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First published March 27, 2013; doi:10.1152/jn.00026.2013.—In a pre-
vious modeling study, Leblois et al. (2006) demonstrated an action
selection mechanism in cortico-basal ganglia loops based on competition
between the positive feedback, direct pathway through the striatum and
the negative feedback, hyperdirect pathway through the subthalamic
nucleus. The present study investigates how multiple level action selec-
tion could be performed by the basal ganglia. To do this, the model is
extended in a manner consistent with known anatomy and electro-
physiology in three main areas. First, two-level decision making has
been incorporated, with a cognitive level selecting based on cue shape
and a motor level selecting based on cue position. We show that the
decision made at the cognitive level can be used to bias the decision
at the motor level. We then demonstrate that, for accurate transmis-
sion of information between decision-making levels, low excitability
of striatal projection neurons is necessary, a generally observed
electrophysiological finding. Second, instead of providing a biasing
signal between cue choices as an external input to the network, we
show that the action selection process can be driven by reasonable
levels of noise. Finally, we incorporate dopamine modulated learning
at corticostriatal synapses. As learning progresses, the action selection
becomes based on learned visual cue values and is not interfered with
by the noise that was necessary before learning.

action selection; cortico-basal ganglia loops; computational models;
dopamine; learning

DECISION MAKING IS A HIGH-level brain function under the control
of a distributed network of cortical and subcortical structures,
interconnected in positive and negative feedback loops deter-
mined by the anatomical connectivity and polarity of the basal
ganglia nuclei (Mink 1996; Redgrave et al. 1999). Box and
arrow models of basal ganglia connectivity demonstrate the
polarity of these anatomical pathways (Albin et al. 1989;
Alexander et al. 1991), but cannot show how selection between
two possible actions is performed by the network. Mink (1996)
proposed a schematic basal ganglia action selection model
based on this anatomy. Using this center-surround architecture,
he postulated that separate cortical networks are activated for
each of a set of possible actions. The divergent, negative
feedback hyperdirect pathway first provides widespread and
rapid cortical inhibition to hold the release of all proposed
actions. The positive feedback direct pathway then gives a

more localized disinhibition that amplifies any difference in
activation between the competing cortical networks to select
one specific action.

Beyond the box and arrow model, it has also been proposed
that there are several parallel, segregated, direct pathway loops
through the basal ganglia connecting back to distinct areas of
cortex, each involved in a different modality of action selection
(Alexander et al. 1986). However, there are complexities of
convergence and divergence within the pathways that suggest
that the parallel loops cannot be completely segregated (See
MATERIALS AND METHODS, Model architecture).

Recent electrophysiological data from Pasquereau et al.
(2007), in primates, suggest that, in a two-armed bandit task,
two separable processes occur during action selection. First,
early changes in globus pallidus (GPi) activity, when the two
cue shapes are presented, are related to the cognitive aspect of
the task and express the decision of which of the cue shapes has
a greater value. Then, when a subsequent signal to move is
given, changes in GPi activity are related to the motor aspect of
the task and reflect the preparation of the motor action neces-
sary to express the selection of the chosen cue. Thus, in this
task, the full action selection process is separable into two,
temporally distinct, selections each at a different level.

Based on this analysis, we present a biophysically based,
two-level model of action selection that can solve the task used
in Pasquereau et al. (2007), using the minimum details of brain
circuitry necessary. The model comprises two action selection
modules: one for solving the cognitive action selection, and the
other for solving the motor action selection. Each module
consists of one instance of the center-surround architecture of
Mink (1996), and the two modules are considered to be
parallel, with inputs from distinct areas of cortex. In the model,
when discussing the separation of action selection into two
levels, we define a level as being a loop in which an area of
cortex is in closed-loop feedback through the basal ganglia
with itself (a cortico-basal ganglia or CBG loop) and channels
as separate ensembles within that cortical area, each represent-
ing a possible decision choice, that are in competition with one
another during action selection.

The model instantiation is based on that of Leblois et al.
(2006) that showed selection between two channels in one
CBG loop. The module of action selection consists of a
segregated, positive feedback direct pathway and a negative
feedback hyperdirect pathway that is widely divergent from the
subthalamic nucleus (STN) to GPi. Action selection is an
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intrinsic property of the interaction between the direct and
hyperdirect pathways.

In the Leblois et al. (2006) model, a biasing signal was
applied to one channel to cause symmetry breaking between
channels and thus selection of one action. Here, the symmetry
breaking is caused by introduced synaptic noise. Each CBG
loop comprises an identical action selection module. To solve
the task correctly, the decision made at the cognitive level must
be available to guide the decision at the motor level. The
information transfer between the two levels occurs at the level
of the striatum (Fig. 1). The model also incorporates learning,
modulated by a simulated dopamine reward signal to form a
type of actor-critic network (Barto 1995). The learning is used
to demonstrate that changes in relative gain between two
channels in one corticostriatal loop are sufficient to derive

robust action selection, taking over from the noise as the driver
of symmetry breaking. In contrast to previous actor-critic
models (Brown et al. 1999; Suri and Schultz 1999), we chose
to model the critic at a very basic level, to concentrate on the
mechanisms underlying action selection in the actor. We show
that this architecture only works to perform accurate two-level
decision making when the striatal neurons are difficult to
excite, one of the basic observed properties of striatal projec-
tion neurons (Wilson and Groves 1981).

MATERIALS AND METHODS

Task. This center-out motor task has been fully described in
Pasquereau et al. (2007), where electrophysiological data were ob-
tained during the performance of the task by macaque monkeys.
During a simulation, consisting of 120 trials, four cues were used,
each with a different reward probability {P(R)�[0, 0.33, 0.66, 1]}
(Fig. 2). For each trial, two of the cues were presented. After the
decision is made of which direction to move, the reward probability of
the chosen target is used to determine if a reward is given or not.

Model architecture. The module of action selection consists of an
interacting hyperdirect and direct pathway in one CBG loop, within
which there are multiple channels. At a given decision-making level,
competition is between the channels of one loop (Fig. 3). Each
possible cue shape and motor movement direction is represented by
one cortical ensemble. On a given trial with two cue shapes presented
at two positions, only two cognitive, two motor, and two association
cortex ensembles are activated.

To implement two-level action selection, the current model exploits
the separation of the basal ganglia into multiple parallel loops (Alex-
ander et al. 1991). The two loops modeled each represent a level of
decision making and consist of two action selection modules in
parallel: one for making the selection between two presented cue
shapes, and the other for making the selection between two possible
movement directions. The selection of shape is assumed to belong to
the cognitive domain, i.e., to occur in a more frontal segregated loop
than the selection of direction. The actual source of the inputs would
probably best be described as visual and visuo-spatial, respectively.
Because these two terms are very similar, we persist with the use of
cognitive and motor to differentiate the two loops in this paper.
However, these terms are used mostly for ease of description, as the
architecture would work with any two partially segregated CBG

Fig. 2. Center-out action selection task. During a session of 120 trials, 4 cues
with different probabilities of reward [P(R)] are used. At each trial, 2 of the 4
cues are pseudorandomly chosen (such that each of the 6 possible pairs is seen
20 times during a session) and presented in randomly chosen cardinal posi-
tions. Each trial starts with a period of 500 ms to allow the network to settle,
after which the 2 cues are presented. The model selects a direction to move in
during the decision period. After selecting a movement, the model receives
reward based on the reward probability of the cue shape associated with the
direction chosen.

