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Second-Order Spectral Statistics for the Power Gain
of Wideband Wireless Channels

Milan S. Derpich and Rodolfo Feick

Abstract—We derive closed-form expressions for the second-
order statistics of the power gain (as a function of frequency) of
wide-band microwave indoor channels. We obtain our results
within a framework general enough to be compatible with
several popular channel models, such as the Saleh-Valenzuela
channel model and those proposed by the IEEE 802.15.3a and
IEEE 802.15.4a task groups. As in all these models, our channel
description is based upon clusters and rays with (possibly mixed-
) Poisson arrivals and random amplitudes. Our results consist
of closed-form expressions for the second-order statistics of the
channel power frequency response, where statistical averages
involve expectations over ray amplitudes and arrival times. These
expressions reveal that the auto-covariance of the spectral power
gain between any two frequencies decreases and tends to zero as
the difference between these frequencies tends to infinity if and
only if the cluster arrival rate goes to infinity. They also show
that the variance-to-squared-mean of the narrow-band power
gain exhibits exactly the same behavior with respect to the
center frequency. We then use these results to obtain closed-
form expressions for the variance and second-order moment
of the aggregate channel power gain over any given interval
of frequencies. This allows us to express the channel spectral
diversity as a function of model parameters and bandwidth. In
addition, we illustrate how these equations allow one to devise
automatic cluster identification algorithms which, from empirical
estimates of the second-order spectral statistics of the channel
power gain, can confirm or deny the existence of clusters in a
given scenario.

Index Terms—Statistical channel modeling, ultra-wideband
channels, Sale-Valenzuela channel model, fading channels.

I. INTRODUCTION

Stochastic wireless channel models allow one to predict
the statistics of the radio propagation conditions over an
ensemble of scenarios with similar characteristics. This is
specially useful in complex, heterogeneous and time-varying
environments, such as office, residential and industrial indoor
scenarios.

One of the most popular models for indoor wireless chan-
nels is the one proposed by Saleh and Valenzuela in [1],
which has served as the basis for several other channel models.
Building upon it, the the IEEE 802.15.3a task group accepted a
channel model [2] for ultra wide-band indoor communications,
and similar models have been adopted for the IEEE 802.15.4a
standard [3]. Like the Saleh-Valenzuela (SV) model, the IEEE
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802.15.3a and the IEEE 802.15.4a channel models consist of a
discrete-time description of the impulse response of a wireless
channel, in which multi-path components are grouped into
clusters1.

Some of the useful time-domain delay-statistics of wireless
channel models are the power delay profile, the average
delay and the RMS delay, which, under suitable assumptions,
allow one to determine spectral statistics such as coherence
bandwidth and average power gain. These parameters, as-
sociated with second-order statistics of the channel impulse
or frequency response, have been extensively discussed and
characterized in the literature [4]–[7].

Another set of stochastic properties of wireless channels,
which has received relatively less attention, are those de-
rived from the second-order statistics of the channel power
frequency response (that is, its squared frequency response
magnitude, here denoted by |H(jω)|2). An early analysis
of these statistics and their application can be found in [8],
where it is argued that the transmission over two carriers with
the right frequency spacing may benefit from the negative
correlation between each of the received powers. Simplified
expressions for the spatial and spectral autocorrelation coeffi-
cients of |H(jω)|2, as well as for its power over a frequency
interval, are presented in [9], which are then evaluated via
simulations. Building upon this result, and via simulations, it
has been possible to assess fading depth statistics and relate
them to bandwidth and to some features of the propagation
environment [10], [11].

Although simulations of the second-order statistics of
|H(jω)|2 are helpful in assessing the performance of wireless
communication systems, having closed-form expressions for
these statistics provides further benefits. First (and naturally),
such closed-form expressions can be substituted into other
formulas, thus allowing one to relate them with performance
indexes, also in closed form. Secondly, explicit parametric
formulas will provide useful insight into the relationship
between the performance of wireless communications systems
and certain parameters. In particular, the second-order statistics
of |H(jω)|2 allow one to refine probabilistic approximations
drawn from first-order statistics alone. Moreover if the power
received over some band is known to distribute according to
some parametric probability density function, then having the
first- and second-order statistics of this power allows one to
identify, in some cases, the parameters of the distribution [12].
This makes it possible to calculate fade-depth statistics from

1Except in the IEEE 802.15.4a channel model for frequencies below 1 GHz,
see [3].
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the second-order statistics of |H(jω)|2. In this regard, it was
already noted in [9]–[11], [13] that the fade depth decreases
as the width of B is increased. In relation to this question, and
using an information-theoretic approach and measured data, it
has been shown in [14] that the number of significant eigen-
values of the covariance matrix of the random channel impulse
response, and hence the diversity order of the channel, scales
approximately linearly with bandwidth. Such an increase in
diversity, which relates to the reduction of the relative channel
power variance as the bandwidth increases, has been reported
to reach a saturation point [12], [13], [15]. Having explicit
expressions for this channel power variance as a function of
bandwidth would allow one to predict the associated saturation
bandwidth and relate it to environmental parameters.

Available closed-form results that allow one to analytically
obtain the second-order statistics of |H(jω)|2 are rather lim-
ited. Although the analysis in [9], [11] does obtain some
intermediate closed-form expressions, the actual evaluation of
these statistics is carried out by simulations. In addition, one
of the simplifying assumptions underpinning the results in [9]
and [11] is the uncorrelation between the amplitudes and ar-
rival times of multi-path components, which is known to con-
tradict channel measurements [1], [16]. Under the assumption
of uncorrelated amplitudes and arrival times, and considering
uniformly distributed arrival times, closed-form expressions
for the autocorrelation of |H(jω)| were derived in [17]. Exact
closed-form expressions for all the joint moments between
|H(jω1)| and |H(jω2)|, for any frequencies ω1, ω2, as a
function of the power delay profile of the channel impulse
response have been found in [18], assuming that multipath-
component amplitudes are independent jointly complex Gaus-
sian and that arrival times are fixed. However, although popular
channel models such as the SV model [1] consider complex
Gaussian multipath component amplitudes, other amplitude
distributions have been reported in the literature (see, e.g. [2]).
Moreover, the conditional independence assumption in [18]
does not hold for channel models where the impulse response
exhibits clusters, such as the SV and its several extensions [1]–
[3], [16]. In a recent paper [12], analytical expressions for the
auto-correlation of the channel frequency response squared
magnitude |H(jω)|2, as well as the variance of the power
over any frequency band, have been derived for the IEEE
802.15.4a channel model, conditioned to fixed and given ray
and cluster arrival times. The corresponding statistics over
random arrival times were obtained via simulations. To the
best of the authors’ knowledge, no closed-form expressions
are available in the literature for second-order un-conditioned
statistics of the spectral power gain of wireless channel models
such as the IEEE 802.15.3a and IEEE 802.15.4a, as well as
for other SV-like models.

In this paper, we derive closed-form exact expressions for
the second-order statistics of |H(jω)|2 for a general class
of extensions of the SV channel model. This class includes,
as special cases, those accepted by the IEEE 802.15.3a task
group and the IEEE 802.15.4a channel modeling subgroup [2],
[3], [16]. Unlike [12], our expressions include expectations
considering the randomness of both ray amplitudes and arrival
times. As in all SV-like models, our channel description is

based upon clusters and rays, with different power decay
profiles among and within clusters. Our analysis framework is
general enough to encompass model features such as mixed-
Poisson arrivals within clusters as well as models in which
the first ray of each cluster exhibits statistics different from the
other rays (these two features are considered in [3], [16], [19]).
To this end, we first derive, in Section III, a general, exact and
closed-form expression for the auto-covariance of |H(jω)|2.
This expression is determined by four functions, corresponding
to the second- and fourth-order moment delay profiles of
cluster and ray amplitudes multiplied by their respective arrival
rates. We use these expressions to analyze the effect of having
a finite/infinite number of clusters, as well as the implications
of having only one cluster (or, equivalently, no clusters at
all). We then use the former result to obtain, in Section IV,
a closed-form expression for the variance and raw second-
order moment of the channel power gain PB integrated over
any given interval of frequencies B. Our derivations predict a
positive lower bound for the ratio between the variance of PB
and its squared mean. This bound only vanishes as the arrival
rate of clusters in the model tends to infinity, a result that is
confirmed via simulations. (Some preliminary results on this
topic were reported by the authors in [20]). In addition, the
obtained equations allow one to devise an automatic cluster
identification algorithm, capable of verifying or discarding
the presence of clusters in an ensemble of channel impulse
responses. Such an algorithm is illustrated in an example in
Section V, and can be considered an alternative to other cluster
identification algorithms, such as those proposed in [21], [22].

II. CHANNEL MODEL

In this section we formulate the wireless channel-model
framework to be be utilized throughout this work. The idea is
to establish a framework general enough to encompass most of
the SV-like models proposed in the available literature. With
that idea in mind, and before proceeding, we will first review
some of the salient features of several extensions of the SV
model, from which we will then define the set of assumptions
our results will be based upon.

A. Brief Review of SV-Like Channel Models

In all versions and extensions of the SV model, the channel
is represented by a random impulse response of the form [1]–
[3], [16]

h̃(τ) =
∑Nc

i=1

∑Nr

m=1
ai,mδ(τ − τi,m) (1)

where
τi,m ≜ Ti + ti,m, ∀i ∈ {1, . . . , Nc}; ∀m ∈ {1, . . . , Nr}

is the random arrival time of the m-th path (or ray) in the i-th
cluster, Ti ≥ 0 is the random arrival time of the i-th cluster,
and ti,m ≥ 0 is the random delay of the m-th path in the i-th
cluster relative to Ti. 2 Cluster and relative arrival times are

2 For simplicity, we do not consider here a large-scale fading factor before
the sum in (1). In [2], this shadowing term is a log-normal random variable
independent of all the other random variables in the model, which can easily
be incorporated to our results.
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ordered, i.e., Ti ≥ Tj ⇐⇒ i ≥ j and ti,m ≥ ti,n ⇐⇒ m ≥
n, ∀i. By definition, the cluster begins with its first ray, and
thus

ti,1 = 0, ∀i ∈ {1, . . . , Nc}.

