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Abstract

In [1, Theorem III.6] it is claimed that, for a one-sided random source x∞
1

= x1, x2, . . ., the

search for the non-anticipative (i.e., causal) rate distortion function can be restricted to reconstruc-

tions y∞
1

which are jointly stationary with x∞
1

. In this technical report we show that the proof of [1,

Theorem III.6] is invalid because it relies on [1, Theorem III.5], the proof of which, as we also show,

is flawed.

I. INTRODUCTION

The manuscript [1] utilizes [2, Theorem 4] to prove the claim that, for one-sided sources x∞1 , the

non-anticipative (i.e., causal) rate-distortion function can be realized by a reconstruction process y∞1

which is jointly stationary with x∞1 . To do so, it relies on [1, Theorem III.5].

In this note we argue that the proof of [1, Theorem III.5], and hence that of [1, Theorem III.6],

are flawed. For that purpose, we will first recall the assumptions and definitions utilized in [2]. After

that, we will present the definitions introduced in [1] and show, under the conditions stated there, the

requirements needed by [2, Theorem 4] (the basis of [1, Theorem III.6]) of are not met.

II. A BRIEF REVIEW OF [2]

Throughout [2], the search in the infimizations associated with various types of “nonanticipatory”

(i.e., causal) rate-distortion functions is stated over sets of joint probability distributions between

source and reconstruction (as opposed to the usual definitions, in which the search is over conditional

distributions, see [3, Chapter 10], [4]). Since the distribution of the source is given, it is required

that for every k2 > k1 ∈ Z, all the joint distributions Px
k2
k1

,y
k2
k1

to be considered yield xk2

k1
having the
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same (given) distribution of the source for the corresponding block, say Px̊
k2
k1

. This requirement can

be formalized as requiring that Px
k2
k1

,y
k2
k1

∈ Pk1,k2 , for a set of admissible joint distributions Pk1,k2

defined as

Pk1,k2 ,

{

P : P (E × Yk2

k1
) = Px̊

k2
k1

(E), ∀E ∈ B(X k2

k1
)
}

, k1 ≤ k2 ∈ Z, (1)

where X k2

k1
and Yk2

k1
are, respectively, the alphabets to which xk2

k1
and yk2

k1
belong, and B(X k2

k1
) is a

σ-algebra over X k2

k1
. In [2], this admissibility requirement is embedded in the definition of the sets

of distributions which meet the distortion constraint, described next.

The fidelity criterion for every pair of integers1 k1 ≤ k2 is expressed in [2] as requiring Px
k2
k1

,y
k2
k1

to belong to a non-empty set of distributions (hereafter referred to as distortion-feasible set) Wk1,k2

D ,

a condition written as (xk2

k1
, yk2

k1
) ∈ (Wk1,k2

D ). In this definition, the number D ≥ 0 represents an

admissible distortion level. Notice that such general formulation of a fidelity criteria does not need a

distortion function and does not necessarily involve an expectation.

As mentioned above, the admissibility requirement Px
k2
k1

∈ Pk1,k2 is expressed in the distortion-

feasible sets in [2, eqn. (2.1)]. The latter equation can be written as

Wk1,k2

D ⊂ Pk1,k2 . (2)

In [2, eqs. (2.4) and (2.5)], the distortion-feasible sets are assumed to satisfy the “concatenation”

condition

(xk2

k1
, yk2

k1
) ∈ (Wk1,k2

D ) ∧ (xk3

k2+1, y
k3

k2+1) ∈ (Wk2+1,k3

D ) =⇒ (xk3

k1
, yk3

k1
) ∈ (Wk1,k3

D ). (3)

With this, [2, eqn. (2.9)] defined the “nonanticipatory epsilon entropy” of the set of distributions2

Wk1,k2

D as

H0(Wk1,k2

D ) , inf I(xk2

k1
; yk2

k1
), (4)

where the infimum is taken over all pairs of random sequences (xk2

k1
, yk2

k1
) ∈ (Wk1,k2

D ) such that the

causality Markov chains

xk2

k+1 ←→ xkk1
←→ ykk1

, k1 ≤ k ≤ k2 (5)

are satisfied. Then [2, eq. (2.13)] defines the “nonanticipatory message generation rate” as

H0
D , lim

k2−k1→∞

1

k2 − k1
H0(Wk1,k2

D ) (6)

1The analysis in [2] considered both dicrete- and continuous-time processes, but here we only refer to the discrete-time

scenario.

2The actual term employed in [2] is “nonanticipatory epsilon entropy of the message (Wk1,k2
D )” where the term “message”

refers to the random ensembles in (Wk1,k2
D ).
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(when the limit exists).

An alternative “nonanticipatory message generation rate” is also considered in [2] by defining the

set of distortion-admissible process distributions WD as follows:

Definition 1. The set (WD) consists of all two-sided random process pairs (x∞−∞, y∞−∞) ∈ (WD) for

which there exist integers · · · < k−1 < k0 < k1 < · · · such that limi→±∞ ki = ±∞ and

(x
ki+1−1
ki

, y
ki+1−1
ki

) ∈ (W
ki,ki+1−1
D ), ∀i ∈ Z. (7)

N

With this, [2, eq. (2.14)] defines

−→
H0

D , inf lim
k2−k1→∞

1

k2 − k1
I(xk2

k1
; yk2

k1
) (8)

(when the limit exists), where the infimum is taken over all pairs of processes (x∞−∞, y∞−∞) ∈ (WD)

satisfying the causality Markov chains

x∞k+1 ←→ xk−∞ ←→ yk−∞, ∀k ∈ Z. (9)

III. THE PROBLEMS WITH [1]

The proof of [1, Theorem III.6] relies on the claim stated in [1, Theorem III.5], namely, that an

equality similar to

−→
H0

D = H0
D (10)

holds.