Fig. 1. Architecture of the basal ganglia model. Two cortico-basal ganglia
loops are modeled, representing two levels of decision making: a cognitive
loop in blue, and a motor loop in red. Each loop consists of a focused, positive
feedback, direct pathway loop [cortex-striatum- globus pallidus (GPi)-thala-
mus-cortex] and a divergent, negative feedback, hyperdirect pathway loop
[cortex-subthalamic nucleus (STN)-GPi-thalamus-cortex]. Action selection
within each loop is an emergent property of the interaction of the direct and
hyperdirect pathways. Information flow from one loop to another is via
divergence and reconvergence of the direct pathway. Each direct pathway loop
diverges from cortex to associative areas of striatum. The associative striatum
then has outputs to both motor and cognitive GPi. The action selection made
in the cognitive corticostriatal loop is passed to the motor corticostriatal loop
via this divergence and convergence and is used to bias the motor decision.
Within each loop, separate channels represent the decision choices at that level.
Competition for expression occurs between these channels at each level.
Association cortex projects to associative striatum (purple), but is not involved
in a closed feedback loop. Expansions of inputs to each structure are shown in
circles. To avoid confusion, only the inputs are shown; the outputs can be
deduced from the main diagram. The expansions of cortex and STN show
simple 1:1 excitatory inputs. The expansion of the striatum shows 2 cognitive
corticostriatal neurons (in blue), each diverging to innervate 2 associative
striatal neurons, 2 motor corticostriatal neurons (in red) diverging to innervate
a different set of associative striatal neurons, and an associative corticostriatal
neuron (in purple) innervating a single associative striatal neuron. Inputs from
cognitive (motor) cortex to cognitive (motor) striatum are topographic. The
expansion of the GPi shows a divergent STN neuron innervating all 4 GPi
neurons and 4 associative striatal neurons converging to innervate a single GPi
neuron. As with the corticostriatal connection, inputs from cognitive (motor)
striatum to cognitive (motor) GPi are topographic. The expansion of the
thalamus shows the topographic inhibitory inputs from the GPi and the
topographic excitatory feedback from the cortex that forms a corticothalamic
positive feedback loop.
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loops, no matter the physical brain location of the originating cortical
inputs.

To be meaningful, it is necessary that the decision at one level
influence the decision at the other level. There would be no point in
selecting a cue shape based on likelihood of reward for that shape and
then selecting a movement toward the other shape. The model uses
evidence that the loops cannot be entirely separate to suggest an
architecture where there is divergence in the corticostriatal connection
and then reconvergence within the GPi (Graybiel et al. 1994; Parent
et al. 2000). Pyramidal cortical neurons have a somatotopic projection
to striatum (Webster 1961), but also arborize within the striatum
(Cowan and Wilson 1994; Wilson 1987; Parent et al. 2000;
Parthasarathy et al. 1992), usually with specific localized areas of
bouton formation (Kincaid et al. 1998), and specific small cortical
areas innervate the striatum in a discontinuous pattern with areas of
denser innervation separated by areas of sparse innervation (Brown et
al. 1998; Flaherty and Graybiel 1991). There is also a large reduction
in the number of neurons from cortex to striatum to GPi (Bar Gad and
Bergman 2001; Oorschot 1996). These findings combined lead to
striatal areas that are mostly specific for input from one cortical area
alongside areas where there is overlap between inputs from two or
more cortical areas (Takada et al. 2001) and which are here referred
to as associative striatum.

This pattern of innervation is modeled as a somatotopic input from
cognitive cortex to cognitive striatum, and then divergence to specific
adjacent areas of associative striatum, and, similarly, from motor
cortex to motor striatum and adjacent areas of associative striatum.
There is thought to be some convergence from striatum to GPi
because the disklike arrangement of GPi dendrites perpendicular to
incoming striatal axons would maximize the potential convergence of
striatal neurons (Percheron et al. 1984). Also nearby sites in putamen
have been shown to have little overlap in GPi projection (Hazrati and
Parent 1992c), and injection of a retrograde tracer into GPi leads to
labeling of several distinct areas in striatum (Flaherty and Graybiel
1993; Graybiel et al. 1994). This is modeled as a reconvergence from
the arborizations of the corticostriatal connection back to somatotopic
areas of GPi.

With this divergence and reconvergence of the direct pathway
within one loop, one cognitive (motor) cortical channel is involved in
a closed positive feedback CBG loop only with its own cognitive
(motor) channel within its own cognitive (motor) loop (Fig. 3, A and
C). However, the divergence from cortex to association striatum,
followed by the two-way reconvergence of associative striatal areas to
both cognitive and motor GPi, provides cross talk from one loop to the
other (Fig. 3E). This cross talk is, in theory, bidirectional but is only
exploited in one direction in the current model because only the
shapes have different values, not the directions.

The hyperdirect pathway projects somatotopically from cognitive
(motor) cortex to STN (Nambu et al. 1996) and thence diverges
widely to cognitive (motor) GPi (Hazrati and Parent 1992a, 1992b).
With the somatotopic return of the output of GPi to cortex, one
cognitive (motor) cortical channel thus provides negative feedback to
all cognitive (motor) cortical channels via the hyperdirect pathway of
that loop (Fig. 3, B and D).

Association cortex inputs to the striatum are assumed to be a high-
level visual representation that is a conflation of both the cue shape and
position. This is taken as arising from parietal cortical areas. These more
dorsal cortical inputs do not form closed loops with the basal ganglia and
are only an input to associative striatum (Fig. 3F).

Neuronal dynamics. As in the Leblois et al. (2006) study, a
neuronal rate model is used (Hopfield 1984; Shriki et al. 2003; Wilson
and Cowan 1972) to keep neuronal dynamics simple and focus on the
network dynamics. Each set of coactivated neurons, an ensemble,
within each structure is modeled as a single rate neuron with the
following equation:

�
dm

dt
� �m � Is � IExt � T (1)

where � is the decay time constant of synaptic input, m is the output
of the neuron, Is is the synaptic input to the ensemble, IExt is an
external input representing the sensory visual salience of the cue, and
T is the threshold of the neuron. Negative values of activation, m,
were set to zero. Temporal integration of output was performed using
a standard first-order Euler algorithm with 1-ms step. The parameters
for � and T for each structure are shown in Table 1. A negative
threshold means that, at steady state, with no input, the neuron has an
output equal to that threshold. At each time step Gaussian distributed
noise is added to the synaptic input of each ensemble with the mean
being a percentage of the external synaptic input, as shown in Table 1.

The gain of the synaptic connection from population A (presynap-
tic) to population B (postsynaptic) is denoted as GB

A, and the total
synaptic input to population B is:

IS
B � �

A
GB

A mA (2)

where A is the presynaptic ensemble, B is the postsynaptic ensemble,
and mA is the output of presynaptic ensemble A. The gains for each
pathway are shown in Table 2. Gains to the corresponding cognitive
(motor) ensemble are initially five times higher than to each receiving
associational area. Reconvergence from cognitive (motor) and asso-
ciation areas of striatum to cognitive (motor) areas of GPi are evenly
weighted.

