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Abstract—OBJECTIVE: The envelope following
response (EFR) is a clinically relevant evoked potential,
reflecting the synchronization of the auditory pathway
to the temporal envelope of sounds. Since there is
no standard analysis of this potential, we here aim at
contrasting the relative accuracy of known time-frequency
methods and new strategies for the reliable estimation
of the EFR amplitude and latency. METHODS: The EFR
was estimated using explicit time-frequency methods:
the Short-Term Fourier Transform (STFT) and the Morlet
Continuous Wavelet Transform (CWT). Furthermore,
the Chirp Analyzer (CA) was introduced as a new tool
for the reliable estimation of the EFR. The applicability of
the methods was tested in animal and human recordings.
RESULTS: Using simulated data for comparing the
estimation performance by each method, we found that
the CA is able to correctly estimate EFR amplitudes,
without the typical bias observed in the STFT estimates.
The CA is more robust to noise than the CWT method,
although with higher sensitivity to the latency of the
response. Thus, the estimation of the EFR amplitude with
any of the methods, but especially with CA, should be
corrected by using the estimated delay. Analysis of real
data confirmed these results and showed that all methods
offer estimated EFRs similar to those found in previous
studies using the classical Fourier Analyzer. CONCLUSION
AND SIGNIFICANCE: The CA is a potential valuable tool for
the analysis of the EFR, which could be extended for the
estimation of oscillatory evoked potentials of other sensory
modalities.
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I. INTRODUCTION

HE envelope following response (EFR) is a scalp-

recorded evoked potential that reflects the phase-locked
neural activity of sensory pathways to amplitude modula-
tions (envelope) of environmental stimuli [1], [2]. In the audi-
tory domain, the EFR can be elicited by tones or broadband
noise, modulated in amplitude by a chirp, i.e. a continuous
sweep of modulation frequencies, each of which will be
called hereinafter instantaneous modulation frequency (IMF).
In some cases, the IMF increases linearly during the first
half of the stimulus and decreases in the second half, with
the same rate [1]-[3] (see Supplemental Material, Section A).
If the sweep of IMFs is slow enough, the amplitude of the
EFR can be interpreted as a measure of the capability of the
neuronal system to respond to each IMF [2]. The EFR can
also be evoked by natural vowels, thus reflecting the auditory
processing of acoustic features of speech sounds [4]-[6].

The EFR could be clinically valuable for objectively eval-
vating the outcome of hearing aids, optimizing the fitting
process of the hearing devices [5], [7]. As an objective mea-
surement of temporal auditory processing, the EFR might be
used in the diagnosis of speech disorders, including word deaf-
ness, deficits in speech discrimination, and dyslexia [8], [9].
Some of the advantages of evaluation tools based on estimated
EFRs are the possibility of eliciting auditory responses using
natural stimuli (running speech or stimuli with similar spectral
components), the implementation of relatively short hearing
tests, and the potential of detecting neural responses using
statistical tests [4], [5], [10]-[12]. However, the extended
clinical use of the EFR requires standard procedures for the
acquisition and analysis of the response. Studies comparing the
accuracy of the methods used to estimate this evoked potential
are not available and their limits of applicability need to be
established.

Methodologies for the analysis of the EFR that are based
on fixed-frequency transforms (e.g., the discrete Fourier trans-
form) are effective if steady-frequency stimuli are used [13].
However, the analysis of EFRs elicited by natural sounds
with non-stationary envelope, such as speech, requires the use
of time-frequency methods [14]. Consequently, the EFR has
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been analyzed using Complex Demodulation methods [15],
Short Time Fourier Transform (STFT) [12], [16], and the
Continuous Wavelet Transform (CWT) using Morlet complex
functions [17], [18]. Nevertheless, the Fourier Analyzer (FA)
is the most widely used method in the analysis of the
EFR [2], [5]-[8], [10], [11], [19].

There are also several methodologies for the analysis (and
estimation) of the EFR latency, which is a critical parame-
ter that allows for establishing the neural generators of the
response. The latency of the EFR has been calculated as
the time shift that maximizes the linear statistical correla-
tion between the envelopes of the stimulus signal and the
electrophysiological response [13]. However, in most cases,
the apparent latency of the EFR is estimated based on an
assumed linear relationship between the amplitude modulation
frequency of the stimulus and the phase difference between
the stimulus and the response, as determined by using the
Fast Fourier Transform (FFT) or the FA [2], [3]. These
methods assume that the electrophysiological signal is sta-
tionary and to our knowledge, no attempts have been done
to estimate the latency for EFRs elicited by non-stationary
stimuli.