Each random coefficient ai,m in (1) represents the amplitude of
the m-th path in cluster i. These random numbers are formed
as

ai,m = pi,mAiαi,m, ∀i ∈ {1, . . . , Nc}, ∀m ∈ {1, . . . , Nr}.
(2)

Each Ai ∈ R+
0 is a random variable representing the am-

plitude of the i-th cluster, while each real-valued random
variable αi,m ≥ 0 denotes the amplitude (or gain) of the
m-th multi-path component (or ray) within the i-th cluster
relative to that cluster’s amplitude. The meaning of the ran-
dom numbers {pi,m} in (2) depends on whether a complex
or a real base-band representation is used. For the former,
pi,m = ejϕi,m , where {ϕi,m} are i.i.d. uniformly distributed
over [−π, π] [1], [3], [16]. For the real base-band represen-
tation, which is regarded as more suitable for ultra-wideband
applications, {pi,m} are binary random variables taking values
from {−1, 1} with equal probability [2]. In both cases,

E [pi,m] = 0, ∀i,m. (3)

B. Assumptions and Analysis Framework

In order to establish a framework to encompass the various
features of the SV-like channel models present in [1]–[4], [16],
[23] (and possible future ones), we will formulate now the
least restrictive set of assumptions under which our analysis
and results are valid. To do so, the following three definitions
are necessary:

Definition 1 (Bounded-Density Markovian Process): We
will say that a sequence of random arrival times {xk}∞k=1,
with xi ≥ xj ⇐⇒ i ≥ j, is bounded-density Markovian if

i) The inter-arrival times {xk+1− xk}∞k=1 satisfy the
Markov chains

(xk+1− xk)↔ xk ↔ {xi}ki=1, k = 1, 2, . . .

ii) There exists a constant ρ <∞ such that, for every ∆ > 0
sufficiently small,

Pr{xk+1− xk < ∆| xk = x}
∆

≤ ρ, ∀x ∈ R+
0 , k = 1, . . .

▲
In words, condition i) in the above definition requires that
the inter-arrival time just after an arrival at x (and hence the
arrival density at x) depends, at most, on the value of x. In
turn, condition ii) guarantees that the arrival density at any
x ∈ R+

0 is bounded.
Definition 2 (Sequence i.i.d. under another sequence): Let
{xk}∞k=1 be a bounded-density Markovian process, with x1
possibly being deterministically equal to 0. We will say that a
sequence of random variables {ςk}∞k=1 is i.i.d under {xk}∞k=1

if the next two conditions are satisfied:

i) The following Markov chains hold

ςk ↔ xk ↔ ςj , ∀j ̸= k, j, k = 1, 2, . . . ,

ii) For every x ∈ R+
0 and m ∈ N, E

[
ςmj | xj = x

]
=

E [ςmk | xk = x], ∀j, k ∈ S, where S ≜ {1, 2, . . .}, if x1 is
random, and S ≜ {2, 3, . . .} if x1 = 0 deterministically.
▲

Notice that condition i) in Definition 2 corresponds to the
conditional independence relationships between amplitudes
and arrival times shared by all channel models considered
in [1]–[4], [16], [23], [24], except the 802.15.4a model for
industrial environments under LOS in [3], [16]. Similarly,
taking {ςk}k as the cluster (or relative ray) amplitudes and the
{xk}k as the cluster (or relative ray) arrival times, condition ii)
encompasses all the amplitude distributions considered in [1]–
[4], [16], [23], including the cases in which the amplitude of
the first ray or cluster takes a special form, as in CM3 (body
surface to body surface, 3.1-10.6 GHz) and CM4 (body surface
to external, 3.1-10.6 GHz) in [24].

We will need one more definition in order to treat arrival-
time distributions different from plain Poisson processes, such
as mixed Poisson arrivals (described in (6) below). To this
end, we introduce the following single and joint arrival density
functions:

Definition 3 (Arrival Density Functions): Let {xk}∞k=1 be
a bounded-density Markovian sequence of arrival times, with
x1 possibly being equal to zero deterministically. For any
∆ ≥ 0, denote the number of elements in {xk}∞k=i falling
inside [x, x +∆) by the random variable n

(i)
∆ (x), i ∈ {1, 2},

i.e.,

n
(i)
∆ (x) ≜ |{xk}∞k=i ∩ [x, x+∆)| ,

where, for sets, |·| denotes cardinality. We define the single
and joint arrival density functions of {xk}∞k=1 as

λ̄x(x) =

{
λ̄
(1)
x (x) , if x1 is random

λ̄
(2)
x (x) + δ(x) , if x1 = 0 deterministically

(4a)

¯̄λx(y, z) =


¯̄λ
(1)
x (y, z) , if x1 is random

¯̄λ
(2)
x (y, z) + δ(y)λ̄

(2)
x (z) + δ(z)λ̄

(2)
x (y), if

x1 = 0 deterministically
(4b)

where, for i ∈ {1, 2},

λ̄(i)
x (x) ≜ lim

∆→0

Pr{n(i)∆ (x) ≥ 1}
∆

(5a)

¯̄λ(i)
x (y, z) ≜

lim∆→0
Pr{n(i)

∆ (y)≥1 , n
(i)
∆ (z)≥1}

∆2 , if y ̸= z

lim∆→0
Pr{n(i)

∆ (y)≥1 , n
(i)
∆ (y+∆)≥1}

∆2 , if y = z

(5b)

▲
One case in which arrival times do not conform to a Poisson

process is in the model proposed in [19] and further considered
in [3], [16]. In that case, rays within each cluster are described
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as having mixed Poisson arrivals, in which case the ray inter-
arrival times are i.i.d. with probability density function

fti,n+1−tn(ti,n+1 − ti,n) (6)

=

{
λ1 e

−λ1(ti,n+1−ti,n) ,with probability β

λ2 e
−λ2(ti,n+1−ti,n) ,with probability 1− β

,

∀i, n = 1, 2, . . .

where λ1, λ2 ≥ 0 are two different Poisson arrival rates.
Making use of the above definitions we can now establish

the scope of validity of our results by means of the following
assumption:

Assumption 1: Cluster and ray arrival times and amplitudes
are random and such that

i) The following independence relationships hold

pj,m ⊥⊥ {Ti, Ai, ti,n, αi,n}, ∀i, j ∈ {1, . . . , Nc},
∀n,m ∈ {1, . . . , Nr} (7a)

pj,n ⊥⊥ pi,m, unless j = i and n = m, (7b)
αj,n ⊥⊥ αi,m, unless j = i, (7c)

{Ti, Ai} ⊥⊥ {tj,n, αj,n},
∀i, j ∈ {1, . . . , Nc}, ∀n ∈ {1, . . . , Nr} (7d)

Ai ←→ Ti ←→ {Aj , Tk, αk,m, tk,m},
∀i, j, k ∈ {1, . . . , Nc},m ∈ {1, . . . , Nr} : i ̸= j (7e)
αi,m ←→ ti,m ←→ {Ak, Tk, αj,n, tk,m},

∀i, j, k ∈ {1, . . . , Nc},
m, n ∈ {1, . . . , Nr} : (i,m) ̸= (j, n) (7f)

where ⊥⊥ denotes probabilistic independence, and where
the Markov-chain notation a ↔ b ↔ c means “a and c
are independent when b is known”.

ii) {Ti} is a bounded-density Markovian sequence, with T1

possibly deterministically equal to zero, with i.i.d inter-
arrival times exponentially distributed with exponent Λ
and with arrival density functions λ̄T (·), ¯̄λT (·, ·).

iii) {ti,m}∞m=1 is a bounded-density Markovian sequence
with ti,1 = 0 and arrival density functions λ̄t(·), ¯̄λt(·, ·),
for every i ∈ N.

iv) {Ai}∞i=1 is i.i.d. under {Ti}∞i=1, with mth-order moment
delay profile functions

bm(x) ≜



E [Am
1 ] ,

if T1 = 0 deterministically and x = 0,
E [Am

k |Tk = x] , k ∈ {2, 3, . . .},
if T1 = 0 deterministically and x ̸= 0,

E [Am
k |Tk = x] , k ∈ {1, 2, . . .},

if T1 is random,
(8a)

for m ∈ {1, 2}.

v) {αi,n}∞n=1 is i.i.d. upon {ti,n}∞n=1, with mth-order mo-
ment delay profile functions

gm(x) ≜ (8b)
E
[
αm
i,1

]
, if ti,1 = 0 deterministically and x = 0,

E
[
αm
i,k|ti,k = x

]
, k ∈ {2, 3, . . .},

if ti,1 = 0 deterministically and x ̸= 0,

E
[
αm
i,k|ti,k = x

]
, k ∈ {1, 2, . . .}, if ti,1 is random,

where m ∈ {1, 2}, for every i ∈ N. ▲

Notice that in the definitions within Assumption 1, the func-
tions bm(·) and gm(·), m = 1, 2, capture the moment-delay
profiles between clusters and within clusters, respectively,
without taking arrival rates into account. In turn, the single and
joint arrival rates of clusters are represented by the functions
λ̄T (·) and ¯̄λT (·, ·), while the single and joint relative arrival
rates of rays are given by λ̄t(·) and ¯̄λt(·, ·), respectively.

The requirements and suppositions in Assumption 1 are
satisfied for all the channel models described in [1]–[4], [23],
[24]. Indeed, by choosing cluster and ray arrival times as
Poisson processes, with each |αi,m| conditioned to ti,m being
Rayleigh distributed with second moment g2(t) = exp(−t/γ),
and deterministic Ai’s with the form Ai = b0 exp(−Ti/Γ),
Γ, γ > 0, we obtain the widely used Saleh-Valenzuela
model [1]. A similar choice with log-normally distributed
amplitudes |Ai| and |αi| yields the model proposed by the
IEEE 802.15.3a task group [2] (excluding its large-scale fading
term). The decay profiles of the amplitudes (represented by the
functions b and g of (8)) can also be chosen to match those that
the IEEE 802-15.4a standard recommends for high-frequencies
in some scenario types (such as office and industrial) [16].

Remark 1: (Mixed Poisson Arrivals do not Give Rise to
a Mixed Poisson Distribution) It is worth mentioning at this
point that the mixed-Poisson arrivals, characterized by the
conditional PDF given in (6), do not give rise to what is known
as a mixed Poisson distribution [25]. More precisely, if the
random exponent selection in (6) takes place after each arrival,
then the probability of having n arrivals in any unit-length time
interval [x, x+1] cannot be written as βpn(λ1)+(1−β)pn(λ2),
where pn(λ) denotes the Poisson probability mass function
with parameter λ. (The exact probability distribution has been
derived by the first author in a work currently in prepara-
tion.) ▲

Another assumption that will facilitate the forthcoming
analysis is related to the number of clusters and rays. Although
in (1), as in [1], [2], [16], the number of clusters Nc and
the number of paths within each cluster, Nr, are finite, we
will consider infinitely many clusters and rays per cluster. As
acknowledged in [1], the latter choice is arguably more real-
istic. Of course, this assumption requires that the amplitudes
decay fast enough with increasing delay. We will make this
requirement precise by assuming that the conditional moments
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of the amplitudes defined in (8) satisfy∫ ∞

0

b2(T )dT <∞,

∫ ∞

0

b4(T )dT <∞∫ ∞

0

g2(t)dt <∞,

∫ ∞

0

g4(t)dt <∞,

and work in the sequel with the channel impulse response

h(t) ≜
∑∞

i=1

∑∞

m=1
ai,mδ(t− τi,m), (9)

with ai,m and τi,m as defined in Section II-A. Also, as
in [2], we will adopt a real baseband model for the impulse
response, and hence the coefficients pi,m in (2) are i.i.d.
Bernoulli random variables taking the values 1 or −1 with
equal probability. This is done mainly to simplify notation, and
it is worth mentioning that all forthcoming results also hold
for the complex base-band representation (all that is required
is that (3) and Assumption 1 hold).