Striatal transfer function. Striatal projection neurons are generally
silent at rest (Sandstrom and Rebec 2003), require concerted coordi-
nated input to cause firing (Wilson and Groves 1981), and have a
sigmoidal IV function (nonlinear relationship between input current
and membrane potential) due to both inward and outward potassium
current rectification (Nisenbaum and Wilson 1995). This is modeled
by applying a sigmoidal transfer function to the activation of corti-
costriatal inputs in the form of the Boltzmann equation:

mout � Vmin ·�Vmax � Vmin

1 � e
Vh�min

Vc
� (3)

where min is the input to the transfer function (the activation level of
the cortical inputs in this case) and mout is the output, Vmin is the
minimum activation, Vmax the maximum activation, Vh the half-
activation, and Vc the slope. This is similar to the use of the output
threshold in the Gurney (Gurney et al. 2001) model and results in
small or no activation to weak inputs with a rapid rise in activation to
a plateau level for stronger inputs. The parameters used for this
transfer function are shown in Table 3 and were selected to give a low
striatal output with no cortical activation [1 spikes (sp)/s], starting to
rise with a cortical input of 10 sp/s and a striatal output of 20 sp/s at
a cortical activation of 30 sp/s (see Fig. 8A, inset shows the curve
produced).

Decision making. For each trial, two out of a set of four cues were
shown, each in a randomly chosen cardinal position (North, East,
South, West; excluding cue superposition).

Before the cues were presented, the model was run for 500 ms to
allow the system to settle into its fixed point. When the cues were
shown, the two cognitive cortical ensembles representing the shapes
of the shown cues, the two motor cortical ensembles representing the
directions to move to reach the two cues, and the two associative
cortical ensembles representing a conflation of cue shape and direc-
tion received an additional external input, IExt (Eq. 1), representing the
visual salience of the cue shape and direction. This salience is an
intrinsic property of the visual stimulation of the cue (Itti and Koch
2001), does not change with learning, and was preset at 7 sp/s. A
negative threshold of 3 sp/s was used for cortical neurons to simulate
a low at-rest firing rate (Table 1), giving a total activation of 10 sp/s
when the cues were present.
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A movement was deemed to have occurred when the activation of
one motor cortical ensemble was 40 sp/s greater than that of any other.
A trial was considered successful if a movement occurred in less than
2.5 s after the cues were presented and optimum if the movement was
toward the shape with the higher reward probability.

Learning. In learning simulations, each run consisted of 120 trials
so that each context (combination of 2 out of the 4 cues, 6 possible
combinations) was presented 20 times. The learning rules were
applied after each trial.

In the model, learning occurs only at the corticostriatal synapse
where phasic changes in dopamine concentration have been shown to
be necessary for the production of long-term potentiation (LTP) (Kerr
and Wickens 2001; Pawlak and Kerr 2008; Reynolds et al. 2001).
There may be learning in other structures and pathways within the
basal ganglia, but the aim here was to show that corticostriatal direct
pathway learning was sufficient of itself to produce the behavior under
consideration.

The corticostriatal weight is used as a multiplier to the corticos-
triatal pathway gain to keep the factors of gain and weight separately
observable, although in reality both would be represented together in
the corticostriatal synapse. The synaptic current from cortical ensem-
ble A to striatal ensemble B is given by:

IS
B � �

A
wB

A · GB
A · mA (4)

where wB
A is the weight of the connection from cortical ensemble A to

striatal ensemble B. At the start of each run, all synaptic weights were
initialized to 0.5 (SD 0.005). After each trial, the corticostriatal
weights are updated.

�wB
A � PE · �a · mB (5)

where �wB
A is the change in the weight of the corticostriatal synapse

from cortical ensemble A to striatal ensemble B, PE is the prediction
error, the amount by which the actual reward delivered differs from
the expected reward, mB is the activation of the striatal ensemble, and
�a is the global actor learning rate. Generation of LTP and long-term
depression (LTD) in striatal MSNs has been found to be asymmetric
(Pawlak and Kerr 2008). Therefore, in the model, the actor learning
rate is different for LTP and LTD. For LTP, �a is 0.002; for LTD,
0.001. The PE is calculated using a simple critic learning algorithm.

PE � R � Vi (6)

where R, the reward, is 0 or 1, depending on whether a reward was
given or not on that trial. Whether a reward was given was based on
the reward probability of the cue associated with the direction chosen.

i is the number of the cue chosen, and Vi is the value of cue i. The
value of the chosen cue is then updated using the PE.

Vi ← Vi � �PE · �c� (7)

where �c is the critic learning rate, set to 0.05.
Corticostriatal weights are bounded by a sigmoidal transfer func-

tion (Table 4) to represent physical constraints on synaptic growth
with an absolute maximum of 0.75 and an absolute minimum of 0.25.
These limits are conservative and were selected to show that action
selection can be learned with very small changes in synaptic weights
in this model.

Tools. The model was written in Delphi 7 (Borland 2001). All data,
including model setup information, were automatically saved to Excel
(Microsoft, 2003) after each trial of a simulation and automatically
summarized at the end of each simulation. Regression coefficients
were calculated in Matlab using custom software.

Comparison with experimental data. We also analyzed how neu-
rons from these populations could be classified using statistical
methods previously used in electrophysiology. From a series of 10
runs of 180 trials, the last 140 trials were selected to rule out the
learning period. For these trials, the correlation between the modula-
tion of firing rate of the ensembles was analyzed using a three-way
ANOVA (Selected Shape � Unselected Shape � Direction, P �
0.05), followed by a Fisher post hoc, test on the value of m when it
reached the selection level. We therefore classified neurons as re-
sponding to Direction (A for Action), Selected Shape (Cv for Chosen
value), Unselected Shape (NCv for Non-Chosen value), Direction and
Selected Shape (Av for Action value), and Both Shapes (St for State).
We applied the same method to the experimental data previously
published (Woodward et al. 1995). The value used for the neuronal
response was extracted from a Peri-Stimulus Time Histogram cen-
tered on movement onset with 20-ms bins and smoothed with a
Gaussian window, � � 60 ms. The average firing rate was normalized

Fig. 3. Architecture of action selection model. A: the direct pathway from cognitive cortical ensembles is divergent from cortex to cognitive striatum and one
row of associative striatum. The striatal row then reconverges in one cognitive GPi area and thus forms a closed loop with the original cognitive cortical ensemble.
B: the hyperdirect pathway from cognitive cortical ensembles is widely divergent from STN to GPi, innervating all cognitive, but not motor, GPi regions and
thus feeds back to all cognitive cortical ensembles. C: the motor direct pathway is divergent to cognitive striatum and one column of associative striatum and
reconverges on motor GPi as for the cognitive cortical input. D: as for the cognitive hyperdirect pathway, the motor hyperdirect pathway is divergent to all motor
areas of GPi. E: due to convergence of motor and cognitive pathways in association striatum, the cognitive pathway feeds back not only to the cognitive cortical
area that it originated from, but also to motor cognitive areas, allowing the feed-forward of a decision made in cognitive loops to influence the decision in motor
loops. In this figure, the feed-forward is shown from only one area of associational striatum to one area of motor cortex, but each area of associational striatum
feeds back to the corresponding column of motor cortex. F: association cortex ensembles are open loop to both cognitive and motor cortex.

Table 1. Model neuron parameters in each network structure

Synaptic Decay (�) Threshold (T) Noise, %

Cortex 10 �3 1
Striatum 10 0 1
STN 10 �10 1
GPi 10 10 3
Thalamus 10 �40 1

STN, subthalamic nucleus; GPi, globus pallidus.

