 and 6. The latter choice yields a slightly
lower than the usual loading factor of 4. However, this regime
has the benefit of making overload errors smaller and more in-
frequent. As the simulation results will show, for our choices of

and , this more conservative loading factor yields lower
overall distortion when takes values above 6 bits per sample.

14The coefficients of P (z) can be found at http://msderpich.no-ip.org/
research

Fig. 3. Frequency response magnitudes for 
 (z) (solid line), P (z) (dotted
line) and g(!) = j
 (e )P (e )j (dashed line).

For each (and corresponding two values for , one for each
loading factor), the filters of the converter were designed ac-
cording to the following:

1) The parameter was calculated by numerically solving
(28).

2) The optimal , and were obtained via (31b)
and (18).

3) These functions were then approximated15 with rational
IIR transfer functions , (of order 7) and
(of order 15).

4) An appropriate value for the parameter in (18) was
chosen via , see (35), assuming

(recall that for all the simulations).
This ensures that .

For each combination of and , the resulting PRFQ con-
verter was simulated utilizing two different architectures.

1) Nonoverloading : This scheme is as depicted in Fig.
1, with having (virtually) infinitely many levels. Thus,

for all (neither clipping nor overload er-
rors occur).

2) Overloading and Clipped : Here, has levels,
which yields a scalar quantizer with a finite input dynamic
range . As a consequence, any value

would overload (if ) or pro-
duce clipping error (if ). To avoid large limit-cycle
oscillations, this variant was simulated using clipping (i.e.,

).
Each simulation with the nonoverloading PRFQ comprised

100,000 samples. For the overloading converter, five 100,000
samples simulations were performed for each combination of

and .

B. Results

The results of the numerical optimizations and the simula-
tions are discussed next.

1) Comparison Between and the Rate-Distortion Func-
tion: The information theoretic lower bound (see [28]) for
the FWMSE associated with the given source and

15The optimization routines utilized are based upon the Matlab optimization
toolbox and can be found at http://msderpich.no-ip.org/research.
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Fig. 4. Frequency weighted MSE for b 2 f1; . . . ; 16g.

filter is plotted in Fig. 4 (solid line). This corresponds
to Shannon’s quadratic frequency weighted Distortion-Rate
function when . As the bit-rate is increased,
the gap between and this absolute lower bound decreases
to approximately 7.5 [dB] for and 11 [dB] for

, at . This difference can be attributed to the
rate-distortion inefficiency of the uniform scalar quantizer16.
On the other hand, the larger performance gap observed at
lower bit-rates can be attributed to the perfect reconstruction
constraint.17 Recall that, at low bit rates, the achievement of
Shannon’s rate-distortion function demands the suppression of
relatively less significant bands of the PSD of the input signal
(see, e.g., [27] and [28]). This linear distortion, which a PRFQ
cannot achieve, is more severe at lower bit-rates. Thus, the
performance gap increases as is reduced.

2) Nonoverloading : The FWMSE of this converter variant
is presented in four of the plots in Fig. 4, with labels begin-
ning with “ opt. PRFQ, Nonoverloading.” These differ in
the loading factor, and in the meaning of in each case. For
the plots whose labels do not have the ending “E.C.” (entropy
coding), is simply the number utilized to generate the value

16From Shannon’s Rate-Distortion function for memoryless Gaussian
sources, the maximum SNR for a bit-rate b is 2 . The SNR (neglecting over-
load errors) for a uniform scalar quantizer with loading factor O:F: is given
by (3=(O:F:) )2 . Thus, the theoretical performance gaps for O:F: = 4
and 6 are 10 log (3=16) = 7:3 [dB] and 10 log (3=36) = 10:8 [dB],
respectively.

17The quadratic Gaussian rate-distortion function with the constraint that the
end-to-end distortion is uncorrelated to the source has recently been character-
ized in [33].

for which the filters were optimized. The
plots whose labels end in “E.C.” correspond to the same simu-
lations, but for each point the value of is the scalar entropy of
the quantized output of the converter. It can be seen in Fig. 4 that
the FWMSE obtained for the nonoverloading without entropy
coding is remarkably close to the theoretical value predicted
by (31a). More importantly, even for bit-rates as small as ,
each observed ratio deviates from its nominal value of
by less than 2%. (For the extreme situation , the observed

was slightly lower than predicted, while was 55% higher
than 1/12 due to the highly nonuniform pdf of the resulting se-
quence .) It can also be seen that the scalar entropy
of the quantized output of the PRFQ in these cases is very close
to Shannon’s function for a given distortion. This agrees
with the observation that the output of in an optimized PRFQ
is white, see the comment at the end of Section V-B-1. The dif-
ference between these quantities is bigger for lower values of ,
for the same reason discussed in Section VIII-B-1.