From (9), the squared magnitude of the channel frequency
response is

|H(jω)|2 =

∞∑
i=1

∞∑
j=1

∞∑
m=1

∞∑
n=1

ai,maj,n e
−jω(τi,m−τj,n) (10)

A deterministic frequency-dependent gain for each ray, a
feature discussed in [4], [16] and in [19], can be easily
incorporated to our model by simply multiplying |H(jω)|2
by the squared magnitude of this gain. For ease of notation,
and because the effects of such factor on the resulting statistics
can be easily added afterwards, we will not include it in our
expressions.

In the following sections, and under Assumption 1, we
will derive exact closed-form expressions for the second-order
statistics of |H(jω)|2 as well of the channel power over any
given frequency interval, as a function of the moment delay
functions b2, b4, g2 and g4.

III. AUTO-COVARIANCE OF |H(jω)|2

Here we will obtain closed-form expressions for the mean,
auto-covariance, and auto-correlation coefficient of |H(jω)|2
over any interval of angular frequencies. These results rely on
several technical lemmas which can be found in the Appendix.

A. Expected value of |H(jω)|2

From (10) and the zero-mean and independence properties
of the polarities {pi} established in (7), it is easy to verify
that

E
[
|H(jω)|2

]
=
∑∞

i=1

∑∞

m=1
E
[
a2i,m

]
. (11)

Applying (2), the independence relationships (7d) and
Lemma 1 (in the Appendix), it is readily found that

E
[
|H(jω)|2

]
=

∞∑
i=1

E
[
A2

i

] ∞∑
m=1

E
[
α2
i,m

]
=

(∫ ∞

0

λ̄T (x)b2(x)dx

)(∫ ∞

0

λ̄t(x)g2(x)dx

)
.

(12)

Thus, the expected value of |H(jω)|2 is the same for all
frequencies, being equal to the product of the average energy
of the cluster amplitudes {Ai} and the ray relative amplitudes
{αi,m}.

B. Auto-covariance of |H(jω)|2

Denote the auto-covariance of |H(ω)|2 by

c(ω1, ω2) ≜ E
[
|H(ω1)|2 |H(ω2)|2

]
− E

[
|H(ω1)|2

]
E
[
|H(ω2)|2

]
.

(13)

The following theorem, which is the main result of this sec-
tion, provides an exact, closed-form expression for c(ω1, ω2)
in terms of the arrival density functions λ̄T , ¯̄λT λ̄t, ¯̄λt and
the moment-delay functions b2, b4, g2 and g4 defined in
Assumption 1.

Theorem 1: Let clusters and rays distribute as in Assump-
tion 1. Define the effective moment delay profile functions

Bm(x) ≜ λ̄T (x)bm(x) Ψ(y, z) = ¯̄λT (y, z)b2(y)b2(z)(14)

Gm(x) ≜ λ̄t(x)gm(x) Φ(y, z) ≜ ¯̄λt(y, z)g2(y)g2(z)

for m ∈ {2, 4}, and let B̂m, Ĝm, Ψ̂ and Φ̂, respectively, denote
their Fourier transforms. Then, for any Ω,Θ ∈ R,

c(Θ+Ω
2 , Θ−Ω

2 ) = ∥B4∥1 (∥G4∥1 + ∥Φ∥1)
+
(
∥Ψ∥1 − ∥B2∥21

)
∥G2∥21

+ ∥B4∥1Φ̂(Ω,−Ω) + Ψ̂(Ω,−Ω)
∣∣∣Ĝ2(Ω)

∣∣∣2
+ ∥B4∥1Φ̂(Θ,−Θ) + Ψ̂(Θ,−Θ)

∣∣∣Ĝ2(Θ)
∣∣∣2 . (15)

Proof: See Section VII-A in the Appendix.
Remark 2: Theorem 1 reveals that the variance of the

channel power gain |H(jω)|2 exhibits the same variation with
ω as does its autocovariance c(Θ+Ω

2 , Θ−Ω
2 ) with Ω. Since

the overall behavior of the latter is to decrease as Ω grows,
it follows that the variability of the channel power gain is
smaller at higher frequencies. Notice that this reduction does
not come from the frequency-dependence affecting each multi-
path component (which is typical of real indoor propagation
channels [26]), since we have not included it in our model.
However, had this dependence been included, the variance-
to-squared-mean ratio of |H(jω)|2 would still exhibit the
decay with ω predicted by Theorem 1.3 Instead, the origin of
this behavior can be more intuitively understood by looking
at (37) in the Appendix, and by recalling that E[|H(ω)|2] is
independent of ω. In (37), if we choose ω2 = ω1 = ω, then
T2(ω1+ω2) = T2(2ω) becomes the only frequency-dependent
term. Now, T2(2ω) is a sum of expectations of the random
variables a2ℓa

2
k e

−j2ω[τℓ−τk]. At ω = 0, T2 turns into a sum
of non-negative terms. By contrast, if we let ω increase so

3If this dependency can be captured by introducing a common impulse
response for each multi-path component, say f(t), with Fourier transform
F (jω), then the channel power gain becomes |F (jω)|2 |H(jω)|2. With
this, the mean channel power gain at ω is multiplied by |F (jω)|2, and its
autocovariance is to be computed as |F (jω1)|2 |F (jω2)|2 c(ω1, ω2). Thus,
in this case, the variance-to-squared-mean ratio would be unaffected by F (jω)
and would decay with ω as predicted by Theorem 1.
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that the probability density functions of the random variables
2ω[τℓ − τk] extend smoothly over an interval several times
larger than 2π, then the phases of the exponentials will be
approximately distributed uniformly over [0, 2π]. This will
reduce each of the expectations in the sum. Thus, T2(2ω)
decreases as ω grows, and so does E[|H(ω1)|2 |H(ω2)|2]. ▲

Remark 3: If the effective moment delay functions Gm

and Bm are “smooth”, then all frequency-dependent terms
in (15) vanish if ω1 − ω2 tends to infinity (while keep-
ing ω1, ω2 > 0), leaving only ∥B4∥1 (∥G4∥1 + ∥Φ∥1) +(
∥Ψ∥1 − ∥B2∥21

)
∥G2∥21. This implies that the auto-covariance

between two infinitely distant frequency values is greater
than zero, which, at first sight, may seem counter-intuitive.
Nevertheless, and although this seems to be the first time such
behavior is proven to exist for SV-like channel models, it is
consistent with the saturation of the channel diversity order
as the bandwidth increases, reported in [13], [15]. (Further
treatment of this phenomenon is presented in Sections III-B3
and IV below.) As will be discussed in the following section,
this non-zero asymptotic auto-covariance is due to the fact that
the arrival rate of clusters is finite. ▲
We now apply these results to some specific cases.

1) Infinitely Many Clusters: Suppose the arrival densities of
rays and clusters are scaled by ν > 0 and µ > 0, respectively,
to obtain arrival rates

λ̄
′(1+q)
t (x) ≜ νλ̄

(1+q)
t (x) ¯̄λ

′(1+q)
t (y, z) = ν2 ¯̄λ

(1+q)
t (y, z)

λ̄
′(1+q)
T (x) ≜ µλ̄

(1+q)
t (x) ¯̄λ

′(1+q)
T (y, z) = ν2 ¯̄λ

(1+q)
T (y, z)

where

q ≜
{
1 , if T1 = 0 deterministically
0 , otherwise.

Let us also suppose that this is done while preserving the orig-
inal power delay profiles (so that total impulse-response power
is maintained), which requires one to scale g2 and b2 by ν−1

and µ−1, respectively. This implies that the functions g4 and b4
are scaled by ν−2 and µ−2, respectively. Denote the resulting
scaled moment-profile densities by B′

2, B
′
4, G

′
2, G

′
4,Φ

′,Ψ′.
Substituting into (14), the behavior of the terms involved
in the frequency-independent part of (15) as cluster and ray
densities go to infinity is given by the limits shown in (16)
(next page). Therefore, for any given and smooth power-delay
profile, lim|ω1−ω2|→∞ c(ω1, ω2) = 0 if the cluster arrival rate
tends to infinity and the right-hand side (RHS) of (16b) is
zero. With this, as µ→∞, in the case in which clusters have
Poisson arrivals (which implies Ψ(y, z) = B2(y)B2(z)) and
if the first cluster arrives randomly (i.e., if q = 0), then the
autocovariance of |H(jω)|2 takes the simpler form

c(Θ+Ω
2 , Θ−Ω

2 ) =
∣∣∣B̂2(Ω)

∣∣∣2 ∣∣∣Ĝ2(Ω)
∣∣∣2 + ∣∣∣B̂2(Θ)

∣∣∣2 ∣∣∣Ĝ2(Θ)
∣∣∣2

That is, c(ω1, ω2) reduces to the sum of the products of the
squared magnitude Fourier transforms of the inter-cluster PDP
and the intra-cluster PDP evaluated at ω1−ω2 and at ω1+ω2.

2) Only One Cluster / No Clusters: Consider the case
in which rays do not exhibit the presence of clusters. This
situation can be analyzed under the framework defined by

Assumption 1 by supposing there is only one cluster with
deterministic arrival time T1 = 0 and amplitude A1 = 1,
and such that its first ray arrives deterministically at time
t1,1 = 0. In order to ensure there are no other clusters, we
may take E [Ak|Tk = T ] = 0, for all k ∈ {2, 3, . . .}, for
all T ∈ R+

0 . With these choices, we obtain B2(x) = δ(x),
B4(x) = δ(x), ∥B4∥1 = 1, Ψ̂(θ,−θ) = 0, ∀θ ∈ R, and thus
the auto-covariance becomes

c(Θ+Ω
2 , Θ−Ω

2 ) = ∥G4∥1 − ∥G2∥21 + ∥Φ∥1 + Φ̂(Ω,−Ω)
+ Φ̂(Θ,−Θ).

3) Non-Zero Asymptotic Autocovariance: As already men-
tioned in Remark 3, Theorem 1 reveals that, for finite cluster
arrival rates, the autocovariance of |H(jω)|, that is, c(ω1, ω2),
tends to a positive value as ω2 → ∞ (i.e., if Ω and Θ tend
to ∞), and not to zero. To the best of our knowledge, this is
the first time this result is derived or revealed, at least for SV-
like channel models. (A simple and intuitive explanation of
this phenomenon is provided at the beginning of Section IV-B
below, in terms of the variance of the aggregate channel
power gain over a given band). It is worth noting that such
asymptotic behavior cannot be observed if one analyzes the
autocovariance of the complex frequency response H(jω), i.e.,
by looking at the second-order statistics of H(jω) instead
of those of |H(jω)|2. Indeed, applying the independence
relationships (7a) and (7d), and then Lemma 1, it becomes
easy to show that

E[H(jω1)H
∗(jω2)] = B̂2(ω1 − ω2)Ĝ2(ω1 − ω2).

This simple expression (which we believe to be novel), implies
that, if the moment-delay profiles of clusters and rays within
them are smooth, then lim|ω1−ω2|→∞ E[H(jω1)H

∗(jω2)] =
0.