In this work, we compare the accuracy of time-frequency
methods for the analysis of the EFR, stressing their advantages
and drawbacks in different scenarios. Furthermore, we intro-
duce an “Envelope analyzer” as a novel methodology for
the reliable estimation of this kind of response. Its rationale
is similar to that of the Fourier Analyzer (FA) [2], [20]
but instead of the classical Fourier basis, it uses the same
non-stationary modulation signals of the stimuli (e.g. chirps)
as the reference function. This follows the hypothesis that the
response will match the amplitude envelope of the stimulus,
and that the use of this reference function will lead to a more
precise estimation of the response. In this work, we restrict the
“Envelope Analyzer” to a particular chirp signal, and therefore
we will call it Chirp Analyzer (CA). We compare the relative
performance of the CA with that of other time-frequency
methodologies. In this sense, the traditional FA is implicitly
included in the comparison, as it can be derived from the
STFT. Finally, we evaluate a new amplitude-based method-
ology to estimate the latency of the EFR, by measuring the
time interval between the onset of every IMF in the stimulus
and the maximum amplitude of the estimated response at the
corresponding frequency. For these purposes, we use simulated
data to validate the methods and illustrate their performance
on real auditory responses of human and animal models.

Il. METHODS
A. Estimating the Amplitude of the EFR

In this section, we briefly describe the two time-frequency
methods used in this study for the estimation of the EFR:
the Short Time Fourier Transform (STFT) and the Continuous
Wavelet Transform (CWT) using Morlet complex functions.
Furthermore, we introduce the Chirp Analyzer (CA).

1) Short-Time Fourier Transform and Fourier Analyzer: We
used the Goertzel algorithm to estimate the STFT (discrete
version) at predetermined frequencies. Then, the estimated

EFR was extracted as the absolute value of the complex
Fourier coefficients in the time-frequency points that cor-
respond to each instantaneous modulation frequency (IMF)
of the stimulus. By using a rectangular window function,
the STFT reduces to the Fourier Analyzer (FA) described
in the literature [2], [20], which consists in correlating -in
time domain- the signal in each temporal window with the
sine/cosine reference functions for the IMF corresponding to
the center of the window. Nevertheless, the performance of the
STFT did not largely differ when different window functions
(rectangular, Hamming, Hann) were tested in a preliminary
experiment. Therefore, we used the STFT with a Hamming
window as a representative of this family of time-frequency
methods, including the FA. The window size was of 1 s
for all IMFs, which implies a spectral resolution of 1 Hz
in the whole time-frequency plane [14]. However, using the
Goertzel algorithm and an overlapping of 0.923 s, we imposed
a frequency step of 0.5 Hz and a time step of 77 ms.

2) Morlet Continuous Wavelet Transform: The continuous
wavelet transform (CWT) of signal x(t) is defined by:

CWT (z, f) = / x(OW(E, t — 7)dt

In our case, the function W(f,t) is the complex Morlet
“mother wavelet™:

W(f, t) =(O‘tﬁ)_l/ze*tz/%feiznft

where the temporal support o; is inversely proportional to
the spectral support of [21]. We chose this wavelet due
to its extensive use in the analysis of cognitively/clinically
relevant oscillatory EEG signals, as it can be consid-
ered a Gaussian-windowed version of a Fourier Trans-
form [14], [21], [22]. The magnitude z = f /oy is kept constant
and determines the number of cycles of the wavelet covered
in the temporal support (7 & o) for every frequency. In this
study, we chose z = 8, which means that the wavelet will have
about 2.5 cycles, leading to a temporal/spectral support of
63.7 ms /2.5 Hz around IMFs of 20 Hz and of 10.6 ms / 15 Hz
around IMFs of 120 Hz. To allow direct comparison with the
other methods, we also used a frequency step of 0.5 Hz and
the wavelet coefficients were down-sampled to a time step
of 77 ms. The EFR was estimated as the absolute value of
the wavelet complex coefficients in the time-frequency points
corresponding to the IMF of the stimulus.

3) Chirp Analyzer: Instead of using a Fourier basis, the Chirp
Analyzer (CA) consists in correlating the signal x(t) with
a non-stationary reference function ¢ (t) that represents the
theoretical response, modeled as the analytic (complex-valued)
function of the normalized amplitude-modulation chirp used
in the stimulus:

CA(7) = /x(t)g(t, 7)) (t)dt

This procedure is carried out in overlapping rectangular
windows g(t, ), for achieving a higher temporal precision
with the same spectral resolution. Like in FA, the correlation
is performed in the time domain, thus making FA and CA
faster than both the STFT and CWT, which need to estimate
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Fig. 1. Estimating the delay of the EFR response for each instantaneous
modulation frequency fp, based on the time-frequency map (left panel)
obtained by the STFT or CWT methods. Right panel zooms in the region
delimited by a white rectangle in the left panel. White lines represent the
(9. fo) points corresponding to every IMF of the stimulus. The neural
delay 6y (fg) for each frequency is estimated as the distance between 7
(green dot) and the time at which the highest amplitude of the signal is
found (black dot).

coefficients for all frequencies at each time point. Correlations
with both real and imaginary parts of the reference signal
(complex chirps) leads to complex CA coefficients. The EFR
is then estimated as the absolute values of the CA complex
coefficients in the time points corresponding to each IMF. It is
also noticeable that, like in FA, the phase of the complex CA
coefficients would reflect the phase of the signal with respect
to the reference function.