3) Overloading : For the overloading PRFQ using an
of 4, the FWMSE diminished along with the corresponding
for . However, the measured FWMSE varied
very little for , staying several dB higher than over
that range of bit-rates. This performance degradation can be at-
tributed to clipping errors. The fact that overload errors become
noticeable only for high bit rates (many quantization levels)
might seem, at first, surprising. However, this phenomenon can
be easily explained by noting that the size of the tails of the pdf
of that fall outside the dynamic range of remains
approximately constant in relation to for all . (This
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is a direct consequence of the loading factor rule.) In contrast,
granular (nonoverloading) quantization error is proportional to

(which is held constant in the simulations). Therefore, the
ratio between clipping and granular quantization errors grows
approximately as and clipping errors become dominant for
sufficiently high bit-rates.

Because of the reduced occurrence (and magnitude) of
clipping errors, the optimized PRFQ with overloading
and exhibits an FWMSE smaller than that of its
counterpart with for . Furthermore, this more
conservative loading factor allows the converter to perform
almost exactly as predicted by our analytical expression for

.18

4) Comparison With PCM: The theoretical FWMSE of a
PCM A/D converter, denoted by , can be found from
(16) by making and , which gives

. For the chosen input PSD and fre-
quency weighting filter, and calculating as , the
value of varies with as shown in Fig. 4 (dotted line).
As seen in this figure, the gap between and , for each
value of , gets smaller as the bit-rate decreases. This agrees
with the fact that the optimal PRFQ approaches a PCM con-
verter as , see Section V-A. It can also be seen in Fig. 4
that the optimized PRFQ with overloading and ex-
hibits an improvement of 32 [dB] over PCM at . Equiv-
alently, in order to obtain the same FWMSE as that of PCM
at 16 bits, the PRFQ converter with requires less
than 12 bits. At lower bit-rates, the improvement of the op-
timal PRFQ over PCM is also significant. For example, the over-
loading PRFQ with and has a lower FWMSE
than the PCM converter with , thus, achieving a data rate
compression of 50% (see Fig. 4).

IX. CONCLUSION

This paper has studied perfect reconstruction feedback quan-
tizers based on an additive white noise model for quantization
errors. We have derived results that relate the minimum fre-
quency weighted MSE and the SNR of the scalar quantizer em-
bedded in the converter. We have also provided closed form
expressions for the optimal frequency responses of the filters
in the converter and have derived several properties of optimal
PRFQs. In particular, we have shown that the optimal frequency
response magnitudes of the filters are unique, that the frequency
weighted errors of an optimal PRFQ are nonwhite, and that con-
secutive samples of the output sequence of the scalar quantizer
are uncorrelated. We have also shown that, within our model,
the frequency weighted MSE of an optimal, oversampled PRFQ,
decreases exponentially with oversampling ratio.

APPENDIX A
PRELIMINARY RESULTS

The following preliminary results are necessary to prove the
theorems stated in the previous sections. We begin by intro-
ducing the following definition.

18There exist several results on the optimal balance between overload and
granular error variances for stand-alone scalar quantizers (see, e.g., [30] and the
references therein). However, for feedback quantizers the question seems to be
open.

Definition 2 (Similarly/Oppositely Functionally Related):
We say that two functions are similarly
functionally related iff there exists a monotonically increasing
function such that , for all ,
and write . Similarly, if there exists a monotonically
decreasing function such that , for all

, we say that and are oppositely functionally re-
lated, and write .

Theorem 7: 19 If are similarly function-
ally related, then

(47)

If and are oppositely functionally related, then the in-
equality in (47) is reversed. In either case, equality is achieved
iff (and therefore ) is almost constant.

Proof: We will examine the difference between the RHS
and LHS in (47). We obtain

where . Note that we have divided
both sides by . Suppose . (The proof for
proceeds in a similar way.) Then there exists a monotonically
increasing function such that , and a value
such that and

. It then follows that

with equality iff

i.e., iff (and, therefore, as well) is almost constant.
Proposition 2: Define

(48a)

(48b)

(48c)

with and , . Then, the following
results hold:

(49a)

(49b)

(49c)

(49d)

where . Equality in (49b) is obtained
iff is such that .

19This theorem is related to the variant of Tchebyshev’s Integral Inequality
given in [34, Th. 236]. It departs from the latter in that the integrands must be
functionally dependent, which allows us to state necessary and sufficient con-
ditions for equality.