Table 2. Standard gains of all pathways in the network

From
Population A To Population B Pathway Gain (G)

Cortex Striatum cognitive ¡ cognitive 1
motor ¡ motor 1
associative ¡ associative 1
cognitive ¡ associative 0.2
motor ¡ associative 0.2

STN cognitive ¡ cognitive 1
motor ¡ motor 1

Striatum GPi cognitive ¡ cognitive 2
motor ¡ motor 2
associative ¡ both 2

STN GPi cognitive ¡ cognitive 1
motor ¡ motor 1

GPi Thalamus cognitive ¡ cognitive 0.5
motor ¡ motor 0.5

Thalamus Cortex cognitive ¡ cognitive 1
motor ¡ motor 1

Cortex Thalamus cognitive ¡ cognitive 1
motor ¡ motor 1
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by subtracting base activity recorded during intertrial interval and
averaged for 200 ms before to 300 ms after.

RESULTS

Dynamic action selection. We first show that the internal
noise is sufficient to bring about the symmetry breaking that is
a prerequisite of action selection and will allow the system to
explore possible actions. In a single trial before learning, where
all corticostriatal weights are set to 0.5 with no variation, action
selection in the model is reliant on synaptic noise to generate
a bias toward one channel. In simulations with no noise, no
action selection occurred (data not shown). The evolution of
the activation of the cortical channels is shown in Fig. 4, with
the two cognitive channels representing the cue shapes in black
and the two motor channels representing the directions in gray.
Because there are four possible cue shapes and four possible
directions, each loop has four channels. Because only two
shapes in two positions are presented on each trial, only two of
the four channels are activated on each trial. The remaining
two channels remain at the background level of activation.

In the 500 ms before the cues are presented, activations of all
channels are similar, varying randomly with synaptic noise.
The large negative threshold in thalamus (Table 1) activates the
hyperdirect pathway loop, but not the direct pathway, because
the striatal transfer function renders the striatal projection
neurons insensitive to this level of cortical input.

When the cues are presented (t � 0), two cognitive, two
motor, and two association cortex ensembles receive external
inputs due to the sensory input of the cues. In the following, we
will refer to this level of cortical activation as the “salience
level” of the external input (due to cue shape in the cognitive
loop and cue direction in the motor loop). The salience level
does not change with learning and is not related to the cue
value learned via reward feedback. Due to the noise in the
positive feedback direct pathway, symmetry breaking occurs in
each loop after the presentation of the cues as follows. Because
the loop gain of the direct pathway is greater than one,
differential activation of one channel due to noise is amplified.
The resultant increased cortical activation of that channel starts
a positive feedback takeoff in that channel, but also increases
input to the divergent, negative feedback hyperdirect pathway,
causing suppression of all channels, but especially the compet-
ing channel. This mechanism is the same as that observed in
the Leblois et al. (2006) model, but does not require an
additional biasing external input, being due simply to the
synaptic noise in the system. Also, the mechanism extends in
the present model to two loops in parallel. In the main panel in
Fig. 4, the cognitive action selection (black line) occurs before
the motor action selection (gray line).

When synaptic weights are the same throughout the net-
work, all cue shapes and directions have the same value. In this

case, the order of the two selection processes is random, and a
trial where the motor action selection is made before the
cognitive action selection is shown in the inset. In this case, the
activation of one motor cortical ensemble passes the threshold
before any cognitive cortical ensemble has reached this level,
so a cognitive decision cannot strictly be said to have been
made, but a motor action is still performed.

Based on these simulations, in all subsequent simulations, an
action selection threshold of a difference of 40 sp/s between
two competing channels was used. As an example, the times
for cognitive and motor action selection for the simulation
shown in Fig. 4 would be t � 1,125 ms and t � 1,190 ms,
respectively.

Learning of action selection. Each learning simulation con-
sisted of 120 trials. Weights were initialized to a Gaussian
distribution with a mean of 0.5 and a SD of 0.005 at the start
of each simulation. Figure 5 shows the evolution of choice
behavior averaged over 250 simulations. The probability of
selecting the optimal cue (the cue with a higher probability of
delivering reward) started at chance level (0.5) and increased to
0.95 � 0.01 during the last 30 trials (Fig. 5, inset). The
difference between the performance in the first and last 30
trials was highly significant (P � 0.0001, one-way ANOVA).
Due to the stochastic nature of reward and cue appearance, the
level of reward gained remained at �75% of trials, even at the
end of the learning period. The maximum level of reward
obtainable with the cue reward probabilities used is 14/18
(77.8%). The learning curve over the 120 trials was fit by an
exponential function (y � 0.5 � 0.5{1 � Exp[� (t � 1)/
13.7]}), where t is the trial number, with R2 � 0.95 (gray
curve). See Table 5.

Over the course of the 120 trials, the average corticostriatal
weight from cognitive cortex to cognitive striatum evolved
under the learning rules to reflect the reward history for each
cue. Figure 6 shows that the average weight for the best cue,
where reward was certain, increased to 96% of maximum by
the end of the run. The weight for the worst cue only decreased
to 44% over the course of 120 trials. The standard error bars for
the cues where the reward is uncertain [cues with P(R) � 0.33,
P(R) � 0.66] are larger than for the deterministic cues. Figure
6, inset, shows the evolution of weights from a single run to
illustrate the noisiness of the evolution, particularly for the
probabilistic cues.

Figure 7 shows the change in time taken for each level of the
action selection. The total time consists of the time taken for
the cognitive action selection plus the additional time after this
for the motor action selection. On the first trial (Fig. 7A), the
time for motor action selection is 0 ms in 54% of cases,
indicating that the motor action selection occurred before or at
the same time as the cognitive action selection. At the end of
learning, on the 120th trial (Fig. 7B), most motor action
selections take between 60 ms and 160 ms after the cognitive
selection. A proportion still take 0 ms, nearly always in the

Table 3. Parameters for striatal sigmoidal transfer function

Parameter Value

Vmin 1
Vmax 20
Vh 16
Vc 3

Vmin, minimum activation; Vmax, maximum activation; Vh, half-activation;
Vc, slope.

Table 4. Parameters for learning sigmoidal transfer function

Parameter Value

Vmin �0.05
Vmax 1
Vh 0.5
Vc 0.1
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P(R) � 0 v. P(R) � 0.33 context (data not shown). This is
because learning has caused a decrease in the average
weight between cortical and striatal populations coding for
the cue shapes (cognitive loop) in this context, so that this
average weight is lower than the average corticostriatal
weight for the direction (motor loop). Direction is, there-
fore, chosen more quickly than shape.

Figure 7C shows that the total time for the action selection,
the time taken to choose both a shape and a direction, de-
creased with learning, as does the time for choosing the shape,
the cognitive action selection. For clarity in the figure, the time
for motor action selection is shown as the duration after the
cognitive action selection has been made and is therefore the
total � cognitive selection time. When this time for motor
action selection is 0 ms, the motor selection occurs either at the
same time step or earlier than the cognitive selection. The time
for motor action selection increased from 20 to 100 ms in the
course of the first 20 trials due to trials in the early stages of

learning where the direction is chosen before the shape (Fig.
7A). Figure 7C, inset, shows the decision time for each trial
from a single run. Again, this illustrates that, for an individual
simulation, the trial-to-trial variation is large.