B. Estimating the Latency of the EFR

Typical approaches for estimating the latency of oscillatory
electrophysiological responses are highly dependent on the
measurement of phases with the FFT, which has been shown
to be unreliable when the level of noise is high, or when the
amplitude of the response is small [23]. As an alternative
approach, we implemented an amplitude-based computation
of the EFR latency that takes advantage of the fact that
time-frequency methods, such as the STFT and the CWT,
give amplitude estimates for all time points in each frequency.
This allows us to look for the maximum amplitude of the
response for every specific IMF, in a time interval after the
time corresponding to that IMF in the stimulus. We set this
time interval to 200 ms, to cover the entire latency range of
auditory neurons [12], [19]. An estimate of the neural delay is
then obtained as the difference between the time of the IMF
in the stimulus and the time of the maximum EFR amplitude
for that frequency (see Fig. 1).

In the case of the Chirp Analyzer, we firstly correlate the
signal in each window with time-shifted versions of the real
part of the reference signal (i.e. the chirp used in the stimulus).
Then, the delay is estimated as the difference between the time
point at which the highest correlation is achieved and the time
point of the corresponding IMF in the stimulus.

We consider that, in a certain range of IMF, the latency of
the neural generators of the EFR does not vary with the IMF.
Therefore, the different estimated delays for all IMFs -due to
the presence of noise, as well as numerical and model errors
of each method- will be considered as random observations
of the neural delay. As the statistical properties of these

accurate delays (although with a higher computational cost)
but it will not lead to better estimates of the EFR, as long as the
temporal resolution of the method remains the same. There-
fore, we here used the highest time precision (lowest time step)
for estimating delays. However, when the delay was known
or was not of interest, we used the time step corresponding
to the frequency step for all methods, since estimating the
response in intermediate frequencies will not lead to better
spectral resolution and the EFR will be practically the same.
In all simulated/real datasets analyzed here (with a sampling
frequency of 2 kHz), both STFT and CA were applied to
1-s-long segments, with 99.95% overlapping (0.5 ms time
step) for estimating delays and 92.3% overlapping for esti-
mating the EFR (77 ms time step) to match the user-defined
frequency step of 0.5 Hz.

C. Simulated and Real Datasets

EFR was simulated with different shapes, resembling prop-
erties of the auditory EFR, e.g. the presence of amplitude
peaks at specific (optimum) IMFs, and/or constant amplitudes
in ranges of IMFs (red traces in Fig. 2). Nevertheless, sim-
ulations were not designed to exactly replicate a measured
auditory EFR, but rather to test the capabilities of the methods.
EFR simulations that differ from the typical auditory EFR
have also been used in previous studies to analyze the effect
of stimulus parameters (the IMF rate of change), and of the
frequency resolution of the method [4]. The first simulated
EFR is a full-wave rectified sine (Sine-deep), representing a
response with more than one optimum IMF and zero amplitude
at particular IMFs. The second is a sine wave vertically
stretched by a factor of 0.5 and translated in 0.5 units (Sine-
low), which represents a response with smoothly-changing
amplitude. The third is a rectangular function (Rect-deep),
which represents constant response amplitudes in specific IMF
bands. These EFRs are multiplied by the reference chirp to
simulate the electrophysiological responses, which are then
delayed and perturbed with noise (the simulation model is
detailed in the Supplemental Material, Section B1).

To analyze the effect of the noise on the estimation of
the EFR, white noise was added with different peak signal-
to-noise ratios (pSNR = 2, 1 and 0.1), defined as the ratio
between the squared maximum of the signal (fixed to 1 in
all simulations) and the variance of the noise. To explore
the influence of the latency in the estimated EFR we simu-
lated responses with latencies of 10, 50, and 100 ms. Fol-
lowing the procedure described by Aiken and Picton [4],
delays were introduced by shifting the simulated EFR in time
and completing with zeros the beginning of the recording.
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EFR estimations using STFT, CWT, and CA from data created with simulated EFR (red lines) of different shapes (Sine-deep, Sine-low,

and Rect-deep). Blue lines represent the estimated EFRs for a single run, while the grey shadows cover one standard deviation around the mean
EFR, across 50 repetitions of each simulation. All signals were simulated with pSNR = 2. The amplitudes are reported in arbitrary units. Note that
estimated EFRs do not have values close to the edges, as the first and last values correspond to the center of the first and last analysis windows.
Also, recall that each IMF on the x-axis correspond to a progression in time according to the modulation linear chirp.

We simulated EFR with latencies that are higher than those
reported in humans (30-40 ms maximum, [2]), with the
objective of evaluating the methods in a wide range of possible
physiological situations. In every simulated scenario, we cre-
ated 50 realizations with different random noise and computed
the mean and standard deviation of the results (estimated EFR
and/or delays).