C. Correlation Coefficient of |H(jω)|2

The correlation coefficient of |H(jω)|2, denoted by
ρ(ω1, ω2), is given by

ρ(ω1, ω2) ≜
c(ω1, ω2)√

var(|H(jω1)|2)var(|H(jω2)|2)
(17)

From (13), it readily follows that (17) can be written as

ρ(ω1, ω2) =
c(ω1, ω2)√

c(ω1, ω1)c(ω2, ω2)
, ∀ω1, ω2 ≥ ωmin.(18)

It was already shown that for any given smooth moment-delay
profile functions, the auto-covariance between two frequencies
ω1 and ω1 +Ω tends to zero as Ω→∞ if the cluster arrival
density goes to infinity. We shall see in Section V-A that even
when this arrival density is finite, limΩ→∞ ρ(ω1, ω2+Ω) = 0
if the moment delay profiles change so that the number of
clusters with significant amplitude tends to infinity.
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lim
µ→∞

∥B′
4∥1 = lim

µ→∞

∫ (
µλ̄

(1+q)
T (y) + qδ(y)

)
µ−2b4(y)dy = 0 (16a)

lim
µ→∞

(∥Ψ′∥1 − ∥B′
2∥21) = lim

µ→∞

∫∫ (
µ2 ¯̄λ

(1+q)
T (y, z)− µ2λ̄T (y)λ̄T (z)− q δ(y)δ(z)

)
µ−2b2(y)b2(z)dydz

= ∥Ψ∥1 − ∥B2∥21 + q b2(0)
2 (16b)

lim
ν→∞

∥G′
4∥1 = lim

ν→∞

∫
(νλ̄

(1+q)
t (y) + qδ(y))ν−2g4(y)dy = 0 (16c)

lim
ν→∞

∥Φ′∥1 = lim
ν→∞

∫∫
(ν2 ¯̄λ

(1+q)
t (y, z) + qνδ(y)λ̄

(1+q)
t (z) + qνδ(z)λ̄

(1+q)
t (y))ν−2g2(y)g2(z)dydz

=

∫∫
¯̄λ
(1+q)
t (y, z)g2(y)g2(z)dydz > 0 (16d)

IV. SECOND-ORDER STATISTICS OVER A FREQUENCY
BAND

In this section we will use Theorem 1 to derive closed-form
expressions for the mean and variance of the total channel
power over any given frequency band

B ≜ [ωl, ωr] ⊂ [0,∞), 0 ≤ ωl ≤ ωr,

where ωl and ωr are in [rad/s].

A. Expected Value of the Channel Power Over a Frequency
Band

Denote the channel power over the frequency band B by
PB ≜

∫ ωr

ωl
|H(jω)|2 dω. Given the fact that E

[
|H(jω)|2

]
is

constant for all ω ∈ R (see (11)), it follows from (12) that

E [PB] = W

(∫ ∞

0

λ̄T (x)b2(x)dx

)(∫ ∞

0

λ̄t(x)g2(x)dx

)
= W∥B2∥1∥G2∥1,

where

W ≜ |B| = ωr − ωl.

B. Variance of the Channel Power Over a Frequency Band

The variance of the channel power over a band B ≜ [ωl, ωr]
can be obtained directly from the auto-covariance of |H(jω)|2
as

var(PB) =

∫
B

∫
B

c(ω, u)dωdu. (19)

Before proceeding, it is worth noting that (19) readily implies
that, if c(ω, u) is bounded, then

lim
|ω−u|→∞

c(ω, u) = 0 =⇒ lim
|B|→∞

var(PB)

E [PB]
2 = 0, (20)

since E [PB] grows linearly with |B|. This allows one to
provide a simple and intuitive explanation for the fact that
c(ω, u) (i.e., the autocovariance of |H(jω)|2) does not vanish
when the two frequencies ω, u ≥ 0 are infinitely distant
from one another. Recall from Parseval’s theorem that when
|B| → ∞, PB equals the total impulse-response power. Then,
if the impulse response is amplitude-modulated by a finite
number of random-amplitude cluster envelopes, it is clear that

the ratio variance of impulse-response power over the square
of the expected impulse-response power will not be zero. In
view of (20), this will imply that lim sup|ω−u|→∞ c(ω, u) ̸= 0.
That is, the autocovariance of |H(jω)|2 between a pair of
infinitely-distant frequencies will not be zero whenever the
total number of clusters with random amplitude remains finite.
As anticipated, this provides an alternative and more intuitive
explanation to what was already discussed in Section III-B3.

We now return to characterizing the variance of PB.
From (15), c(ω1, ω2) can be written as

c(Θ+Ω
2 , Θ−Ω

2 ) = K + c̄(Ω) + c̄(Θ) (21)

where

K ≜ = ∥B4∥1 (∥G4∥1 + ∥Φ∥1) + (∥Ψ∥1 − ∥B2∥21)∥G2∥21
(22a)

c̄(ω) ≜ ∥B4∥1Φ̂(ω,−ω) + Ψ̂(ω,−ω)
∣∣∣Ĝ2(ω)

∣∣∣2 (22b)

Substitution of (21) into (19) yields

var(PB) = W 2K +

∫
B

∫
B

c̄(ω − u)dωdu+

∫
B

∫
B

c̄(ω + u)dωdu.

Recalling the change of variables Ω = ω − u, Θ = ω + u,
and integrating along diagonal strips over the square [ωl, ωr]×
[ωl, ωr], we obtain

var(PB) = W 2K + 2

W∫
0

(W − u)c̄(u)du (23)

+

ωr∫
ωl

c̄(ωl + u)(u− ωl)du+

ωr∫
ωl

c̄(u+ ωr)(ωr − u)du

We note that var(PB) is a measure of the fluctuation of
the received power over a wireless channel, and that the
latter defines its fade statistics. The fact that fade depth
decreases with channel bandwidth has been reported in the
literature, both from empirical data (see, e.g., [13]) as well as
using simulations [12], [27]. However, a closed-form formula
relating fade depth and the classical channel model parameters
used here has, to the best of our knowledge, not been reported
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to date. The results derived above allow us to directly deal
with this issue, provided the fading distribution can be fully
determined from its second moment (an assumption which was
successfully applied in [12]). The explicit dependency between
var(PB) and W is illustrated in the example in the following
section.

V. EXAMPLE

In this section we will illustrate the application of the
results obtained in sections III and IV to the “classical” Saleh-
Valenzuela model [1]. In particular, we will show that our
analytical expressions found in sections III and IV accurately
predict the autocovariance of |H(jω)|2 and the variance of the
channel power gain over any given band. Also, we will show
how the presence of clusters can be confirmed or discarded
by using the second-order statistics of |H(jω)|2 and the
expressions derived in this work.

A. Model Parameters

In the SV model, the amplitudes |αi,m| are Rayleigh dis-
tributed (conditioned to ti,m), and the Ai’s are deterministic
exponentially decaying. The power delay profiles of cluster
and ray amplitudes are given by

b2(T ) = A2
i |Ti=T = e−T/Γ

g2(t) = E
[
α2
i,m|ti = t

]
= e−t/γ

For the fourth-order moments we have

b4(T ) = E
[
A4

i |Ti = T
]
= e−2T/Γ

g4(T ) = E
[
α4
i,m|ti,m = t

]
= 2 e−2t/γ

where the last equation follows since the fourth moment
E
[
x4
]

of a Rayleigh distributed random variable x is related to
its second-order moment as E

[
x4
]
= 2E

[
x2
]2. Both cluster

and relative ray inter arrival times are i.i.d. exponentially
distributed with exponents Λ and λ, respectively. Also, the
arrival times of the first cluster and the relative arrival time of
the first ray in every cluster are, by definition, zero. Therefore,
the effective moment profile functions defined in (14) take the
form

B2(T ) = (Λ + δ(T ))b2(T ) = Λ e−T/Γ +δ(T ) (24a)

B4(T ) = (Λ + δ(T ))b4(T ) = Λ e−2T/Γ +δ(T ) (24b)

Ψ(y, z) = (Λ2 + Λδ(y) + Λδ(z))b2(y)b2(z)

= B2(y)B2(z)− δ(y)δ(z) (24c)

G2(t) = (λ+ δ(t))g2(t) = λ e−t/γ +δ(t) (24d)

G4(t) = (λ+ δ(t))g4(t) = 2λ e−2t/γ +2δ(t) (24e)

Φ(y, z) = (λ2 + λδ(y) + λδ(z))g2(y)g2(z)

= G2(y)G2(z)− δ(y)δ(z) (24f)

B. Auto-covariance

Recall from (21) that c(ω1, ω2) can be written as

c(Θ+Ω
2 , Θ−Ω

2 ) = K + c̄(Ω) + c̄(Θ) (25)

In this case, from (22),

K = ∥B4∥1 (∥G4∥1 + ∥Φ∥1) + (∥Ψ∥1 − ∥B2∥21)∥G2∥21
= ∥B4∥1

(
∥G4∥1 + ∥G2∥21 − 1

)
− ∥G2∥21

= (ΛΓ
2 + 1)

(
λγ + 2 + (λγ + 1)2 − 1

)
− (λγ + 1)2

= ΛΓ
2 (λγ + 1)2 + (ΛΓ

2 + 1)(λγ + 1) (26)

c̄(ω) = ∥B4∥1Φ̂(ω,−ω) + Ψ̂(ω,−ω)
∣∣∣Ĝ2(ω)

∣∣∣2
= ∥B4∥1

(∣∣∣Ĝ2(ω)
∣∣∣2 − 1

)
+

(∣∣∣B̂2(ω)
∣∣∣2 − 1

) ∣∣∣Ĝ2(ω)
∣∣∣2

= (ΛΓ
2 + 1)

(
λ2 + 2λ/γ

1/γ2 + ω2

)
+

(
Λ2 + 2Λ/Γ

1/Γ2 + ω2

)(
λ2 + 2λ/γ

1/γ2 + ω2
+ 1

)
= (ΛΓ

2 + 1)

(
λ2 + 2λ/γ

1/γ2 + ω2

)
+

(
Λ2 + 2Λ/Γ

1/Γ2 + ω2

)(
λ2 + 2λ/γ

1/γ2 + ω2

)
+

(
Λ2 + 2Λ/Γ

1/Γ2 + ω2

)

If γ ̸= Γ, the decomposition into partial fractions of the term

1

(1/Γ2 + ω2)(1/γ2 + ω2)

=
1

1/γ2 − 1/Γ2

(
1

1/Γ2 + ω2
− 1

1/γ2 + ω2

)
allows one to write

c̄(ω) = (ΛΓ
2 + 1)

(
λ2 + 2λ/γ

1/γ2 + ω2

)
+

(Λ2 + 2Λ/Γ)(λ2 + 2λ/γ)

1/γ2 − 1/Γ2
×
(

1

1/Γ2 + ω2
− 1

1/γ2 + ω2

)

+

(
Λ2 + 2Λ/Γ

1/Γ2 + ω2

)
= (ΛΓ

2 + 1)

[
λ2 + 2λ/γ

1/γ2 + ω2
+

2Λ/Γ(λ2 + 2λ/γ)

1/γ2 − 1/Γ2
×

(
1

1/Γ2 + ω2
− 1

1/γ2 + ω2

)
+

2Λ/Γ

1/Γ2 + ω2

]

= (ΛΓ
2 + 1)(λ2 + 2λ/γ)

[
1− 2ΛΓ

Γ2

γ2 − 1

]
︸ ︷︷ ︸

K1

1

1/γ2 + ω2

+ (ΛΓ
2 + 1)2ΛΓ

[
λ2 + 2λ/γ

Γ2

γ2 − 1
+

1

Γ2

]
︸ ︷︷ ︸

K2

1

1/Γ2 + ω2
(27)

Substitution of this result into (25) yields

c(Θ+Ω
2 , Θ−Ω

2 ) = K +
K1

1/γ2 +Ω2
+

K2

1/Γ2 +Ω2

+
K1

1/γ2 +Θ2
+

K2

1/Γ2 +Θ2

(28)

Figure 1 shows (with dashed-line curves) the empirical
estimates of c(·, ·) of the SV channel model with four different
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Figure 1: Spectral autocovariance of |H(jω)|2 as a function
of the frequency separation Ω (around a central frequency
ωc = 109 [rad/s]) for the SV model with the four sets of
parameters shown in Table I. Simulated curves (in dashed
line) are averages over 300.000 channel realizations. Each
theoretical curve (in solid line) was obtained using (28).