Authorized licensed use limited to: University of Newcastle. Downloaded on July 16, 2009 at 17:50 from IEEE Xplore.  Restrictions apply.



DERPICH et al.: OPTIMAL PRFQ 3883

Proof: Equations (49a)–(49c) follow directly by algebraic
manipulation. In order to show (49d), we define the functions

(50)

where and . We have that
, and, thus, is a concave function.

Then, applying Jensen’s inequality, we obtain

which leads directly to (49d).
Proposition 3: Define as in (25a), with satisfying

Assumption 1. Then, if such that is as
, the following holds:

Proof: The interval can be partitioned into two dis-
joint sets and by
utilizing an arbitrary ”threshold” . Then, substituting (48)
into (25a), we obtain

(51)

Using (49b) and (49c), we have that

(52)

Substituting of (52) into (51) we obtain

(53)
where and denote the Lebesgue measures of and ,
respectively.

We will next show the divergence of the last expression on
the RHS of (53) as . For this purpose, we consider two
scenarios, characterized by , the Lebesgue measure of .

• Case i): . Since , , and
for any , we can obtain from (53) that

which clearly tends to as .
• Case ii): . The conditions of the proposition en-

sure the existence of scalars , such that
, if . This implies that for

any there exists such that
and . Applying this re-
sult, and noting that , we have

After substituting the above inequality into the RHS of (53),
choosing small enough so as to ensure20 , it is
easy to verify that

This completes the proof.

APPENDIX B
PROOFS

A. Proof of Proposition 1

From the fact that is stable and strictly causal, we have
that . Therefore, the denominators of the
RHS terms of (16) and (17) are equal. Denote the numerator of
the RHS of (16) as . Applying
Cauchy-Schwartz inequality we get

(54)

where the last equality in (54) follows from (1). Substituting
the last term on the RHS of (54) into (16) yields (17), which
is obtained iff equality holds in (54). In turn, equality in (54)
is achieved iff , a.e. on , for
arbitrary . This equation, when combined with (1) and
(2), leads directly to (18).

In order to prove the second part of the proposition, we note
that for any , the functions , , and

, . As a consequence, one
can always find causal, rational, and stable filters and
satisfying (19). Secondly, the difference between and

when and satisfy (19) is given by

(55)

where and
. Defining

and as in (20), we can write

20This is always possible since jN j = 0.
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Each of the terms above can be upper bounded as follows:

In the above, follows from the fact that

(56a)

(56b)

follows from the fact that

(57)

, see (18), and from . Inequality
follows from the fact that

(58a)

(58b)

which is readily obtained from (18) and (19). Inequality fol-
lows from

(59a)

(59b)

Inequality is due to (57) and to the fact that .
Inequality stems from (58). Inequality follows from
(56), while follows from the fact that ,

. Inequality stems from (59), while follows
from the fact that , . Therefore

which completes the proof.

B. Proof of Lemma 1

Define the partition ,
where correspond to the discontinuity points (if any)
of . Since is piece-wise differentiable, its first derivative over
all open intervals , is bounded by
a constant . For each , we define the set

, consisting of all continuous functions
satisfying

(60a)

(60b)

(60c)

For each , the function

(61)

is the element in “closest” to . From (23b), and from the
fact that is piece-wise differentiable, it follows that for every

, there exists a bounded such that

(62)

(Indeed, it is easy to obtain the bound
). Notice that if had no discontinuity points

and if , then [see (60c)], yielding .
Since is continuous and piece-wise differentiable, its

Fourier series converges uniformly over . Thus, for every
, there exists an th order (where is odd and

depends on ) rational transfer function (the -trans-
form of the coefficients of the th partial sum of the
Fourier series of ) such that

(63)

can be written as ,
where . Thus, the transfer function
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is clearly biproper, stable, minimum-phase and such that
, , with the first value of

its impulse response being

Define , so that
and

(64)

With the choice , we have

(65)

We now proceed to upper bound the last term in the above in-
equality. From (63) and (64), we have that

(66)

From Jensen’s formula (see, e.g., [23]), and since is
stable and minimum phase, we obtain

(67)

Recalling from (60a) and (61) that
, we can write (67) as

(68)

where . From (63), we have that

Thus, choosing , the last integral in (68) can be upper
and lower bounded as

It then follows from (68) that

Substituting the latter into (66), we obtain

(69)

where the last inequality stems from (62) and (63). Substitution
of (69) into (65) yields

(70)

Since is bounded, and from (23b), it follows from (70)
that for any , one can always choose sufficiently large
(bounded) values for [see (62)] and [see (63)] so that
and are small enough to yield . This com-
pletes the proof.