To test the methods in the analysis of real data, we used
electrophysiological recordings obtained from an adult rat
(male, 70 postnatal days) and a human baby (male, 2 years
old) [3], [24]. The studies were performed under approval
of the Animal Research and Ethics Committee of the Cuban
Center for Neuroscience. The data acquisition and process-
ing are described in the Supplemental Material, Section B2.
In brief, the stimulus consisted of 30 sweeps of 100%-depth
amplitude-modulated broadband noise, repeated without any
pause between them. The intensity was 50 and 70 dB SPL
for rats and 50 dB HL for human babies. Scalp recorded
responses were synchronously averaged in the time domain
and the EFR was extracted using a Fourier Analyzer with
orthogonal reference sinusoids that matched the instantaneous
frequency of the stimulus. Due to the effect of anesthesia on
the EFR of rats [3] and the reproducibility of the EFR in
human babies, [24], the analyses of the EFR in the real datasets
was restricted to the 90- to 190-Hz IMF range.

I1l. RESULTS
A. Analysis of Simulated Data

1) Estimation of EFR Amplitudes: All the methods were able
to reproduce the forms of the simulated EFR, although the
accuracy of the estimations strongly depended on the methods
of analysis (Fig. 2). While the estimated EFRs with both
the CWT and the CA were very similar in amplitude to the

simulated response, the EFR estimated with the STFT showed
a consistent bias toward lower amplitudes (of about 25%
lower than the simulated amplitude). Quantitative comparisons
between the simulated and the estimated EFRs are shown in
the Supplemental Material, Section C. In summary, correla-
tions were above 0.94 for all methods in all scenarios. Remark-
ably, the highest correlation between rectangular signals was
obtained when the EFR was computed using the CWT. This
can be explained by the higher temporal resolution of CWT
as compared with STFT and CA, which allow to follow the
abrupt changes in the rectangular simulation. The relative
error (relative Euclidean distance between the estimated and
simulated EFRs) were always higher for STFT (above 30%).
The lowest errors for sinusoidal EFR were obtained when
responses were estimated using the CA (below 5%), while
for rectangular EFR resulted from the estimation by the
CWT (15%).

2) Noise Robustness of the Estimated EFR: The influence of
the level of noise on the estimation of the EFR was analyzed
in the case of the Sine-deep simulation (Fig. 3). As expected,
the reliability of the EFR estimation was affected when the
PSNR decreased, for all methods. However, when outputs were
contrasted in signals with equal pSNR, the CWT was the most
sensitive to the presence of noise in the recordings (Fig. 3,
middle row). The noise impaired the estimation of the EFR
performed by using the STFT in a lesser extent, while the CA
was the most robust method to increases of the noise level
(Fig. 3, top and bottom rows, respectively).

Quantitative comparisons between the simulated and the
estimated EFRs are shown in the Supplemental Material,
Section D. Summarizing, the correlation between the estimated
and simulated EFRs were higher than 0.95 in most of the cases.
The exception was in very noisy scenarios (pSNR = 0.1),
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Fig. 3. EFRs estimated from data created with simulated Sine-deep EFR, using different levels of noise (pSNR). Blue lines represent the estimated
EFRs for a single run, while the grey shadows cover one standard deviation around the mean EFR across 50 repetitions of each simulation. The
red lines represent the EFR estimated when there is no noise affecting the simulated data. The amplitudes are reported in arbitrary units.
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Fig. 4. EFRs estimated from data created with simulated Sine-deep EFR, using different delays with respect to the stimulus. Blue lines represent
the estimated EFRs for a single run, while the grey shadows cover one standard deviation around the mean EFR across 50 repetitions of each
simulation. The red lines represent the EFR estimated considering the correct delay in the response, i.e. delay-corrected responses. The amplitudes

are reported in arbitrary units.

where mean correlation coefficients of 0.92 and 0.63 were
obtained when the EFR was estimated using the STFT and
CWT, respectively. The relative error was less affected by the
increased noise level in the case of STFT (only 1% higher
from pSNR = 2 to pSNR = 0.1), while the CWT was the
most affected (37% higher). The CA showed an intermediate
increase of 7%.

3) Influence of the Response Latency in the Estimated EFR:
Since the estimated EFR amplitude might be biased when
the latency of the response is not considered, we simulated
signals using three different delays and compared the EFR
estimated without considering the delay with that obtained
when the mismatch introduced by the delay was corrected

in the reference signal, hereinafter delay-correction (Fig. 4).
Overall, the estimated EFR without considering the delay was
similar to the delay-corrected EFR when using the STFT and
CWT (Fig. 4, upper and middle panels). On the contrary, the
amplitude of the EFR computed with the CA was underesti-
mated when the latency of the response was 50 and 100 ms.
This means that the EFR amplitudes estimated with the CA
are more sensitive to the presence of a delay than those
obtained with the other two methods. These results suggest
that analyzing the estimated EFR amplitude for each frequency
in a time window after the presentation of the corresponding
IMF in the stimulus might be helpful to estimate the latency of
the response, which is the topic addressed in the next section.
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TABLE |
ABSOLUTE ERRORS OF ESTIMATED DELAYS FOR DIFFERENT NOISE LEVELS