Set Λ (ns−1) Γ (ns) λ (ns−1) γ (ns)
A 0.06670 14 2.10 7.9
B 0.03335 28 1.05 15.8
C 0.06670 14 2.10 1.975
D 0.00667 140 2.10 0.79

Table I: Sets of parameters for the SV model used for the
simulations in this section.

sets of parameters, specified in Table I. Each of these curves
was obtained after 300000 simulated random realizations of
channel impulse response. On the same plot, the theoretical
values of c(·, ·) predicted by (28) are traced using solid lines,
for each set of parameters. It can be seen that, in all cases, (28)
matches the simulated data very tightly.

The set A of parameters corresponds to those proposed in
the IEEE802.15.3a CM3 [2]. Notice that for the curves of this
set, as Ω is increased, the spectral autocovariance drops by
approximately 3 [dB] when Ω = 1/Γ = 7.14×107 [rad/s], and
then decays at about 10 [dB] per decade, which is precisely the
behavior determined by (28) (provided K2 is much larger than
K1 and K). From (28), the next corner separation frequency,
beyond which c(·, ·) almost ceases to diminish, takes place
when (K1 + K2)/Ω

2 ≃ K, which in this case corresponds
to Ω ≃ 2.1 × 108 rad/s], in agreement with what is shown
in Fig. 1. The set B of curves differs from the previous one
in that the arrival rates are halved, while the decay exponents
are doubled. This yields, the same products ΛΓ and λγ and
the same ratio Γ/γ as the set A. Thus, the constants K, K1γ

2

and K2Γ
2 are also the same as those yielded by the set A

parameters. Accordingly, the only difference with respect with
the set-A curves is that the corner frequencies are reduced by
a factor of two. Also as predicted by (28), reducing γ to one
fourth of its value in set A increased the corner frequency
1/γ associated with K1 by four, sufficiently higher than 1/Γ
to have a small but noticeable effect (see the slight “bump”

in the set-C curves between 2 × 108 and 7 × 108 [rad/s].
With the parameters of set D, these two corner frequencies
are two-decades away from one another, with their presence
becoming clearly visible in the corresponding plot in Fig. 1.
Intuitively, the existence of two corner separation frequencies
beyond which the spectral autocovariance starts (or restarts)
to decrease can be associated with the temporal resolution
associated with Ω. More precisely, when Ω is too small, all
rays in the impulse response are added with roughly the same
phase in the sum (10) for ωc+Ω/2 and for ωc−Ω/2, yielding
a high correlation. As Ω is increased, a point is reached
(Ω ≃ 1/Γ) at which some clusters within the impulse response
contribute with different random phases in (10), which begins
to decorrelate the channel power gains. This reduction ceases
when Ω is large enough so that all clusters within the impulse
response are added with different phases, restarting only when
Ω begins to make also the rays within each cluster add with
different random phases (Ω ≃ 1/γ).

C. Correlation Coefficient

The variance of |H(jω)|2 is directly obtained by evaluating
(28) for an arbitrary frequency ω/2, which yields

var(|H(jω/2)|2) = c(ω2 ,
ω
2 ) = K +K1γ

2 +K2Γ
2

+
K1

1/γ2 + ω2
+

K2

1/Γ2 + ω2

Substituting this and (28) into (18), the correlation coefficient
takes the form shown in (29), displayed on the next page.
Substituting the definitions of K, K1 and K2 into this expres-
sion, and after some algebra, one obtains that the correlation
coefficient satisfies

lim
ω→∞

ρ(ω1, ω1 + ω) =
K

K +K1γ2 +K2Γ2

=
ΛΓ
2 (λγ + 1)2 + (ΛΓ

2 + 1)(λγ + 1)

(λγ + 1)2 {(ΛΓ + 1)2 + ΛΓ}+ (ΛΓ
2 + 1)λγ

Thus, extending what was found for the autocovariance
of |H(jω)|2 in Section III-B1, we see here that the lower
asymptote of the spectral power correlation as Ω → ∞
vanishes not only when Λ → ∞, but also when the product
ΛΓ → ∞. Moreover, for any ω1 ∈ R, we have that
limΩ→∞ ρ(ω1, ω1 +Ω) = 0 if and only if ΛΓ→∞.

D. Clusters or no Clusters?

When analyzing a sufficiently large number of realizations
of the impulse response of a wireless channel, the only SV-
model parameters which can be directly estimated are the
ray arrival rate λ and the inter-cluster decay exponent Γ.
In contrast, the inter-cluster arrival rate Λ, the intra-cluster
decay exponent γ are not readily observable. Indeed, the very
existence of clusters is not unquestionably evident from the
impulse response realizations.

In this section, and based upon the results above, we propose
a quantitative method for estimating γ, Λ. By doing this, it is
possible to assert the presence of clusters (if the value 1/Λ
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ρ(Θ−Ω
2 , Θ+Ω

2 ) =

K + K1

1/γ2+Ω2 + K2

1/Γ2+Ω2 + K1

1/γ2+Θ2 + K2

1/Γ2+Θ2√[
K +K1γ2 +K2Γ2 + K1

1/γ2+(Θ−Ω)2 + K2

1/Γ2+(Θ−Ω)2

] [
K +K1γ2 +K2Γ2 + K1

1/γ2+(Θ+Ω)2 + K2

1/Γ2+(Θ+Ω)2

] . (29)

obtained is comparable to or smaller than Γ) or the absence
of them (if 1/Λ≫ Γ).4

As already said, the inter-cluster decay profile Γ and the
intra-cluster arrival rate λ can be estimated directly from
measurements (as done in, e.g., [1], [19]). Additional equations
for finding the remaining two parameters (Λ and γ), can
be generated by evaluating c(Ω,Ω) at two or more different
frequencies.5 For the SV channel model considered in this ex-
ample, the two simplest equations can be obtained from (28),
as

L1(ΛΓ, λγ) ≜ E
[
|H(jω)|2

]
= (ΛΓ + 1)(λγ + 1) (30)

L2(ΛΓ, λγ) ≜ lim
Θ,Ω→∞

c(Θ+Ω
2 , Θ−Ω

2 ) = K

= ΛΓ
2 (λγ + 1)

2
+
(
ΛΓ
2 + 1

)
(λγ + 1) (31)

The left-hand sides of these expressions (L1 and L2) can be
directly estimated from measurements. Denote these estimates
as L̂1 and L̂2, respectively. In principle, one could express ΛΓ
and λγ in closed form as functions of L1 and L2, and then
evaluate for L1 = L̂1, L2 = L̂2. However, λγ is in this case
the solution to the quadratic equation

(λγ + 1)2 − (L1 + 1)(λγ + 1) + 2L2 − L1 = 0, (32)

resulting from substituting (30) into (31). Therefore, the ap-
proximate nature of L̂1, L̂2 can turn a real positive root of (32)
into a complex-valued (or negative) one. Moreover, even if one
could measure L1 and L2 with infinite precision, there can still
be two real-valued roots of (32) greater than 1. To overcome
these difficulties, the following algorithm is proposed:

i) Find each of the p local minimizers of∣∣∣(λγ)3 + (2− L̂1)(λγ)
2 + (2L̂2 − 3L̂1 + 2)λγ

+ 2L̂2 − L̂1 + 1
∣∣∣

(the magnitude of the LHS of (32) with the estimates
for L1 and L2). Denote these minimizers as ỹ1, . . . , ỹp,
respectively, where p ∈ {1, 2}. From these, calculate the
non-negative pseudo-minimizers yi ≜ max{0 , ỹi}, i =
1, . . . , p. These will be the preliminary candidates for λγ.

ii) Let xi = L̂1/(yi + 1) − 1, i = 1, . . . , p, be the
corresponding preliminary candidates for ΛΓ.

iii) For each i = 1, . . . , p: let Λi = xi/Γ and γi = yi/λ.
Then apply a least-squares curve-fitting optimization al-
gorithm, with Λ and γ as unknowns, to match (28) against

4 If there were no clusters, the impulse response would be as if there were
only a single cluster, beginning at t = 0, with decay exponent Γ.

5In practice, it will also be necessary to identify the power scaling factor
of the impulse response, namely, the value of b2(T ) at T = 0. This can be
easily done by taking the empirical mean of the squared magnitude of the
first ray in the impulse response.

the empirical estimates of c(·, ·) at several frequencies.
Use Λi and γi as initial values. Define the obtained
residual matching errors as ϵi

iv) Pick the values of Λi, γi associated with the minimum ϵi.
This technique for estimating ΛΓ and λγ was applied to sim-
ulated impulse responses for the SV channel model, with two
sets of parameters. For the first of these (set E), Λ = 1.1 ns−1,
λ = 1.1 ns−1, Γ = 14 ns, and γ = 7.9 ns. Notice that this
makes Λ = λ, i.e., the clusters arrive at the same rate as the
multi-path components within them, making it very difficult
to distinguish one cluster from another in the time domain.