Interloop information transfer. A consequence of using the
transfer of information between loops to bias selection at one
level on the basis of selection at another level is that the
transfer could bias the wrong channel in the receiving loop. In
the case of the current task simulation, this would mean that a
cue shape would be selected, but that the direction for the other
cue would subsequently be chosen. We define accurate inter-
loop information transfer as when the direction of movement
selected in the motor loop is consistent with the cue shape
chosen in the cognitive loop, whether or not the better cue
shape was chosen. In the first few trials of a run, when weights
in both loops were close to equal, the choice of direction was
not related to the choice of shape. However, over the course of
a complete run of 120 trials, accurate interloop information
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1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
First 30 Last 30

0                         20                       40                        60                        80                       100                      120

Trial number

Pr
op

or
tio

n 
of

 o
pt

im
um

 tr
ia

ls

Pr
op

or
tio

n 
of

 o
pt

im
um

 tr
ia

ls

*
Fig. 5. Learning time course over 120 trials,
averaged over 250 simulations. All trials
were successful in that a direction was cho-
sen. The learning curve (black) for the
choice of the optimum cue could be approx-
imated by an exponential (light gray) y �
0.5 � 0.5 � {1 � Exp[�(t � 1)/13.7]} with
an R2 of 0.95. Performance reached plateau
of �0.95 by the 60th trial. Inset: the perfor-
mance significantly improved in the last 30
trials with respect to the first 30 (*P �
0.0001, one-way ANOVA).
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transfer occurred in 99.6% of trials, with each trial being
averaged over 250 runs. This performance did not change
between the first and last 30 trials, showing that the model
learned to choose the direction associated with the chosen cue
shape very quickly.

Because the association striatum is the site of convergence
and divergence of the two loops, we investigated the correla-
tion between the level of striatal activation with interloop
information transfer. The overall striatal activation, which was
defined as the count of the 24 striatal ensembles (4 cognitive,
4 motor, 16 associative; Fig. 3) having an activation of 	1.5
sp/s at the end of the trial, averaged 4.09 (SD 0.12) over all 120
trials of 250 runs. Simulations were then run with lower values
of the striatal transfer function half-activation parameter (Vh) to
shift the transfer function to the left (Fig. 8A, inset). As Vh was
decreased, the number of striatal ensembles activated on each
trial increased (Fig. 8A, line, right y-axis), and the proportion of
trials on which the shape chosen matched the direction chosen
decreased (Fig. 8A, bars, left y-axis). The minimum number of
activated striatal ensembles at the end of a trial would be
expected to be three (Fig. 8B, Vh � 16, shape and direction
matched, activated ensembles circled): one each in cognitive
and motor and, at the intersection of the two, one in association
striatum. As Vh was decreased, whole columns and rows in
association striatum became activated, leading to cross talk
between channels when transferring the information from one
loop to another (Fig. 8C, Vh � 14, shape and direction did not
match).

Robustness to noise. The presence of synaptic noise is
necessary to induce symmetry breaking, thus allowing action
selection, before learning, without introducing an artificial bias
between channels. However, it was possible that this necessary
level of noise before learning would interfere with the learned
cue-response association and reduce the system’s performance
after learning. To investigate the robustness of the model to
noise, simulations were performed with increasing levels of
synaptic noise. The noise was inserted in the model as an
additional synaptic input current, simulating the effect of
variable packet size and variable rates of synaptic transmission
failure. The noise value was drawn independently at each time
step from a Gaussian distribution with zero mean and a
standard deviation of a proportion of the mean total synaptic
input to the neurons. Simulations were performed with the
same noise level inserted into all structures. At each level of
noise, 50 runs of 120 trials were performed.

Figure 9, top, shows the proportion of trials where the
optimum target was chosen. Final performance decreases with
increasing noise levels, falling to 0.7 in the last 30 trials with
30% noise. The performance in the final 30 trials is better than
in the first 30 for all levels below 100%, showing that there is
learning, even with high amounts of noise. The proportion of
trials on which the cue shape chosen was consistent with the
direction is shown in Fig. 9, bottom. As with the optimum
performance, this decreased with increasing noise, falling to
0.73 with 40% noise, with little difference between the first and
last 30 trials for all noise levels.

Overall, even for high levels of noise, the change in corti-
costriatal synaptic weights was sufficient to guide the correct
cue-response behavior after learning, and reasonable amounts
of noise only marginally affected the performance of the
system at the end of learning.

Requirement for association cortex inputs. The open-loop
input to associative striatum is a high-level visual representa-
tion of a conflation of cue shape and position arising from
association cortex. Simulations were performed to determine if
this input was necessary in the model. To this end, the weight
of inputs from association cortex to associative striatum was
set to zero. To provide sufficient input to activate the striatal
projection neurons, the weights of inputs from cognitive and
motor cortex to associative striatum were increased from 0.2 to

Table 5. Parameters for exponential curves to fit learning of
each of the six contexts (combination of two cues)

Context � R2

0 v 0.33 10.9 0.90
0 v 0.66 1.03 0.93
0 v 1 035 0.95
0.33 v 0.66 2.82 0.93
0.33 v 1 0.67 0.94
0.66 v 1 3.35 0.88

Each exponential is of the form y � 0.5 � 0.5{1 � Exp[(t � 1)/�]}, where
t is the time step and � is the time constant for the exponential. R2 values show
how good the fit was for each exponential.
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Fig. 6. Evolution of normalized cognitive cor-
ticostriatal synaptic weights for each of the
four cues. Weights at each trial are averaged
over 250 runs. Shaded bars represent standard
deviation. The average weight for the P(R) �
1 cue reaches 0.93 (SD 0.018) at the 60th trial.
The average weight for the P(R) � 0 cue
declines gradually, but has only decreased to
0.44 (SD 0.045) by the final trial. The average
weight for the P(R) � 0.66 cue is still increas-
ing at the end of the simulation, and therefore
the difference from the weight of the best cue
is still decreasing. The error bars for the prob-
abilistic cues are larger than for the determin-
istic cues. Inset: evolution of weights from one
run. The changes are more steplike, as not
every cue is seen or chosen in every trial. In
this particular run, the weights of the P(R) �
0.33 and P(R) � 0 cues were virtually identi-
cal over most of the simulation, but the wrong
cue was only chosen once in 20 presentations
of this combination.
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0.3. The model was still able to select a direction with a 98.4%
success rate. On comparison with the model having association
cortex inputs, there was no reliable difference in success rate
(trials in which a motor action was performed), but the pro-
portion of optimum trials decreased significantly from 0.91
(SD 0.078) to 0.50 (SD 0.072) (P � 0.01 Wilcoxon rank sum
test), and the proportion of rewarded trials decreased from 0.74
(SD 0.05) to 0.49 (SD 0.078) (P � 0.01 Wilcoxon rank sum
test) (Fig. 10). There was no significant change in the time
taken for the selection of a direction. The number of striatal
units activated at the end of action selection increased from
4.09 (SD 0.12) to 7.74 (SD 0.70). When the weight of the
corticostriatal connections to associative striatum was set back
to 0.2, action selection did not occur (data not shown).

Striatal and pallidal neurons encode multiple parameters.
This double-arm bandit task was originally developed for an
experimental approach in primates (Pasquereau et al. 2007).
Using a multiparametric analysis, it was shown that striatal and
pallidal neurons covary with various task parameters during the
decision, such as the value of the chosen shape, the nonchosen
shape, both, and/or the direction of the movement (Garenne et
al. 2011). This demonstrated that both structures encoded the
value of the action by a reshaping of the neuronal tuning curves

by the choice value (Pasquereau et al. 2007), and that the
modulation of the neuronal activity in the GPi predicts faith-
fully the animal’s choice (Garenne et al. 2011). We therefore
compared neuronal ensembles in the striatum and GPi, both in
the experimental data set and in data simulated from our model
using a three-way ANOVA (Selected Shape � Unselected
Shape � Direction, P � 0.05). We found neurons encoding the
value of the selected shape, the value of the unselected shape,
the direction of movement, and the action value (selected
shape � direction of movement) in both striatum and GPi in
the model data (Fig. 11). The distribution is slightly different in
the model from the recorded data, but it is difficult to infer
anything from this difference because of various biases (sam-
pling bias during recording, etc.).