STFT
pSNR = 2 1 0.1 2
Wmean 0.1+0.5 04+0.5 32420 122+2.4
Mean 15+1.2 1.3+1.1 48+24 20.5+2.8
Median 02+09 02+1.0 1.3+3.8 11.7+53
Mode 46.1£133 50.0+0.0 50.0+0.0 50.0+0.0
Regress | 54.6+12.7 59.1£19.2 57.0+24.5 | 534+£283

CWT CA
1 0.1 2 1 0.1
14.1£2.6 29.5+2.0 73+£07 77+09 75£1.6
25.1+£3.0 33.4+4.1 52+£26 53+33 15+39
16.9+53 303+7.2 81+0.8 85+09 7.7+£23
50.0+0.0 50.0+0.0 0.0£0.0 0.0+00 0.6%28
61.7+24.1 487+325 |162+0.1 161+13 13.8+49

Mean and standard deviation across 50 repetitions of the absolute errors (in ms) between the estimated delay and the delay of
simulated signals, for different values of the peak signal-to-noise ratio. In all cases the EFR was simulated with the Sine-deep shape and a

delay of 50 ms. In bold we highlighted mean values below 3 ms.

TABLE Il
ABSOLUTE ERRORS OF ESTIMATED DELAYS FOR DIFFERENT SIMULATED DELAYS

STFT
Simulated delay = 0 10 50
Wmean 82+04 42+04 0.1+04
Mean 11.8+1.0 77+£13 1.2+1.1
Median 34£05 05+0.8 0.1+0.7
Mode 0.0 +0.0 10.0+0.0 46.1+13.3
Regress 5.7+15.7 103+16.6 52.7+£12.2

CA
100 0 10 50 100
2.6 +£0.5 1.3+£0.2 2.2+0.3 7.4+0.38 134+1.1
3.0+1.3 9.1+£0.8 5.6£0.8 5.6+2.7 17.2+2.1
0.4+0.8 0.0 +0.0 0.1+0.2 8.3+0.8 10.2+0.5
45.8+50.8 0.0 +0.0 0.0 +0.0 0.0 £0.0 0.2+1.2
1132+ 17.8 09+9.5 10.9+£7.5 16.2+0.1 16.1+0.1

Mean and standard deviation across 50 repetitions of the absolute errors (in ms) between the estimated delay and the delay of simulated
signals, for different values of the simulated delay. In all cases the EFR was simulated with the Sine-deep shape and pSNR=2. In bold we
highlighted those values with both mean and standard deviation (of absolute errors) not higher than 3 ms.

4) Estimation of the EFR Latency: In addition to the mea-
sures of central tendency of instantaneous delays (mean,
weighted mean, mode and median), we also estimated the
delay as the slope of the linear regression between the esti-
mated EFR phases and the IMFs. To this end, a Sine-deep
EFR was simulated with a delay of 50 ms, and different
pSNR. Table I shows, for each measure, the mean and standard
deviation of absolute errors (difference between the simulated
and estimated delays) across 50 repetitions. Errors typically
increased as the pSNR decreased. Computation of EFR laten-
cies using CWT consistently showed higher absolute errors as
compared with the other methods. Therefore, the CWT was
not considered for further analysis of latency. Using the STFT,
the median, weighted mean and mean of all delays, offered
good estimates of the simulated delay, with errors below 2 ms.
However, the best results were obtained when using the mode
of the delays estimated with the CA.

To provide more elements about the statistical measure most
suitable for the estimation of the EFR latency, we simulated
a Sine-deep EFR with different delays but fixed pSNR = 2
(Table II). Again, the median, weighted mean, and mean of
latency estimated using STFT were very accurate in the case or
large delays (50, 100 ms), while better estimates were obtained
with CA for smaller delays. The mode of the values estimated
by the CA was more accurate in all cases.

When EFRs with different shapes were simulated (Supple-
mental Material, Section E), the instantaneous delays were not
reliable at IMFs for which the EFR amplitude was very small,

which occurred in the case of Sine-deep and Rect-deep simula-
tions. For high-amplitude responses, the mode of instantaneous
delays estimated with CA offered the best latency estimates.

Given the sensitivity of the CA method to the presence
of delays, we explored the practical usefulness of using the
estimated delays for delay-correcting the estimated the EFR.
We compared EFRs estimated with the CA assuming zero
delay and the delay-corrected EFRs computed using the mode
of the instantaneous delays obtained with the CA method
(Fig. 5). The correction considerably improved the estimation
of the EFR amplitude, even for those frequencies where the
actual response’s amplitude was very small or zero. The
relative error of the reconstructed EFR was lower than 0.5%
for small delays, and less than 2% for delays of 50 and 100 ms.