It may be noticed that the chosen inter-cluster and intra-
cluster decay exponents (Γ and γ) are the same as those from
the the IEEE802.15.3a CM3 [2] used in Section V-B. In turn,
the product λΛ has been chosen about ten times larger than
that used in Section V-B, so that the resulting dense train
of rays makes it even harder to recognize the presence of
clusters. A typical channel impulse response obtained for these
parameters is shown in Fig. 2-top-left. As anticipated, with
the chosen parameters, clusters arrive so densely that it is
virtually impossible to tell one from the other. After simulating
twelve sets of 4000 independent realizations of these impulse
responses, estimates of L1 and L2 were obtained by averaging.
From the corresponding twelve empirical estimates of c(0, ω),
obtained for 500 values of ω evenly distributed from 0 to
5×109 rad/s, the parameters ΛΓ and λγ were estimated using
the method described above, yielding the results shown in the
scatter plot of Fig. 2-top-right. The average error magnitude
of these estimates is less than 30% of their true values.6

More importantly, in all cases, the existence of clusters is
unambiguously revealed, since all estimates of ΛΓ are greater
than 13. This seems more remarkable after recalling that, in
this case, the impulse responses are such that clusters are
almost totally overlapped, making it virtually impossible to
distinguish one from the other.

The results for a scenario in which there are no clusters is
shown in Fig. 2-bottom. I this case, the set F of parameters
is used for the SV model: Λ = 0, λ = 16.94 ns−1, and
γ = 14 ns. A typical channel impulse response from these
parameters, as the one shown on Fig 2-bottom-left, has the
same overall decay exponent and a similar net density of
rays as in the previous case. The corresponding estimates of
ΛΓ and λγ, obtained by applying the algorithm proposed
in this section, are shown in the scatter plot of Fig 2-
top-right. Here, for twelve sets of 4000 realizations of the
channel impulse response, the corresponding twelve empirical
estimates of c(0, ω) for for 500 values of ω evenly distributed

6About 4000 channel realizations was found to be a sufficiently large data
set size in order to achieve this reliability. Please see also the discussed below
on estimation accuracy.
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Figure 2: Left: Typical impulse response for the SV channel model with the parameters of set E (Λ = 1.1 ns−1, λ = 1.1 ns−1,
Γ = 14 ns , γ = 7.9 ns), (top), and set F (Λ = 0, λ = 16, 94 ns−1 , γ = 14 ns) (bottom). Multipath components from the same
cluster are shown with the same color. Right-top: Twelve estimates of ΛΓ and λγ, each from 4000 realizations of the impulse
responses for each set of parameters, obtained applying the method proposed in this section. Right-bottom: autocovariance of
|H(jω)|2 from (28) and ±5σ ranges along them, where σ is the standard deviation of the empirical estimate of c(·, ·) from
4000 channel realizations.

over [0 , 5× 109] rad/s, were obtained. Notice how, in all 100
realizations, the estimates of ΛΓ are well below 3 × 10−2,
unambiguously revealing the absence of clusters.

The possibility of correctly estimating the true parameters
of a channel (Λ, Γ, λ , γ in the SV case) from the empirical
estimate of c(·, ·), say c̃(·, ·), averaged from N independent
channel realizations, will ultimately depend upon the accuracy
of the latter estimate. To illustrate this dependency, the theoret-
ical autocovariance c(ωc+

Ω
2 , ωc− Ω

2 ) is plotted in Fig. 2 right-
bottom, for the parameter sets E and F. The regions within five
standard deviations of the estimate c̃ above and below each
of the c(ωc +

Ω
2 , ωc − Ω

2 ) curves is shown as shaded areas.
The standard deviation shown corresponds to what is obtained
when c̃(·, ·) is calculated from N = 4000 channel realizations,
the same number utilized to obtain the estimates shown in
Fig. 2-top-right. Given the significant overlap of these regions,
and since the variance of c̃(·, ·) is proportional to N−1, it is
clear that, in this case, a reliable decision about which of the
parameter sets better fits the data cannot be achieved from
much less than 4000 channel realizations.

We end this section by noting that the parameter estimation
algorithm described above has been proposed for its simplicity
and with the purpose of illustrating the potential applicability
of the results derived in Sections III and IV. Therefore, the
search for better estimation algorithms, which must certainly
exist, goes beyond the scope of this paper.

E. Second-Order Statistics of Total Power Over a Band

The variance of the channel power over a band B ≜ [ωl, ωr]
rad/s is obtained by substituting (27) into (23), with the change
of variables v = ωl − u and v = ωr + u:

var(PB) = W 2K + 2

∫ W

0

(W − v)c̄(v)dv

+

∫ 2ωl+W

2ωl

(v − 2ωl)c̄(v)dv

+

∫ 2ωr

2ωr−W

(2ωr − v)c̄(v)dv

= W 2K
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+ 2

W∫
0

(W − v)

(
K1

1/γ2 + v2
+

K2

1/Γ2 + v2

)
dv

+

2ωl+W∫
2ωl

(v − 2ωl)

(
K1

1/γ2 + v2
+

K2

1/Γ2 + v2

)
dv

+

2ωr∫
2ωr−W

(2ωr − v)

(
K1

1/γ2 + v2
+

K2

1/Γ2 + v2

)
dv

Evaluating these integrals, using the change of variables
ωc ≜ (ωl + ωr)/2, and applying the identity arctan(x) +
arctan(y) = arctan( x+y

1−xy ), we obtain, after some manipula-
tion, that

var(PB) = W 2K + 2WK1γ arctan(γW )

+ 2WK2Γarctan(ΓW )−K1 ln
(
1 + γ2W 2

)
−K2 ln

(
1 + Γ2W 2

)
+ K1

2 ln

(
[1 + γ2(2ωc)

2]2

(1 + γ2(2ωc −W )2)(1 + γ2(2ωc +W )2)

)
+ K2

2 ln

(
[1 + Γ2(2ωc)

2]2

(1 + Γ2(2ωc −W )2)(1 + Γ2(2ωc +W )2)

)
+K1γW arctan

(
2γW

1 + 4γ2ω2
c

)
− 2K1γωc arctan

(
4γ3ωcW

2

[1 + 4γ2ω2
c ]

2 + γ2W 2[1− 4γ2ω2
c ]

)
+K2ΓW arctan

(
2ΓW

1 + 4Γ2ω2
c

)
− 2K2Γωc arctan

(
4Γ3ωcW

2

[1 + 4Γ2ω2
c ]

2 + Γ2W 2[1− 4Γ2ω2
c ]

)
(33)

The relative variability of PB with respect to the average
total power over B is better captured by the normalized
variance

var(PB)

E [PB]
2 =

var(PB)

W 2(ΛΓ + 1)2(λγ + 1)2
, (34)

where the equality is obtained by substituting (24) and (14)
into (12).

Equations (33) and (34) reveal several interesting aspects
about the normalized channel power variance, which are
discussed below:

i) Except for the first term on the RHS of (33), all the other
terms grow sub-quadratically when W is above some fre-
quency. It is a simple (although long) exercise of algebra
to show that the frequency above which the growth rate
with W of all these terms is significantly slower than
W 2 is given by Wsat ≜ γ−1 max{1 , 0.5(1+ (2ωcγ)

2)}.
If W ≫ Wsat, then the normalized variance of the total
power over B can be well approximated as

var(PB)

E [PB]
2 ≃

K

(ΛΓ + 1)2(λγ + 1)2

=
ΛΓ
2 (λγ + 1) + (ΛΓ

2 + 1)

(ΛΓ + 1)2(λγ + 1)

where we have used (26). Thus, in agreement with what
was shown in Sections III-B1 and IV-B, the normalized
variance of the power over an asymptotically infinite
bandwidth vanishes only when the number of significant
clusters tends to infinity.

ii) The narrow-band normalized channel power variance,
var(P0)/E [P0]

2 is obtained from (34) by letting
Ω → 0. If W is small enough, then all the terms
in (33) grow proportional to W 2. It is straightfor-
ward (but lengthy) to show that the maximum value
for this to be a reasonable approximation is Wflat ≜
Γ−1 min{1,

√
Γωc(1 +

Γωc

1+Γωc
) }. When W is smaller

than the latter threshold, it holds that

var(PB) ≃

(
K +K1γ

2 +K2Γ
2 +K1

γ2

1 + 4γ2ω2
c

+K2
Γ2

1 + 4Γ2ω2
c

)
W 2

and therefore
var(PB)

E [PB]
2 ≃ (35)

K +K1γ
2 +K2Γ

2 +K1
γ2

1+4γ2ω2
c
+K2

Γ2

1+4Γ2ω2
c

(ΛΓ + 1)2(λγ + 1)2

Thus, unless the bandwidth W is comparable to or larger
than Wflat, no reduction in normalized channel power gain
variance is to be expected.
Notice also that if there is a single cluster with deter-
ministic amplitude and infinite duration (i.e., if we let
Γ = 0 and γ → ∞), the narrow band normalized
channel power variance should coincide with that of a
Rayleigh channel (in which case PB should distribute
exponentially). Indeed, if we substitute the expressions
for K1 and K2 in (35), fix Γ = 0 and let γ → ∞, then
it is easy to verify that var(PB)/E [PB]

2 → 1, which is
precisely the variance-to-squared-expectation ratio of an
exponentially distributed random variable.

The curves in dashed line in Fig. 3 display the value
of var[PB]/E [PB]

2 for a band of width W centered at
109 [rad/s] obtained from 300,000 simulated realizations of
the SV model for each set of parameters given in Table I. The
corresponding values of var[PB]/E [PB]

2 predicted by (34)
are plotted in the same figure with solid lines. It can be
seen that, in all cases, the theoretical and simulation curves
are almost indistinguishable, confirming the accuracy of our
results. It can also be seen that in all sets, as expected
from (34), when W is increased from zero, the normalized
channel power variance remains almost constant until a certain
value, near the threshold Wflat defined previously. Beyond that
threshold, all the curves decay with W until a saturation point
is reached, in a way that is consistent with what was found
in [13].

VI. CONCLUSIONS

We derived general expressions that characterize the second-
order statistics of the frequency response power gain in
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Figure 3: Normalized variance of the channel power gain over
a band B of width W centered at 109 [rad/s], for the SV
model with the four sets of parameters (A,B,C,D) given in
Table I. Simulated values are averages over 3000, 000 channel
realizations. The theoretical curve was obtained using (33)
and (34).

wireless indoor channels. Our results are applicable to several
well established channel models discussed in the literature,
all based upon the Saleh-Valenzuela model [1]. In particular,
the closed-form formula obtained here for the auto-covariance
of the squared frequency response magnitude of the channel
allows one to predict the variance of the aggregate channel
power gain over any frequency band. This provides an ap-
proximation to the diversity order of wide-band over narrow-
band systems in such channels. Our results also allow one to
obtain an upper bound for this measure of spectral diversity,
and show how (and why) this limit arises from having a finite
number of clusters with significant amplitude in the channel
impulse response. In addition, the derived formulas explicitly
reveal how the statistical properties of the clusters in the
channel impulse response affect the spectral autocovariance of
the channel power gain. This allows one to use these spectral
statistics to identify the presence or absence of clusters. A
simple procedure to accomplish this task has been proposed
and its effectiveness has been verified by applying it to
simulated realizations of the Saleh-Valenzuela channel model.