C. Proof of Theorem 1

Denote the squared norm of [see (24)] via ,
and define the set of all the having the same norm as
by . Define

(71)

It is easy to show21 that must belong to . From this,
and since , it follows that

. Minimization of sub-
ject to can be stated as the following problem22:

(72)

(73)

(74)

The problem described by (72)–(74) falls within the category
of isoperimetrical problems, well known in variational calculus
(see, e.g., [35] and [36]). The standard solution of these prob-
lems is based upon the fact that any that extremizes [see
(72)] needs to satisfy

(75)

where the Lagrangian , in our case, is given by

(76)

and and are the Lagrange multipliers, to be found by en-
forcing (75) and the constraints (74). Substitution of (76) into
(75) yields , a.e. on ,
or, equivalently

if

if
(77)

21If f was such that (1=2�) ln f(!)d! = 	 > 0, then f = fe 2

B would clearly yield a smaller D in (21), thus, contradicting the optimality
of f .

22As will become evident in the derivation, the additional constraint f(!) �
0; 8! 2 [��; �], imposed by the definition of f [see (20)] turns out to be
nonbinding.
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a.e. on , where the scalars

(78)

are such that the constraints in (74) are met.
We note that for the trivial case in which is almost constant

(see Definition 1), is also almost constant. Applying this to
constraint i) in (74) yields that, for this case, is such that

. Thus, the remainder of the proof addresses only the
cases in which is not almost constant.

In order to find , we will next discard the possible solutions
of (77) which do not correspond to global minimizers of
in . The unique remaining function, which is obtained
with and in (77), will characterize the solution of
Optimization Problem 2.

The Case : Fore this case, substitution of (77) into
(74) yields that needs to satisfy

(79)

so that can be obtained explicitly from . Note that cannot
be zero in the above expression, otherwise would be unde-
fined. From this, the feasible23 sign combinations for , the
sign before the square root, and in (77) are

We will next show that only option c) characterizes the
optimum.

Discarding Option a): We show next that any solution ob-
tained by applying option a) in (77), say , yields a greater
FWMSE than the choice . In relation to the numerator
on the RHS of (21), we have

(80)

Inequality above stems from Jensen’s inequality. Inequality
follows by applying Theorem 7 to the numerator of(80), to-

gether with (48) and the fact that . Both
inequalities are strict since is not almost constant (see The-
orem 7 and Definition 1).

On the other hand . From the above, it
follows that [ee (21)], discarding, for all non

23There exist other four sign combinations, which yield f(!) < 0, 8! 2

[��; �], i.e., inadmissible solutions.

A.E. flat , the global optimality of the solutions associated to
Option a).

Discarding Option b): The candidate solutions are now
characterized by options b) and c) only. Applying (49a) to (77)
and (79), these solutions take the form

(81)

where is as defined in (25b), with
and , where

We will discard the optimality of option b) by showing that, if
, then , if , or else

, where and are as defined in (40) and (87),
respectively. For this purpose, define the function

(82)

with as defined in (48). Differentiation of yields

(83)

where [see (48)]. Application of Theorem
7 to (83) yields

(84)

with equality iff is almost constant. In turn, option b) is fea-
sible iff , i.e., only if . We then
have from (81) that uniformly as . Thus

(85)

Combining this result with (84), and considering to be not
almost constant, we obtain

(86)

If , then (85) and (86), combined with the
fact that , yield

, for
all . Thus, if , then option b) is not
globally optimal. If, on the other hand, , then (86)
implies that for all . In this case, sign
combination b) would be infeasible. It, thus, follows that sign
combination b) cannot be globally optimal.

The Case : For the case , substitution of (77)
into constraint ii) in (74) yields

(87)
Notice that , i.e., the optimal noise shaping fre-
quency response magnitude in the absence of fed back quan-
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tization noise [recall (45)]. This is not surprising, since taking
amounts to removing constraint i) (which restricts the

power gain of fed back quantization noise, see Fig. 1).
We will discard this option and its associated solution by

showing that is either infeasible or that there exists
such that .

If did satisfy the second condition of Assumption 1, then it
is easy to show that and would not be well defined24.
Else, if satisfies the first condition of Assumption 1, we have

for all . This implies that converges
uniformly to as , and, thus

(88)

Recall that , see (27), and write

(89)

(90)

and is as defined in (82). The continuity of stated in
(88) implies that if at , then can not be the
minimizer of . We next show that this is indeed the case.
Differentiation of (89) with respect to gives

(91)

Differentiating (90) we get

(92)

and, therefore, . Substitution of this into
(91), together with the fact that and that

for a not almost constant , yields that

(93)

thus, discarding the optimality of .
As a result, the global optimum is characterized sign combi-

nation c), i.e., by (81) with . Finally, the uniqueness of
follows directly from (84). This completes the proof.