B. Analysis of Real Data

In the analysis of real electrophysiological recordings,
the EFR computed with the three methods were compared
with those described in previous studies using the FA
method [3], [24]. Since these authors used a commercial acqui-
sition system, the exact implementation of the FA, including
any scaling or calibrating factor, was not available to us.
This impeded us from directly comparing the amplitudes of
estimated EFRs, as they could be differently standardized or
given in different units. Therefore, we firstly normalized all
responses to have the same maximum values as the corre-
sponding EFR obtained with the MASTER system.
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Fig. 5. Correcting the EFR obtained by the CA method with the estimated delay. Simulations were carried out using a pSNR = 2 for the three

different EFR shapes. In each panel, the black line represents the simulated EFR; the red line represents a single repetition of the EFR estimated
without correcting for the delay and the blue line represents the same single repetition of the EFR re-estimated using a correction with the delay
obtained from the mode of instantaneous delays measured with the CA method. Red and blue shadows represent the area covered by one standard
deviation around the mean EFR across 50 repetitions for the uncorrected and corrected estimation, respectively.
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Fig. 6.

EFRs estimated (red lines) using the three methods (without delay-correction) from real electrophysiological recordings of an adult rat

stimulated with broadband noise at 50 and 70 db-SPL (upper panels) and from a human baby stimulated at 50 db-HL (lower panels). The responses
were smoothed using a 7-point moving average and normalized such that all maxima values coincide with those obtained with the corresponding

FA (black lines).

In general, the shape of the EFR estimated in an adult rat
and a human baby with the three methodologies (without delay
correction) did not remarkably vary from the corresponding
ones estimated with the FA (Fig. 6). Nevertheless, when
the responses were elicited by 70-dB-SPL stimuli, the EFR
amplitudes of rats obtained with the STFT and CA in the
140-160 Hz range seemed to be slightly smaller than those
computed with the FA. This effect is also present in the EFRs
of the human baby for frequencies higher than 110 Hz. The
EFRs obtained with the CWT presented the highest variability
with more local extremes. This effect can be explained by the
higher sensitivity to noise of the CWT and could be amelio-
rated by smoothing the response of CWT with a larger time
window in a moving average or with a low-pass filter. Even
in these conditions, the CA offered the highest correlation

(up to 97%) and the smallest relative error (down to 10%) as
compared with the EFR estimated with the FA (see Section F
of the Supplemental Material).

Left panels in Fig. 7 show the non-normalized EFRs esti-
mated by the three methods described in this study. The
main differences observed are consistent with the results in
simulations, namely: the smallest amplitudes corresponded to
the evoked potentials obtained with the STFT, and the noisiest
response was obtained with the CWT. Remarkably, the ampli-
tudes of the EFR estimated with the CWT were higher than
those obtained with the CA in the whole frequency range. This
difference suggests a nonzero delay of the response, which
leads to a decrease in the amplitude of the EFR estimated
with CA. Consequently, we estimated the delay as the mode of
instantaneous delays obtained with the CA, and then, corrected
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Fig. 7. Left column: Non-normalized EFRs estimated with the three

methods described in this study, from a real electrophysiological record-
ing in an adult rat stimulated with broadband noise at 70 db-SPL and
in a human baby at 50 db-HL. Right column: the EFRs obtained for the
same data as in the left column but correcting the amplitudes by using
the delay estimated with the mode of instantaneous delays measured
with the CA method.

all EFR estimations (Fig. 7, panels in the right column). For
the EFR of the rat, the estimated delay was about 24 ms, while
in the case of the human baby, the estimated delay was around
34 ms. Both delays are large enough to lead to underestimated
EFR amplitudes with the CA, when the latency of the response
is not considered. Consequently, as a result of the correction,
the EFR computed with the CA showed a clear increase in
amplitude, without introducing large changes in the general
shape of the response.

V. DISCUSSION

In this work, we have introduced the Chirp Analyzer (CA)
as a new method for estimating auditory envelope following
responses (EFR). This method is based on using the envelope
of the stimulus as the reference function for a sliding-window
correlation with the recorded EEG. It provides advantages over
time-frequency methods with fixed basis functions, such as
the STFT and CWT. Although described for the analysis of
auditory EFR, the methodology can be extended to other types
of auditory stimulation and even other sensory modalities (e.g.
visual, or somatosensory) in which continuous stimulation
with non-stationary characteristics is extremely common.

A. Evaluating Time-Frequency Methods With Simulations

Simulations showed that the CA is more robust and reliable
than the STFT and the CWT to estimate EFRs with different
shapes, even in presence of noise (Fig. 2 and 3). Importantly,
the lower EFR amplitude estimated with the STFT illustrated
in those figures is due to the use of stationary reference signals
that will never match the response in the entire windows
of analysis, leading to a spectral underrepresentation of the
signal. This bias might make the STFT method (and the
equivalent FA) less reliable to estimate actual absolute EFR
amplitudes.