VII. APPENDIX

A. Proof of Theorem 1

For notational simplicity, we will temporarily adopt a
single indexing nomenclature for the path arrival times τi,m.
More precisely, and with a slight abuse of notation, we define
the infinite random set {τℓ}∞ℓ=1 ≜ {{τi,m}∞m=1}∞i=1. For our
purposes, it will not be necessary to define a mapping between
the indexes i,m and the index ℓ. Indeed, it will be sufficient to
note that the double-index matching condition (i,m) = (j, n)
(which means i = j and m = n) is equivalent to the single-
index condition ℓ = k.

Using single-index notation, the first term on the right hand
side of (13) is obtained from (9), which yields

E[|H(ω1)|2 |H(ω2)|2]

=
∑
ℓ,k,l,r

E
[
aℓakalar e

−j(ω1[τℓ−τk]+ω2[τl−τr])
]

(36)

Consider the cases in which r is different from all other
coefficients. Then

E
[
aℓakalar e

−j(ω1[τℓ−τk]+ω2[τl−τr])
]

(a)
= E

[
aℓakalArαr e

−j(ω1[τℓ−τk]+ω2[τl−τr])
]
E [pr] = 0,

where (a) follows from (7) and the last equality stems from
the fact that all {pi} have zero mean (see (3)). Proceeding
similarly it is easy to show that each term in the summation
of (36) in which one or more indexes is not matched to any
other index evaluates to zero. Thus, one must only consider
the cases (ℓ = k = l = r), (ℓ = k ̸= l = r), (ℓ = l ̸= k = r)
and (ℓ = r ̸= k = l), which yields, respectively, each of the
following sums:

E[|H(ω1)|2 |H(ω2)|2]

=
∑
ℓ

E
[
a4ℓ
]
+
∑
ℓ

∑
l:l ̸=ℓ

E
[
a2ℓa

2
l

]
︸ ︷︷ ︸

T1

+
∑
ℓ

∑
k:k ̸=ℓ

E
[
a2ℓa

2
k e

−j([ω1+ω2][τℓ−τk])
]

︸ ︷︷ ︸
T2(ω1+ω2)

+
∑
ℓ

∑
k:k ̸=ℓ

E
[
a2ℓa

2
k e

−j([ω1−ω2][τℓ−τk])
]

︸ ︷︷ ︸
T2(ω1−ω2)

(37)

Rewriting the frequency-independent term T1 in double-index
notation, we have

T1 =
∑
i,m

E
[
a4i,m

]
+
∑
i,m

∑
(j,n)̸=(i,m)

E
[
a2i,ma2j,n

]
=
∑
i,m

E
[
a4i,m

]
+
∑
i

∑
m

∑
n:n̸=m

E
[
a2i,ma2i,n

]
+
∑
i

∑
j:j ̸=i

∑
m

∑
n

E
[
a2i,ma2j,n

]
=
∑
i,m

E
[
A4

iα
4
i,m

]
+
∑
i

∑
m

∑
n:n ̸=m

E
[
A4

iα
2
i,mα2

i,n

]
+
∑
i

∑
j:j ̸=i

∑
m

∑
n

E
[
A2

iA
2
jα

2
i,mα2

j,n

]
(a)
=
∑
i

E
[
A4

i

]∑
m

E
[
α4
i,m

]
+
∑
m

∑
n:n ̸=m

E
[
α2
i,mα2

i,n

]
+
∑
i

∑
j:j ̸=i

E
[
A2

iA
2
j

]∑
m

E
[
α2
i,m

]∑
n

E
[
α2
j,n

]
(b)
=

∞∫
0

λ̄T (x)b4(x)dx

( ∞∫
0

λ̄t(t)g4(x)dx
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+

∞∫
0

∞∫
0

y ̸=z

¯̄λt(y, z)g2(y)g2(z)dydz

)

+

∞∫
0

∞∫
0

y ̸=z

¯̄λT (y, z)b2(y)b2(z)dydz

 ∞∫
0

λ̄t(x)g2(x)dx

2

(38)

In the above, (a) is a consequence of the independence
relationships established in (7), while (b) follows directly from
Lemma 1. Proceeding similarly with the frequency-dependent
function T2(·), we obtain

T2(θ) =
∑
ℓ

∑
k:k ̸=ℓ

E
[
a2ℓa

2
k e

−j(θ[τℓ−τk])
]

=
∑
i,m

∑
(j,n)̸=(i,m)

E
[
a2i,ma2j,n e

−j(θ[τi,m−τj,n])
]

=
∑
i,m

∑
(j,n)̸=(i,m)

E
[
A2

iA
2
jα

2
i,mα2

j,n e
−j(θ[Ti−Tj+ti,m−tj,n])

]
=
∑
i,m

∑
(j,n)̸=(i,m)

E
[
A2

iA
2
j e

−j(θ[Ti−Tj ])
]
×

E
[
α2
i,mα2

j,n e
−jθ[ti,m−tj,n]

]
=
∑
i

E
[
A4

i

]∑
m

∑
n:n̸=m

E
[
α2
i,mα2

i,n e
−jθ[ti,m−ti,n]

]
+
∑
i

∑
j:j ̸=i

E
[
A2

iA
2
j e

−j(θ[Ti−Tj ])
]
×∑

m

∑
n

E
[
α2
i,m e−jθti,m

]
E
[
α2
j,n e

jθtj,n
]

=

∞∫
0

λ̄T (x)b4(x)dx×

∞∫
0

∞∫
0

y ̸=z

¯̄λt(y, z)g2(y)g2(z) e
−j(θ[y−z]) dydz

+

∞∫
0

∞∫
0

y ̸=z

λ̄T (y)b2(y)λ̄T (z)b2(z) e
−jθ[y−z] dydz×

∣∣∣∣∣∣
∞∫
0

λ̄t(x)g2(x) e
−jθx dx

∣∣∣∣∣∣
2

Substitution of these expressions for T1 and T2(·) into (37)
followed by inserting the result and (12) into (13) yields

c(ω1, ω2) =

∞∫
0

λ̄T (x)b4(x)dx×

( ∞∫
0

λ̄t(t)g4(x)dx+

∞∫
0

∞∫
0

¯̄λt(y, z)g2(y)g2(z)dydz

+

∞∫
0

∞∫
0

¯̄λt(y, z)g2(y)g2(z) e
−j(ω1−ω2)(y−z) dydz

+

∞∫
0

∞∫
0

¯̄λt(y, z)g2(y)g2(z) e
−j(ω1+ω2)(y−z) dydz

)

+

∞∫
0

∞∫
0

¯̄λT (y, z)b2(y)b2(z) e
−j(ω1−ω2)[y−z] dydz×

∣∣∣∣∣∣
∞∫
0

λ̄t(x)g2(x) e
−j(ω1−ω2)x dx

∣∣∣∣∣∣
2

+

∞∫
0

∞∫
0

¯̄λT (y, z)b2(y)b2(z) e
−j(ω1+ω2)[y−z] dydz×

∣∣∣∣∣∣
∞∫
0

λ̄t(x)g2(x) e
−j(ω1+ω2)x dx

∣∣∣∣∣∣
2

+

( ∞∫
0

∞∫
0

¯̄λT (y, z)b2(y)b2(z)dydz

−
( ∞∫

0

λ̄T (T )b2(T )dT

)2
) ∞∫

0

λ̄t(x)g2(x)dx

2

where Proposition 1 in the Appendix has been used. The last
term in the latter expression is the difference between the
rightmost term in (38) and the squared RHS of (12). Using
the effective moment delay profile functions defined in (14),
the auto-covariance of |H(jω)|2 can be written as

c(ω1, ω2) = ∥B4∥1 (∥G4∥1 + ∥Φ∥1)

+ ∥B4∥1
(
Φ̂([ω1 − ω2],−[ω1 − ω2])

+ Φ̂([ω1 + ω2],−[ω1 + ω2])
)

+ Ψ̂([ω1 − ω2],−[ω1 − ω2])
∣∣∣Ĝ2(ω1 − ω2)

∣∣∣2
+ Ψ̂([ω1 + ω2],−[ω1 + ω2])

∣∣∣Ĝ2(ω1 + ω2)
∣∣∣2

+
(
∥Ψ∥1 − ∥B2∥21

)
∥G2∥21 (39)

With the change of variables

Ω ≜ ω1 − ω2 Θ ≜ ω1 + ω2,

one can write (39) as (15), completing the proof. □
Lemma 1: Let {xk}∞k=1 be an incrementally Markov ran-

dom process, with x1 possibly being deterministically equal
to zero, and let {ςk}∞k=1 be a random sequence i.i.d. under
{xk}∞k=1. Then, for any given m ∈ N,

∞∑
k=1

E [ςmk ] =

∫ ∞

0

f̄m(x)λ̄x(x)dx

∞∑
k=1

∞∑
j=1
j ̸=k

E
[
ςmk ςmj

]
=

∞∫
0

∞∫
0

y ̸=z

f̄m(y)f̄m(z)¯̄λx(y, z)dydz
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provided the integrals exist, where

f̄m(x) ≜


E [ςm1 ] , if x1 = 0 deterministically and x = 0,
E [ςmk | xk = x] , k ∈ {2, 3, . . .}, if x1 = 0

deterministically and x ̸= 0,
E [ςmk | xk = x] , k ∈ {1, 2, . . .}, if x1 is random,

is the m-th moment delay profile of {ςk}∞k=1 and the single
and joint effective arrival densities λ̄x(·), ¯̄λx(·, ·) are as in
Definition 3. ▲

Proof of Lemma 1: Let f(x) ≜ E [ςmk | xk = x], k ∈ S,
with S as in Definition 2. Recall the definitions of λ̄(i)(x) and
¯̄λ(i)(y, z) from (5). If x1 = 0 deterministically, then

∞∑
k=1

E [ςmk ] = E[ςm1 ] +
∞∑
k=2

E [f(xk)]

(a)
= E[ςm1 ] +

∞∫
0

f(x)λ̄(2)
x (x)dx

=

∞∫
0

f̄m(x)λ̄x(x)dx

where (a) follows from Lemma 3 and (5), (4). Else,

∞∑
k=1

E [ςmk ] =
∞∑
k=1

E [f(xk)] =

∞∫
0

f(x)λ̄(1)
x (x)dx

=

∞∫
0

f̄m(x)λ̄x(x)dx

For the double sum in the lemma statement, if x1 = 0
deterministically, then

∞∑
k=1

∞∑
j=1
j ̸=k

E
[
ςmk ςmj

]
= E[ςm1 ]

∞∑
j=2

E [f(xj)]

+ E[ςm1 ]
∞∑
k=2

E [f(xk)] +
∞∑
k=2

∞∑
j=2
j ̸=k

E [f(xk)f(xj)]

(a)
= E[ςm1 ]

∞∫
0

f(y)λ̄(2)
x (y)dy + E[ςm1 ]

∞∫
0

f(z)λ̄(2)
x (z)dz

+

∞∫
0

∞∫
0

y ̸=z

f(y)f(z)¯̄λ(2)
x (y, z)dydz

(b)
=

∞∫
0

∞∫
0

y ̸=z

f̄m(y)f̄m(z)

[
¯̄λ(2)
x (y, z) + δ(y)λ̄(2)

x (z)

+ δ(z)λ̄(2)
x (y)

]
dydz,

where (a) follows from Lemmas 3 and 4 (in the Appendix)
and from (5), (4). In turn, (b) was obtained using the fact that
λ̄(2)(y) and f(y) are bounded for y = 0.