D. Proof of Theorem 2

Since the functions , are continuously differen-
tiable , so is . We, therefore, have that if

(94)

24Or else, if we extend the support of the function ln(�) by defining ln(0) =
�1, then we obtain � = 0. This would imply f (!) = 0 for all ! such
that g(!) > 0. Thus, since f must belong to C , the integral of ln f (!) over
the remaining frequencies needs to be infinite. Since ln(x) < x; 8x 2 , this
implies that kf k = 1 (infeasible) and D(f ) = 1.

then , the minimizer of , needs to satisfy

(95)

We will first elaborate upon (95) to derive (28). Then we will
prove that (94) holds.

From (91), one can see that iff
, provided

and . If is not almost constant, then this is
guaranteed [apply Theorem 7 to (92) and (83)]. Else, if is
A.E. flat, then , , and
all are optimal. Thus, for a not almost constant ,
we have

(96)

where and are as defined in (48). Application of the
identity , [which follows
from (48) and (49a)] to the numerator on the RHS of (96) yields
(28).

Now we will prove (94).
The Sign of : Since ,

this limit needs to be analyzed for two possible scenarios, de-
pending on whether or not is positive.

• The Case For this case, , so we need
to prove that . From Proposition
3 it follows that the first condition in Assumption 1
( ) must necessarily hold in
order to obtain . Thus, and its first deriva-
tives are continuous. Therefore, in view of (93), we get

.
• The Case . For this case, we need to prove that

. Rewrite (91) as

(97)

From (92), it easy to see that , .
On the other hand, from (49d), and given that and

, we conclude that is bounded. Thus, is
bounded. From this, and recalling that

, it is clear from (97) that there a value for greater than
under which is small enough to render

negative. Therefore, .
The Sign of : Substitution of (92) and

(83) into (91) yields
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(98)

with
(99a)

(99b)

(99c)

(99d)

Direct application of Theorem 7 to (98) allows one to conclude
that

(100)

Since , and
, where

are continuous functions, we have from (100) that

(101)

Since clearly , it is only left to deter-
mine the sign of

It follows directly from the last equation that the sign of
corresponds to the sign of .

Thus, (101) translates into

(102)

see (99). From (49d), the LHS of (102) is lower bounded as

where . From this inequality, and since
and , it is clear that .

It then follows from (102) that .
Thus, (94) holds, and needs to satisfy (95) and (28). This

completes the proof.

E. Proof of Theorem 3

Monotonicity: Denote the RHS of (28) as
. Then we have

(103)

wherein (49a) has been used. This proves the second claim in
Theorem 3.

Convexity: Differentiation of (103) yields

which is clearly positive for all . This shows that the
RHS of (28) is a convex function, proving the first claim of the
theorem.

Limits: In order to show that the limits (29) and (30) in
Theorem 3 hold, we write as

(104)

We will first prove the validity of .
Clearly, if for all (condition i) of As-
sumption 1), then the RHS of the above equation tends to as

. If this wasn’t the case, then the second condition of
Assumption 1) must be satisfied, and therefore the conditions of
Proposition 3 are met. Applying Proposition 3 and the fact that

[see (81)], it follows that tends to as
. This proves the validity of (29).

In order to show that [i.e., (30)] holds, we
first note from (104) that for all . On the
other hand, it follows from (49d) that

(105)

where . Since (as required by
Assumption 1), the RHS of (105) clearly tends to 1 as .
Therefore, .
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F. Proof of Theorem 4

In view of Theorem 3, it suffices to proof the limits for
and , respectively. The uniform convergence of

to as if was already shown in
the proof of Theorem 1. In order to show that tends uniformly
to as , we write

(106)

If , , then
tends uniformly to 1 as . Applying this result to (106)
yields that tends uniformly to as .

G. Proof of Theorem 5

From (28) and (38) we have

With the change of variable , this becomes

Thus, by writing as the function , we conclude
that . Substituting the latter and
(38) into (37) we obtain

This completes the proof.

H. Proof of Theorem 6

Applying (49c) to (37) one can write

where is the minimum FWMSE cor-
responding to when . Substitution of (49a) into
(28) yields

Since is monotonically decreasing (see Theorem
3), it follows that decreases with increasing

. Since , this leads directly to
, where is

independent of . Applying Theorem 5 to both sides of
the latter inequality, we obtain

. Since corresponds
to the minimum FWMSE for a constant , by virtue of (42) we
have that . Substitution of this
into the last inequality yields .
This completes the proof.
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