The lower robustness of the CWT to estimate small EFR
amplitudes, as compared to CA, is explained by the higher
sensitivity of the CWT to the background noise. This is a
consequence of the fixed inverse proportionality between the

IMF and the temporal resolution implemented in the CWT,
which strongly depend on the range of frequencies covered
by the stimuli. In our simulations, the wide frequency range
(20 to 120 Hz) led to a very high temporal resolution for higher
frequencies, making the EFR estimation noisier than those
offered by the STFT and the CA. As positive points, the high
temporal resolution of the CWT allows to estimate abrupt
changes in amplitude better than the other two methods and
offers unbiased estimations of the EFR amplitudes (Fig. 2).

The CA method showed the lowest robustness to the pres-
ence of delays in the response, being of physiological and/or
instrumental origin (Figs. 4, 5). This was not surprising as
the CA is based on correlating the recorded signals with the
reference chirp and any displacement between these signals
will make several cycles to be in counter-phase, leading to a
quick drop in the correlation. However, for delays lower than
50 ms, the underestimation of the EFR amplitude given by
the CA is smaller than 15%, and even smaller for STFT and
CWT.

Although all methods can be used without knowing the
actual latency, strategies to minimize the influence of the
unknown delays on the EFR estimation can consider using
linear chirps with a slow sweep of frequencies in the stimuli,
and an analysis window of sufficiently length to minimize the
influence of transient activities. It has been shown that this
response can accurately follow the temporal envelope of the
stimulus when the IMF change is slower than 10 Hz/s [4].
In this scenario, the response can be considered locally sta-
tionary, which is relevant for the computation of amplitudes
using the FA. Nevertheless, a more direct approach would be
to introduce the knowledge about the latency of the response
in the procedure for estimating the EFR. Although a fixed
10-ms shift has been used for correcting the mismatch between
the reference and physiological signals [4], [16], [18], it is
important to note that the latency of the response varies across
experiments and subjects.

B. Evaluating the Estimation of Response Delays

Although the delay of the EFR has been computed using
the phase information of the response [1], [3], [4], the circular
nature of phases makes this estimation problematic, since the
manipulations needed to convert them in a linear magnitude
do not always ensure the correct unwrapping for a reliable
regression. It has been shown that the estimation of phases
using time-frequency methods based on Fourier basis are
not reliable when the amplitude of the oscillatory response
is low [23]. In our simulations, the STFT and CWT did
not offer correct estimations of the delay when using the
phase information of the response, since phases were con-
sistently miss-estimated in most of the simulated scenarios
(Tables I and II). Although the CA showed better estimates
of delays, errors were always higher than 10 ms. We also
confirmed that phase estimations worsen when the EFRs had
very low amplitudes (see Supplemental Material, Section E).

The amplitude-based method proposed here for estimat-
ing delays allows computing latencies for each IMF or fre-
quency range, which is in accordance with studies showing
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that the physiological delay vary within restricted ranges of
IMFs [2]-[4]. However, in our simulations we introduced the
same delay for all IMFs, such that the latencies estimated
for different IMFs can be considered as statistical variations
of the neural delay. Therefore, the response delay can be
computed by using the mean, the weighted mean, the median
and the mode of the whole set of instantaneous delays. Results
presented in Tables I and II showed that the STFT and the
CA can be used for reliably estimating delays (see also the
Supplemental Material, Section E). The instantaneous delays
computed with the STFT showed a Gaussian distribution
around the simulated value (except in those IMFs where the
EFR amplitude was too small). However, the distribution of
the instantaneous delays computed with CA was not Gaussian,
as the simulated delay was mostly underestimated. For this
method, using the mode across all instantaneous delays is
convenient and leads to a robust estimation, since the mode
is a value that belongs to the population. For the CA, even
in the lowest pSNR scenario, only 8 out of the 50 repetitions
showed the mode of instantaneous delays to be different from
the simulated value.

Importantly, the computed delay depends on the overlapping
of the analysis windows for the estimation of instantaneous
delays. In our data, for a time step between consecutive
windows of up to 100 ms (90% overlapping for 1-s windows),
estimates using the mode are still similar to the simulated
delay, while for higher time steps (up to 200 ms), the absolute
errors can be of 8 to 15 ms. This suggests that when small
delays are expected, the CA should be used with a high
temporal overlapping and when delays are expected to be
higher than 50 ms, the best option is to use the weighted
mean or the median of the instantaneous delays computed
with STFT. Additionally, the low relative error (lower than
2%) of the EFR estimated with CA when delays were 10 ms
(Fig. 5) suggests that there is no need to correct the EFR by an
estimated delay if this is expected to be small. Nevertheless,
since the CA showed a biased EFR amplitude of more than
20% for delays of 50 ms (Fig. 4, bottom row), a delay-
correction ensures a better reconstruction of the EFR with
latencies higher than 40 ms.