Finally, if x1 is random, it readily follows by applying
Lemma 4 in the Appendix that

∞∑
k=1

∞∑
j=1
j ̸=k

E
[
ςmk ςmj

]
=

∞∑
k=1

∞∑
j=1
j ̸=k

E [f(xk)f(xj)]

=

∞∫
0

∞∫
0

y ̸=z

f(y)f(z)¯̄λ(1)
x (y, z)dydz

=

∞∫
0

∞∫
0

y ̸=z

f̄m(y)f̄m(z)¯̄λx(y, z)dydz,

which completes the proof.
Lemma 2: Let c > 0 be such that ln(1/c) > 2. Then

∞∑
n=2

ncn ≤ c

ln(1/c)

(
1

ln(1/c)
+ 1

)
∞∑

n=2

n2cn ≤ c

ln(1/c)

[
1 +

2

ln(1/c)

(
1 +

1

ln(1/c)

)]

Proof: We have that

d

dx
xcx = (1 + x ln c)cx < 0 ⇐⇒ x > 1/ ln(1/c)

d

dx
x2cx = (2 + x ln c)xcx < 0 ⇐⇒ x > 2/ ln(1/c)

Then, since ln(1/c) > 2,

∞∑
n=2

ncn ≤
∞∫
1

xcxdx = − c

ln c
− 1

ln c

∞∫
1

ex ln c dx

=
c

ln(1/c)

(
1 +

1

ln(1/c)

)
Similarly,

∞∑
n=2

n2cn ≤
∞∫
1

x2cxdx = − c

ln c
− 2

ln c

∞∫
1

x ex ln c dx

=
c

ln(1/c)

[
1 +

2

ln(1/c)

(
1 +

1

ln(1/c)

)]

Lemma 3: Let the arrival times {xi}∞i=1 be an incremen-
tally Markov sequence with x1 randomly distributed. Define
the function λ̄ : R+

0 7→ R+
0 as in (4). Then

∞∑
k=1

E [g(xk)] =

∞∫
0

g(y)λ̄(y)dy (41)

▲
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Proof: We have that
∞∑
k=1

E [g(xk)] = E

[ ∞∑
k=1

g(xk)

]

=
∞∑
i=0

E

[
∆−1

∑
xk∈[i∆,i∆+∆)

g(xk)

]
∆

= lim
∆→0

∞∑
i=0

E

[
∆−1

∑
xk∈[i∆,i∆+∆)

g(xk)

]
∆

=

∞∫
0

g(x)

(
lim
∆→0

E [n∆(x)]

∆

)
dx, (42)

where the discrete random variable n∆(x) corresponds to the
number of arrivals in [x, x+∆). Its expectation satisfies

Pr{n∆(x) = 1} ≤ E [n∆(x)]

= Pr{n∆(x) = 1}+
∞∑

n=2

nPr{n∆(x) = n}

≤ Pr{n∆(x) = 1}+ Pr{n∆(x) ≥ 1}
∞∑

n=2

n[ρ∆]n−1

≤ Pr{n∆(x) = 1}

+ Pr{n∆(x) ≥ 1} 1

ln
(

1
ρ∆

)
1 + 1

ln
(

1
ρ∆

)
 , (43)

where the last inequality follows from Lemma 2. Thus,

lim
∆→0

E [n∆(x)]

∆
≤ lim

∆→0

Pr{n∆(x) = 1}
∆

+ lim
∆→0

Pr{n∆(x) ≥ 1}
∆

· 1

ln
(

1
ρ∆

)
1 + 1

ln
(

1
ρ∆

)


= lim
∆→0

Pr{n∆(x) = 1}
∆

Hence

lim
∆→0

E [n∆(x)]

∆
= lim

∆→0

Pr{n∆(x) = 1}
∆

On the other hand,

Pr{n∆(x) = 1} ≤ Pr{n∆(x) ≥ 1} ≤ E [n∆(x)]

Therefore,

lim
∆→0

P
(1)
∆ (x)

∆
= lim

∆→0

Pr{n∆(x) = 1}
∆

= lim
∆→0

E [n∆(x)]

∆
.

(44)

Substitution of this result into (42) yields (41), completing the
proof.

Lemma 4: Let the arrival times {xk}∞k=1 distribute as in
Lemma 3, and define ¯̄λ(y, z) as in (4). Assume that ¯̄λ(y, z) is
bounded for all y, z ≥ 0, y ̸= z. Then,

∞∑
k=1

∞∑
j ̸=k

E [g(xk)g(xj)] =

∞∫
0

∞∫
0

y ̸=z

g(y)g(z)¯̄λ(y, z)dydz

Proof: We have that

∞∑
k=1

∞∑
j ̸=k

E [g(xk)g(xj)] = E

 ∞∑
k=1

∞∑
j ̸=k

g(xk)g(xj)



=
∞∑
i=0

∞∑
ℓ=0

E

 ∑
xk∈[i∆,i∆+∆)

∑
xj∈[ℓ∆,ℓ∆+∆)

j ̸=k

g(xk)g(xj)



=
∞∑
i=0

E

 ∑
xk,xj∈[i∆,i∆+∆)

j ̸=k

g(xk)g(xj)


+

∞∑
i=0

∞∑
ℓ:ℓ ̸=i

E

 ∑
xk∈[i∆,i∆+∆)

∑
xj∈[ℓ∆,ℓ∆+∆)

g(xk)g(xj)



= lim
∆→0

∞∑
i=0

E

∆−1
∑

xk,xj∈[i∆,i∆+∆)∆
j ̸=k

g(xk)g(xj)

∆

+ lim
∆→0

∞∑
i=0

∞∑
ℓ:ℓ̸=i

E

 1
∆2

∑
xk∈[i∆,i∆+∆)

∑
xj∈[ℓ∆,ℓ∆+∆)

g(xk)g(xj)

∆2

=

∞∫
0

g(x)2
(

lim
∆→∞

E[n∆(x)(n∆(x)− 1)]

∆

)
dx

+

∞∫
0

∞∫
0

y:y ̸=z

g(y)g(z)

(
lim
∆→0

E [n∆(y) n∆(z)]

∆2

)
dydz (45)

For the expectation within the first integral, we have

0 ≤ E[n∆(x)(n∆(x)− 1)] = E[(n∆(x))2]− E [n∆(x)]

= Pr {n∆(x) = 1}+
∞∑

n=2

n2 Pr {n∆(x) = n}−E [n∆(x)]

≤ Pr {n∆(x) = 1}+
∞∑

n=2

n2(ρ∆)n−1−E [n∆(x)]

Dividing by ∆ and taking the limit as ∆ → 0, and then
substituting (44) and applying Lemma 2, it follows that

lim
∆→∞

E[n∆(x)(n∆(x)− 1)]

∆
= 0

On the other hand, for z > y +∆,

E [n∆(y) n∆(z)] = Pr{n∆(y) = 1, n∆(z) = 1}
+ Pr{n∆(y) = 2, n∆(z) = 1}

+

∞∑
n=1

nPr{n∆(y) = n}
∞∑

m=2

Pr{n∆(z) = m| n∆(y) = n}

≤ Pr{n∆(y) = 1, n∆(z) = 1}
+ Pr{n∆(z) = 1| n∆(y) = 2}Pr{n∆(y) = 2}

+
(
Pr{n∆(y) = 1}+ Pr{n∆(y) ≥ 1}

∞∑
n=2

n[ρ∆]n−1
)
×
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Pr{n∆(z) ≥ 1| n∆(y) ≥ 1}
∞∑

m=2

m[ρ∆]m−1

≤ Pr{n∆(y) = 1,n∆(z) = 1}
+ Pr{n∆(z) = 1| n∆(y) ≥ 1}Pr{n∆(y) ≥ 1}ρ∆

+Pr{n∆(y) ≥ 1, n∆(z) ≥ 1}
(
1 +

∞∑
n=2

n[ρ∆]n−1
)
×

∞∑
m=2

m[ρ∆]m−1 (46)

Noting that Pr{n∆(y) = 1, n∆(y) = 1} ≤ E [n∆(y) n∆(z)],
that the integrand in (45) is symmetric in y and z, and
proceeding with (46) as in (43), we conclude that

lim
∆→0

E [n∆(y) n∆(z)]

∆2
= lim

∆→0

Pr{n∆(y) = 1, n∆(y) = 1}
∆2

(47)

Additionally, since

Pr{n∆(y) = 1,n∆(z) = 1} ≤ Pr{n∆(y) ≥ 1, n∆(z) ≥ 1}
≤ E [n∆(y) n∆(z)] ,

it follows from (47) that

lim
∆→0

Pr{n∆(y) = 1, n∆(z) = 1}
∆2

= lim
∆→0

Pr{n∆(y) ≥ 1, n∆(z) ≥ 1}
∆2

= lim
∆→0

E [n∆(y) n∆(z)]

∆2
.

The proof is completed upon substituting this result into (45).

Proposition 1: Let ¯̄λx(y, z) be as in Definition 3 and let
f : R→ R be a bounded function. Then,

∞∫
0

∞∫
0

y ̸=z

¯̄λx(y, z)f(y)f(z)dydz =

∞∫
0

∞∫
0

¯̄λx(y, z)f(y)f(z)dydz

▲
Proof: If x1 is random, then ¯̄λ(y, z) is bounded, and the

result follows trivially. Otherwise x1 = 0 deterministically, in
which case
∞∫
0

∞∫
0

y ̸=z

¯̄λx(y, z)f(y)f(z)dydz

=

∞∫
0

∞∫
0

y ̸=z

f(y)f(z)
[
¯̄λ(2)
x (y, z) + λ̄(2)

x (y)δ(z) + λ̄(2)
x (z)δ(y)

]
dydz

=

∞∫
0

∞∫
0

f(y)f(z)¯̄λ(2)
x (y, z)dydz

+

∞∫
0

f(z)δ(z)

∞∫
0

y ̸=z

f(y)λ̄(2)
x (y)dydz

+

∞∫
0

f(z)λ̄(2)
x (z)

∞∫
0

y ̸=z

f(y)δ(y)dydz

=

∞∫
0

∞∫
0

f(y)f(z)¯̄λ(2)
x (y, z)dydz

+ f(0)

∞∫
0+

f(y)λ̄(2)
x (y)dy + f(0)

∞∫
0+

f(z)λ̄(2)
x (z)dz

=

∞∫
0

∞∫
0

f(y)f(z)¯̄λ(2)
x (y, z)dydz

+

∞∫
0

∞∫
0

f(y)f(z)λ̄(2)
x (y)δ(z)dydz

+

∞∫
0

∞∫
0

f(y)f(z)λ̄(2)
x (z)δ(y)dydz

=

∞∫
0

∞∫
0

f(y)f(z)¯̄λx(y, z)dydz,

completing the proof.
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