DISCUSSION

It has previously been shown that the center-surround archi-
tecture of Mink (1996) provides a credible model for action
selection (Gurney et al. 2001; Leblois et al. 2006; Redgrave et
al. 1999). In the present study, the model of Leblois (2006) has
been extended in three main directions based on the anatomy
and physiology of the basal ganglia. Each of these extensions
has produced emergent network properties that are in agree-

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0

1000
900
800
700
600
500
400
300
200
100

0

1000

900

800

700

600

500

400

300

200

100

0

0               20              40              60              80             100            120

Total

Cognitive

Motor

BA

C

0

1-
20

21
-4

0

41
-6

0

61
-8

0

81
-1

00

> 
10

0 0

1-
20

21
-4

0

41
-6

0

61
-8

0

81
-1

00

10
1-

12
0

12
1-

14
0

14
1-

16
0

16
1-

18
0

18
1-

20
0

> 
20

0

0                        20                      40                       60                       80                     100                     120

Trial number

Trial number

Ti
m

e 
(m

s)
Pr

op
or

tio
n 

of
 o

cc
ur

re
nc

es

Pr
op

or
tio

n 
of

 o
cc

ur
re

nc
es

Time to motor action selection (ms)Time to motor action selection (ms)
Ti

m
e 

(m
s)

Fig. 7. The average time taken for action
selection over 120 trials decreases with
learning. Data was averaged over 250 runs.
Average time taken to motor action selection
on the first trial (A) and the 120th trial (B) is
shown. In the first trial, the motor action
selection was made before the cognitive ac-
tion selection approximately one-half of the
time, giving a time to motor action selection
of zero. In the last trial, the cognitive action
selection tended to occur 60–160 ms before
the motor action selection. Some trials con-
tinued to have a motor action selection time
of zero due to having only small differences
between synaptic weights. C: the total time
taken decreases with learning, as does the time
taken for the cognitive decision. The time taken
for the motor decision increases to an asymp-
tote after 20 trials. Bars are standard error.
Inset: decision durations for a single run show-
ing the greatly increased variation compared
with the average with periods of slower deci-
sion making possibly demonstrating explora-
tion.
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ment with known experimental findings, without losing the
four dynamic regimes seen in the model of Leblois et al.
(2006). First is the use of synaptic noise to cause the symmetry
breaking that leads to action selection during the exploration
phase, before the values of the cues are learned. This is in
marked contrast to previous models where action selection has
been initiated by setting one input higher than the other.
Second, a second parallel loop was added to model two
different levels of action selection. This incorporates the sus-
pected anatomical cross-connections between CBG loops and
gives rise to the property that the action selection at one level
can influence the selection at the other level. Additionally, for
this transfer of information between loops to be accurate, most
striatal units have to remain silent, an emerging property that
fits with known striatal electrophysiology. Third, action selec-
tion can be learned in a realistic manner using a simulated
dopamine error prediction signal. The learning occurs at a rate
comparable to that seen in nonhuman primates performing the
same task and results in activation of GPi ensembles to various
task parameters in proportions similar to those found in non-
human primates (Garenne et al. 2011; Pasquereau et al. 2007).
With learning, units representing different task parameters are
found in all areas of model GPi, an electrophysiological finding
that has questioned the existence of segregated CBG loops, but
is here explained by the interloop information transfer.

Comparison of action selection mechanisms. To resolve the
competition and select only one of the possible actions, it is
necessary to implement a form of “winner takes all” network.
Many previous computational models of action selection have
relied on a striatal competition network based around a mutual
lateral inhibition mechanism (Alexander and Wickens 1993;
Bar Gad and Bergman 2001; Groves 1983; Koter and Wickens

1998; Suri and Schultz 1999; Woodward et al. 1995) or an
equivalent algorithm that implies the lateral inhibition (Frank
2005; Frank et al. 2001; O’Reilly and Frank 2005). This was
based anatomically on the extensive recurrent dendritic field of
the inhibitory projection neurons of the striatum, medium spiny
neurons (MSNs) that, potentially, innervate thousands of other
local MSNs (Oorschott 1996) and could, therefore, implement
a lateral inhibition network where the activity of the dominant
neuron would suppress the activity of all other local neurons.
When demonstrated experimentally, recurrent inhibition has
been found to be very weak compared with feed-forward
inhibition (Jaeger et al. 1994; Koos et al. 2004; Tunstall et al.
2002), with no studies reporting any instances of mutual
inhibition between two MSNs and synapses on tertiary den-
drites that are electrically distant from the soma. Also, MSNs
are mostly silent in anesthetized rats (Wilson and Groves
1981), display very sparse activity in freely moving rats in vivo
(Kiyatkin and Rebec 1996), and require a barrage of coordi-
nated excitatory input to induce firing (Wilson 1995). These
findings combined throw doubt on the efficacy of a lateral
inhibition based “winner takes all” mechanism in the striatum.

An alternative role for lateral inhibition in creating synchro-
nized striatal ensembles has been proposed (Carrillo-Reid et al.
2008). The resting membrane potential of the MSN is hyper-
polarized, a so-called down state (O’Donnell and Grace 1995;
Wilson and Kawaguchi 1996). As the reversal potential of
inhibitory inputs is approximately �65 mV (Kita 1996), and
therefore greater than the resting membrane potential, GABAergic
inputs in the down state provide shunting inhibition, lifting the
membrane potential. Inhibitory inputs to MSNs have been
shown to prolong striatal depolarization plateaus (Florès-Bar-
rera et al. 2009). Cortical stimulation of striatal slice prepara-

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

20

18

16

14

12

10

8

6

4

2

0

20
18
16
14
12
10

8
6
4
2
0
0         5       10       15       20      25

Decreasing Vh

16                    15.5                    15                    14.5                    14                    13.5

Vh=16

Vh=14

Vh

Associative

Associative

Cognitive

Cognitive

Motor

Motor
A

S
tri

at
al

 A
ct

iv
at

io
n

Cortical Activation

B

C

P
ro

po
rti

on
 s

ha
pe

 a
nd

 d
ire

ct
io

n 
co

ns
is

te
nt

N
o. of striatal ensem

bles activated

Fig. 8. The effect of shifting the striatal transfer function to the left on the proportion of trials in which the shape chosen matched the direction chosen. A, bars:
the proportion of the 120 trials, averaged over 50 runs, where the shape chosen matched the direction chosen (left axis), error bars are standard deviation. Line:
average number of striatal ensembles activated on each trial as a function of the striatal transfer function half-activation parameter, Vh (right axis). The lower
the number of striatal ensembles activated, the better the performance of the model in terms of intraloop information transfer. Inset: striatal transfer function with
Vh � 16. Decreasing Vh shifted the transfer function curve to the left so that striatal ensembles could be activated by lower levels of cortical input. B:
representative final striatal activations for a trial where Vh � 16, before learning. Three striatal ensembles are activated (circled): one cognitive, one motor, and
one associational ensemble at the intersection of the two. C: representative final striatal activations for a trial where Vh � 14, before learning. In this trial, the
shape chosen did not match the direction. The whole associational striatal row receiving collaterals from cognitive cortex is activated, as well as the associational
column receiving collaterals from motor cortex. Interloop information transfer has failed due to striatal overactivation.