Finally, we discuss the influence of the EFR amplitude on
the reliability of the estimated delay. As described above, very
small responses in a particular range of IMFs will lead to
less reliable estimations of the instantaneous delays, which
will influence the final estimation of the response delay.
Physiologically, very low response amplitudes can be obtained
when the EFR is elicited by near-threshold acoustic stimuli [3]
and in early stages of maturation, in both humans and animal
models [3], [24]. Therefore, it is important to establish the
number of frequencies with supra-threshold amplitude neces-
sary for reliably estimating the amplitude and latency of the
EFR with the CA method introduced here. A preliminary study
on this issue (see Supplemental Material, Section G) showed
that, for an accurate estimation of the delay, the STFT needs
more data points than the CA method, whose estimations with
the mode and median were accurate for bandwidths as low as
17 Hz and 23 Hz, respectively. However, results also suggest
that both methods are robust for the lack of data and can

be used in a wide range of normal and pathological cases.
In practice, a preliminary estimate of the EFR might be helpful
to evaluate if there are enough IMFs with high amplitudes
to support a good estimation of the response delay for a
subsequent delay-correction of the EFR.

C. Analysis of EEG Recordings in a Rat and a Human
Baby

Although the EFR estimated with the STFT, CWT and CA
from real recordings showed the same general shape as the
one found with the FA method, there are important differences
regarding the absolute amplitude and the level of smoothness
of the whole curve (Fig. 6 and 7). The differences in ampli-
tudes might be explained by different normalization proce-
dures of the methods. According to our simulations, we were
able to recover the correct amplitudes with the CWT and CA
methods. The STFT (equivalent to FA) was consistently biased
toward lower amplitudes, however, in a commercial system the
FA method can be calibrated to compensate this bias and offer
the correct absolute EFR amplitudes. The different smoothness
is more difficult to explain given that the original estimation
of the EFR with the FA was not available. It might be possible
that the FA was smoothed in a stronger way than the simple
7-point moving-average smoother applied with the methods
presented in this study to facilitate the evaluation of variability
and local maxima.

Another explanation for the differences found may arise
from the fact that the neural generators of the EFR might not
follow exactly the model assumed. For instance, the biological
system, instead of responding to each IMF in the modulation
chirp, might respond with equal amplitude to preferred fre-
quency bands. In that scenario, time-frequency methods still
seem a better option than FA, since they allow the exploration
of the signal’s energy before selecting ad hoc the relevant
time-frequency pairs to extracting the EFR. Finally, we should
recall that the EEG reflects the activity of many different brain
sources that may generate non-linear responses, which are
difficult to disambiguate from the macroscopic signal. Future
research should address this topic with tailored experiments.

In the analysis of the real data, only the EFR estimated by
the CA showed an increase in amplitude when it was corrected
by the delay, which suggest that there was indeed a nonzero
delay between the stimulus and the recorded signal. Interest-
ingly, the delays estimated in the real datasets (24 ms in the
rat and 34 ms in the human newborn) were higher than those
usually handled in the literature [2], [3]. This can be explained
by physiological differences between the subjects used in the
studies and the specific experimental setup used for the EFR
acquisition. Another aspect is the different methodologies used
for the estimation of latencies (phase-based vs. amplitude-
based estimation methods), considering the potential mislead-
ing results when using mathematical measures derived from
phase estimates in real signals [22], [23]. Moreover, the EFR
has been suggested to have different latencies for different
IMF ranges [2], [3], while here we considered that the latency
was the same for all IMFs. Finally, the noisy nature of the
signals might also influence the estimation of delays with any
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method. In any case, these discrepancies need to be confirmed
in future studies with larger datasets.

V. CONCLUSIONS

In this work, we compared the estimation of the EFR
with the use of explicit time-frequency methods and with
a new method introduced here: the Chirp Analyzer (CA).
Instead of using a Fourier basis, the CA uses the same linear
chirp that modulates the carrier stimulus as the reference
signal for the estimation of the EFR. Therefore, considering
that the physiological response will closely follow the chirp
modulation function, the CA allows a better match between
the recorded signal and the reference function than the Fourier
Analyzer (FA), which directly impact the estimation of the
response parameters.

Using controlled simulated responses, the CA showed to
be able to estimate EFR amplitudes without the typical bias
obtained when using the STFT (equivalent to FA but for the
whole time-frequency map). The CA was also more robust to
noise than the CWT, but it should be used cautiously when
neural delays higher than 50 ms are expected. Consequently,
we proposed an amplitude-based methodology for estimating
the apparent latency of the EFR, which proved to be reliable
when using the STFT and the CA methods, as assessed using
simulated responses. The estimation of the EFR amplitudes,
especially those obtained with the CA, should be corrected
when possible, by using the estimated latency.

Results in real data were consistent with findings using
simulated data. Although a thorough validation should be
carried out with larger datasets, the methods explored here are
promising tools for a proper characterization of the EFR and
might contribute to improve and standardize the methodologies
currently available. This is important for extending the use of
this kind of response in audiology. Importantly, our results
will only hold for EFRs elicited by stimulus modulated by
chirps and the CA reduces to the FA method in the common
case of stimulation with sinusoidal modulated tones. However,
since the strategy followed for the implementation of the CA
is very general and can be applied to almost all types of
oscillatory brain responses, this study opens the possibility
of implementing more complex experiments to evaluate brain
responses to non-stationary stimuli, including speech and
music.
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