We demonstrate that the proof of [1, Theorem III.5] is not valid (and hence that of [1, Theorem III.6]

is flawed). We do this by showing next that [1, Theorem III.5] has two problems, namely: a) one of

the causal IRDFs considered in it does not coincide with
−→
H0

D, and b) the proof of [1, Theorem III.5]

is invalid.

A. The First Problem

The already mentioned first problem of [1, Theorem III.5] as a basis for [1, Theorem III.6] follows

from the fact that [1] defines its alternative causal IRDF function
−→
Rna(D) as ( [1, II.9])

−→
Rna(D) , inf

Py∞
1

| x∞
1
∈
−→
Q1,∞(D)

lim
n→∞

1

n
I(xn1 → yn1 ), (11)

where (as defined in the text just below equation (II.6) in [1])
−→
Q1,∞(D) is the set of conditional

distributions of y∞1 given x∞1 such that (x∞1 , y∞1 ) satisfies the causality Markov chains

x∞k+1 ←→ xk1 ←→ yk1 , k = 1, 2, . . . . (12)
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and the asymptotic distortion constraint

lim
n→∞

1

n
E[d1,n(x

n
1 , y

n
1 )] ≤ D. (13)

Next, [1] states in its equation (III.2) that [2] defined

−→
R ε(D) , inf

Py∞
1

| x∞
1
∈
−→
Q1,∞(D)

lim
n→∞

1

n
I(xn1 ; y

n
1 ). (14)

Thanks to (12), it readily follows that
−→
R ε(D) =

−→
Rna(D) (although this equality is not explicitly

stated in [1]).

Since the only causal IRDF defined in [2] as an inf lim is
−→
H0

D, one must conclude that [1] regards

−→
R ε(D) as equivalent to

−→
H0

D. However, in view of Definition 1 and (8), such equivalence is not valid

(since the distortion feasible sets of Definition 1 are not compatible with the distortion constraint (13)).

Therefore, when in [1, Theorem III.5] it is stated that Rna(D) =
−→
Rna(D) (and hence H0

D =
−→
R ε(D)),

it does not mean that H0
D equals

−→
H0

D. As a consequence, one of the necessary conditions for [2,

Theorem 4] is not shown to hold.

B. The Second Problem

The second issue with [1, Theorem III.5] is the validity of its proof. To begin with, the only

argument used in it is that the source is stationary and [2, Theorem 2]. However, the latter theorem

only says that
−→
H0

D ≤ H0
D, and thus the proof of [1, Theorem III.5] presented there is flawed.

Although not referred to in that proof, the reverse inequality claimed in [1, Lemma III.4] would be

all that is required to show that
−→
R ε(D) = H0

D. However, the proof of [1, Lemma III.4], reproduced

below, is clearly invalid. It starts by noting that, by definition,

Rna
1,n(D) ≤ I(xn1 , y

n
1 ), ∀(xn1 , y

n
1 ) ∈ (

−→
Q1,n(D)). (15)

Then it proceeds by saying that “taking the limit on both sides we obtain”

lim
n→∞

1

n
Rna

1,n(D) ≤ lim
n→∞

1

n
I(xn1 , y

n
1 ), ∀(x∞1 , y∞1 ) ∈ (

−→
Q1,∞(D)) (16)

and then that the claim follows by taking the infimum over
−→
Q1,∞(D). The problem with this reasoning

is that (16) does not follow from (15). A rigorous reasoning reveals that when taking the limit as

n→∞, (15) translates to

lim
n→∞

Rna
1,n(D) ≤ lim

n→∞

1

n
I(

(n)
x

n
1 ;

(n)
y

n
1 ), ∀{

(n)
x

n
1 ,

(n)
y

n
1}n∈N such that P(n)

y n
1

∣

∣

(n)
x n

1

∈
−→
Q1,n(D) (17)

Thus, one cannot choose to infimize the RHS of this inequality over
−→
Q1,∞(D) and expect the in-

equality to hold, since one can easily find a pair of processes (x∞1 , y∞1 ) whose conditional distribution

Py∞
1 | x∞

1
belongs to

−→
Q1,∞(D) and yet Pyn

1 | xn
1
/∈
−→
Q1,n(D) (because the normalized expectations on

the LHS of (13) are allowed to reach the limit D from above).
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In order to arrive to (16), one should first show that

Rna
1,n(D) ≤

1

n
I(xn1 , y

n
1 ), ∀Py∞

1 | x∞
1
∈
−→
Q1,∞(D). (18)

Unfortunately, the latter is not true since, as already mentioned,
−→
Q1,∞(D) allows pairs of random

processes (x∞1 , yn1 ) such that E[d1,n(x
n
1 , y

n
1 )] > D, for all n ∈ N (thus reaching the limit distortion (13)

from above), and thus such that Pyn
1 | xn

1
/∈
−→
Q1,n(D), for all n ∈ N. Therefore, (18) does not hold.

Indeed, the latter reasoning reveals that

Rna
1,n(D) ≥ inf

(x∞
1 ,y∞

1 )∈(
−→
Q1,∞(D))

1

n
I(xn1 , y

n
1 ), n ∈ N, (19)

leading to an inequality in the same direction as the one provided by [2, Theorem 2], i.e., that

Rna(D) ≥
−→
R ε(D).
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