3034 TWO-STAGE ACTION SELECTION

J Neurophysiol • doi:10.1152/jn.00026.2013 • www.jn.org

 at C
N

R
S

/IN
IS

T
 on June 17, 2013

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


tions results in synchronized activation of groups of 20–30
MSNs (Carrillo-Reid et al. 2008). Application of a GABAA
antagonist desynchronized these ensembles. These findings
suggest that the role of lateral inhibition between MSNs is to
synchronously activate an ensemble of neurons. Such a pro-
posal is the opposite of a lateral inhibitory “winner takes all”
network and could be described as a lateral inhibitory striatal
ensemble. In addition Carrillo-Reid et al. (2008) noted that
there was a small degree of overlap in the neurons activated in

different ensembles. This fits in with the proposed architecture
of the associative stratum where the convergence of cognitive
and motor cortical inputs would activate individual neurons in
more that one ensemble. To fit with the architecture used in the
current model, it would also be necessary to show that the
output of a striatal ensemble reconverged at the GPi level.
While it has been shown that a retrograde tracer injected into
GPi labels several distinct areas in striatum (Flaherty and
Graybiel 1993), to verify the model architecture would require
that the anterograde activation from cortex be shown to overlap
with the retrograde labeling. The current model demonstrates a
viable mechanism for action selection. If lateral inhibition were
present in the striatum, this would be complementary to the
network mechanism presented here and would serve to en-
hance the efficiency of basal ganglia action selection.

Role of the hyperdirect pathway. In this model, the hyper-
direct pathway provides a divergent negative feedback to all
the channels in its own loop. This acts to suppress all nonse-
lected channels. Other functions have also been proposed for
this pathway. In the original center surround architecture of
Mink (1996), the hyperdirect pathway acted to suppress all
channels at the start of an action selection process because of
its shorter conduction times than the direct and indirect path-
ways. This could be interpreted as a sort of clear function, but
has more recently also been used as a switch function (Isoda
and Hikosaka 2008). Such a function would be compatible
with the function of the hyperdirect pathway modeled here and
would provide an extension for modeling sequential decisions.
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Fig. 9. Robustness of learning and interloop
information transfer to synaptic noise. Gauss-
ian noise with a zero mean was applied to
synaptic inputs to all structures. The standard
deviation of the noise (measured as a propor-
tion of the total synaptic input) was varied on
all synaptic inputs to assess model robust-
ness. 50 runs of 120 trials were performed for
each level of noise. Top: with increasing
levels of synaptic noise, the proportion of
trials in which the optimum target was chosen
decreased, but there was always learning be-
tween the first 30 (lower dashed line) and last
30 trials (upper dashed line). Bottom: with
increasing levels of synaptic noise, the pro-
portion of trials in which the cue shape and
direction were consistent (T � T by D),
averaged over all trials, decreased, but did not
change with learning.
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Role of the indirect pathway. An indirect pathway has not
been included in this modeling study for various reasons. In the
first instance, the aim of the study was to use the minimal
circuitry necessary to demonstrate two-level decision making.
Roles proposed for the indirect pathway include capacity
scaling (Gurney et al. 2001) and as a NoGo pathway (Frank
2005; Frank et al. 2001). Neither of these roles was relevant to
the task under consideration, but further discussion of these
points can be found in Leblois et al. (2006). Future studies are
planned to include a role for this pathway in controlling
duration of action selection.

Network learning. Before learning, there is no reason to
choose one cue over any other, which is reflected in the model
by starting corticostriatal weights for all cues being the same
(with some initial variation). When the relative gains of the
direct and hyperdirect pathways placed the model in the sym-
metry breaking area of phase space, action selection was
induced by the presence in the model of reasonable levels of
synaptic noise, such as those found experimentally in the GPi
(Boraud et al. 2000; Brotchie et al. 1991). Before learning, this
provides a mechanism to perform a random action selection
that can start the exploration of the space of action values.
Another mechanism that has been proposed for this exploration
phase is chaotic activity within the globus pallidus externa-
STN loop (Chakravarthy et al. 2010; Kalva et al. 2012). This
mechanism is not incompatible with the synaptic noise used
here and would provide an interesting extension to this model,
allowing the study of control of the exploration phase.

Learning within the model was implemented only at the
corticostriatal synapses and was sufficient to produce rapid
learning with an exploratory and an exploitatory phase. The
evolution of corticostriatal weights for the four cues shows a
divergence within the first 30 trials (Fig. 6), which is sufficient

to increase the performance of the model from chance to a
probability of 0.9 in choosing the optimum cue (Fig. 5). This
implies that, at this point, it is no longer synaptic noise driving
the action selection, but the learned values of the cues reflected
in their relative corticostriatal synaptic weights. This change in
synaptic weights provides the bias between the two channels
such that identical cortical input signals are differentiated.
When the bias provided by the learned synaptic weights takes
over action selection, the noise that was necessary for action
selection at the start of learning does not impair learned
performance. Indeed, the model was very resistant to noise,
and optimal cue-response associations were still performed in
more than 70% of the trials for noise levels as high as 30% of
the mean external synaptic input in all structures (Fig. 9A).
Such a high level of robustness to noise is a somewhat
surprising emergent property of the model architecture. The
basal ganglia have also been shown to be involved in reversal
learning (Cools et al. 2001; Lawrence et al. 1999). The mini-
mal decreases in the corticostriatal weights for the worst cues
(Fig. 6) suggest that this model architecture would be able to
rapidly reverse choice behavior when reward contingencies are
changed.

To concentrate on the function of the actor in decision
making, the critic has been modeled at a very basic level to
track the value of cues. We are currently developing a bio-
physically based model of critic learning that we hope to ally
with our model of the actor in future studies to extend the
model functionality to a full actor-critic representation.

Two-level action selection. The main extension made for this
version of the action selection model was the addition of a
second, parallel, partially segregated CBG loop. This was
based on both theoretical considerations and electrophysiolog-
ical data. A decision made at a higher cognitive level, such as
deciding to seek food rather than drink, must influence lower
level decisions to be acted upon. This hierarchy of decision
making was visible in the data from Pasquereau et al. (2007)
because the experimental design included two decision points,
separated in time: first when the cue shapes are shown, and
then when the signal to make a movement was given. This
temporal separation should not be necessary for multilevel
decision making but exposed the two-stage neuronal reaction.
Given that action selection is a property of a segregated CBG
loop, for one level of decision making to influence another,
there must be information transfer between the loops involved
in different levels. This property of the model provides an
opportunity to reconcile the debate between segregated and
overlapping direct pathway corticostriatal loops by suggesting
an architecture where each segregated loop processes decision
making at its own level and makes available the results of that
decision to other levels via cross talk between the loops. We
have here implemented this information transfer as a diver-
gence of inputs from cortex to striatum followed by an orthog-
onal reconvergence from striatum to GPi. While this seems a
reasonable interpretation of the known anatomy (see MATERIALS

AND METHODS, Model architecture, Figs. 1 and 3), it is not
crucial to the model function, and other schemes of informa-
tion transfer could be proposed. The model design allows
bidirectional information transfer between loops, a conse-
quence of which was that, in early trials, a direction could be
selected before a shape leading to a motor bias of cue selection.
In this situation, the correct shape was generally well on the

Fig. 11. Comparison of task parameters in experimental and model neurons in
striatum and GPi. Experimental data from Pasquereau et al. (2007) are shown
on the left. Both striatum and GPi code for many parameters at the start of
movement. Simulated data (right) show that, in striatum and GPi, there are
more neurons coding for the action value and less not reacting to any parameter
than in the experimental data. A, action; Av, action value; Cv, chosen cue
value; NCv, nonchosen cue value; St, state value; NR, nonreacting.
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way to being selected (Fig. 4, inset) and was thus correctly
reinforced during the learning phase. Whether such a mecha-
nism is present in the animal basal ganglia is not clear and
would require the design of an experiment that could be run
with learning of cue values at either of two levels. Anatomical
evidence from the dopaminergic critic system suggests that
there is a spiral of influence running from ventromedial to
dorsolateral basal ganglia regions (Haber et al. 2000). How-
ever, because neurons that encode motor parameters are found
throughout the GPi (Garenne et al. 2011), this directionality of
influence is unlikely to be present in the actor structures. We
would predict that an experiment where the value was based
on the motor action, not the cognitive action selection,
would still lead to activation of neurons in GPi to cognitive
aspects of the cue.

With learning, the time for action selection decreased (Fig.
7). The time from cue onset to the cognitive decision was
always greater than the subsequent time from cognitive deci-
sion to the motor decision. This is because the transfer of
information from the cognitive to the motor loop started as
soon as the two channels in the cognitive loop started to
diverge and did not have to wait until the cognitive action
selection had been completed (Fig. 4). This means that the
interloop information transfer allows parallel processing in
multiple loops rather than sequential decision making from one
loop at a time, a property that would decrease the time taken
for multilevel decision making.

Interloop information transfer. Using this architecture, in-
terloop information transfer was effective, with the direction
matching to the shape in over 99% of trials, thus enabling
accurate two-stage action selection. This did not significantly
change between the early and late periods of the learning
protocol, showing that this is an intrinsic property of the
connectivity of the model and not related to the learning. As
the striatal transfer function curve was shifted to the left by
decreasing the half-activation parameter, Vh, the proportion of
trials in which the shape matched the direction decreased
drastically alongside a parallel increase in the number of
striatal units activated (Fig. 8). This suggests that, for accurate
interlevel information transfer, it is necessary to activate only
those association striatal units that have convergence from both
sensory levels of one cue (shape and direction). As the number
of activated striatal units increases, association striatal units
with convergence of one sensory level from each of two
different cues (i.e., the shape from one cue and the direction
from another) increases, leading to possible selection of the
wrong direction, even when the more valued shape is chosen.
The advantages accruing from the ability to accurately perform
multilevel selection suggest that such as a system would
emerge from evolution in a neuro-Darwinian fashion. The
known properties of the striatal projection neurons, including
the hyperpolarized resting state due to an inwardly rectifying
potassium current (Jiang and North 1991; Nisenbaum and
Wilson 1995) and the requirement for a concerted excitatory
barrage to depolarize the neurons to the firing threshold (Wil-
son 1995), provide a network that has the required properties
for accurate interloop information transfer.

The distribution of neurons that encode each parameter of
the action selection in striatum and GPi are slightly different to
those found in monkeys and show that motor parameters can be
represented in cognitive areas and vice versa. The most striking

difference is an oversized population which encodes Action
Value at the striatal level and to a lesser extent in the GPi in the
model. This may be accounted for because the monkeys were
overtrained over a considerable period to prelearn the shape
values before the behavioral measurements and electrophysio-
logical recordings were made. This may also have led to some
transfer to cortical learning that is beyond the scope of the
present model (Pasupathy and Miller 2005; Turner and Des-
murget 2010). Also, we have only modeled the neurons in-
volved in the task under consideration, whereas neurons re-
corded in the monkey, especially in the striatum, may well not
be involved in performance of the task. However, the critical
point here is that the heterogeneity of the neuronal correlation
with task parameters emerges from the dynamic properties of
the network. Neurons belonging to the same subpopulations
and involved in the same networks can covary with different
parameters according to the randomness of their connectivity
properties. This also provides an explanation for why anatom-
ical and electrophysiological studies provide a conflicting pic-
ture of the separation of loops in the GPi. For example, neurons
belonging to the motor loop (i.e., projecting back to motor
cortical area through the thalamus) can covary with cognitive
parameters such as cue shape value.

Within the basal ganglia, there are more than two parallel
loops. The actual number of separate loops is debated, but, for
instance, motor, occulomotor, prefrontal, and limbic have been
described (Alexander and Crutcher 1990). This would allow
decision making at multiple levels. Clearly the architecture of
this model could be extended to incorporate more parallel
loops. Whether such a model would require communication
only between adjacent loops or between all loops simultane-
ously is not clear. From a theoretical point of view, it would not
seem advantageous to communicate across multiple levels
because a high-level need, such as thirst, would not be able to
sensibly inform a decision on movement without an interven-
ing decision level based on the value of the current environ-
mental cues to satisfy the need. This would suggest that it is
more likely that parallel loops communicate mainly with ad-
jacent loops.

Learning of action selection outside the basal ganglia. This
model considers only decision making implemented by CBG
loops, with learning at the level of the striatum. There have
been many studies that also show decision-making processes in
parietal cortex (Bollimunta et al. 2012; Platt and Glimcher
1999; Shadlen and Newsome 2001), prefrontal cortex (Bechara
et al. 1999; Hoshi et al. 1999; Rainer et al. 1998), orbitofrontal
cortex (Padoa-Schioppa and Assad 2006; Wallis and Miller
2003), dorsolateral cortex (Wallis and Miller 2003), premotor
cortex (Cisek and Kalaska 2005; Hernàndez et al. 2002; Schall
2001), and superior colliculus (McPeek and Keller 2002;
Wurtz and Albano 1980). Most of these areas are connected to
CBG loops where the cortical activity observed could be that
observed in the cortical ensembles during action selection in
this model. However, there is also learning in these areas, and
decision making may be occurring in parallel to that of the
CBG loops. Pasupathy and Miller (2005) showed that the basal
ganglia learning was more rapid than prefrontal cortical and
suggested that the basal ganglia trains the cortex. Based on this,
learning in the current model was restricted to corticostriatal
synapses with the possibility of examining cortical transfer in
later versions.
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Role of association cortex. When the association cortex was
lesioned, the model was unable to perform accurate two-level
decision making, choosing the optimum direction significantly
less often (Fig. 10). This shows that the model requires a
conflation of the different sensory aspects of the cues to
correctly pass decision making from one level to another. If
there is no visual association between cue shape and direction,
the model cannot create that association itself and will there-
fore randomly choose a direction, no matter what shape is
chosen.

It has been shown that subjects suffering from amnestic mild
cognitive impairment, a precursor of Alzheimer’s disease
where the medial temporal lobe is damaged, also have prob-
lems with complex decision making (Myers et al. 2003; Nagy
et al. 2007), although different from those seen in Parkinson’s
disease. Based on the findings here, we would predict that these
deficits are due to an inability to conflate the sensory dimen-
sions of a task as an input to the basal ganglia.

Conclusion. In ethological situations, animals generally
have to perform multiple-level decision making to satisfy
goals, e.g., a primary need, such as thirst, has to bias multiple
lower cognitive and motor levels of decision making in a
coordinated fashion to satisfy the need. The basal ganglia are in
a privileged position, receiving cortical input representing all
levels of possible choices into feedback loops that are largely
separated for the different levels of decision making. In this
model, we show how decision making could be processed in
each parallel loop and the results at one level passed to the
next. The unusual electrophysiological properties of the striatal
projection neurons have long been of interest, but the func-
tional significance of the difficulty of making them fire has not
been obvious. The findings of this model suggest that this is the
precise property that is required to learn accurate multilevel
decision making. With this property, multilevel decision mak-
ing becomes an emergent property of the basal ganglia
network.
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