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Abstract: This study introduces the in vivo application of a Bayesian framework to esti-
mate subglottal pressure, laryngeal muscle activation, and vocal fold contact pressure from
calibrated transnasal high-speed videoendoscopy and oral airflow data. A subject-specific,
lumped-element vocal fold model is estimated using an extended Kalman filter and two
observation models involving glottal area and glottal airflow. Model-based inferences using
data from a vocally healthy male individual are compared with empirical estimates of
subglottal pressure and reference values for muscle activation and contact pressure in the
literature, thus providing baseline error metrics for future clinical investigations.
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1. Introduction

The clinical assessment of vocal function could be significantly enhanced by a better understand-
ing of the underlying physical mechanisms of normal and disordered phonation. Recent studies
using different inverse methods have produced subject-specific biomechanical models of the vocal
folds (VFs) that provide access to relevant clinical features, such as subglottal pressure and VF
contact pressure.1–3 In this context, Bayesian estimation of subject-specific models of phonation
is of particular interest, given that it takes into account the stochastic nature of the inverse prob-
lem, quantifies uncertainty in the form of confidence intervals, and naturally combines diverse
signals.4,5 However, this approach is relatively new and has not yet been investigated with multi-
modal in vivo clinical data.

In this study, we advance prior Bayesian efforts using an extended Kalman filter (EKF)5

to now estimate model-based features using simultaneous in vivo recordings of laryngeal high-speed
videoendoscopy (HSV) and oral volume velocity. An EKF is employed to estimate the activation
levels of the cricothyroid (CT) and thyroarytenoid (TA) muscles, subglottal pressure, and contact
pressure for a lumped-element body-cover model of the VFs. Two observation cases are considered
to elucidate the effect of data aggregation in the Bayesian inference: case I uses the glottal area sig-
nal, whereas case II also includes the glottal airflow signal as part of the observation. The aim of
this study is to illustrate the clinical application of the Bayesian method to provide access to rele-
vant features that are difficult, if not impossible, to directly measure in some cases.

2. Methods

2.1 Data recording and calibration

The experimental setup allowed for the simultaneous recording of laryngeal high-speed videoen-
doscopy, radiated sound pressure, oral volume velocity (OVV), and intraoral pressure (IOP). A

a)Author to whom correspondence should be addressed.

EL434 J. Acoust. Soc. Am. 147 (5), May 2020 VC 2020 Acoustical Society of America

https://doi.org/10.1121/10.0001276

mailto:gabriel.alzamendi@usm.cl
mailto:rodrigo.manriquezp@usm.cl
mailto:pjhadwin@uwaterloo.ca
mailto:j8deng@uwaterloo.ca
mailto:peterson@uwaterloo.ca
mailto:berath@clarkson.edu
mailto:mehta.daryush@mgh.harvard.edu
mailto:hillman.robert@mgh.harvard.edu
mailto:matias.zanartu@usm.cl
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0001276&domain=pdf&date_stamp=2020-05-20
https://doi.org/10.1121/10.0001276


transnasal fiberscope was used for flexible endoscopy, which allowed for simultaneous aerody-
namic assessment and normal articulation. Videoendoscopy recordings were acquired at a frame
rate of 4000 fps and a spatial resolution of 288 horizontal � 288 vertical pixels. The acoustic
pressure was recorded using a head-mounted, high-quality condenser microphone situated
approximately 4 cm from the lips. A circumferentially vented (Rothenberg) mask was modified in
order to allow introducing the flexible endoscope, and to hold the OVV and IOP sensors. The
IOP sensor was connected to a narrow tube inserted between the lips into the oral cavity. The
analog signals were low-pass filtered (30 kHz cutoff frequency) and sampled at a 120 kHz sam-
pling rate (16-bit quantization, and a þ/�10 V dynamic range) that was synchronized with the
video data using a common clock. All signals were subsequently resampled (including an antiali-
asing filter) at a 20 kHz sampling rate, and acoustic pressure and OVV signals were shifted back-
ward in time to compensate for acoustic propagation. Additional details regarding this experi-
mental setup are described in previous publications.6,7

For this case study, the data considered consisted of high-speed videoendoscopy and
analog OVV and IOP signals corresponding to two sustained vowels (/a/ and /i/) and a repetitive
/pa/ gesture from a male participant having no medical history of voice disorders. For both vow-
els, clinical data corresponding to segments of approximately 400 ms exhibiting stable VF oscilla-
tions were considered. OVV and IOP signals were calibrated in physical units using standard ref-
erence airflow and pressure levels, respectively.7 The OVV signal was then inverse filtered to
cancel out the vocal tract resonances, thus resulting in a calibrated glottal volume velocity
(GVV) signal.8 At the same time, video recordings were digitally processed to detect the glottal
contour for every frame, and thereby the glottal area waveform (GAW) was computed using seg-
mentation. Spatial calibration of the video-based GAW functions in physical units was achieved
by identifying a reference laryngeal landmark (e.g., blood vessels patterns) near the glottis whose
dimensions were measured independently using a calibrated endoscope system.6 Finally, the
GAW was resampled (interpolated) to a 20 kHz sampling rate, equivalent to the other analog
signals.

Figure 1 illustrates a segment of a repetitive /pa/ gesture after calibration and inverse fil-
tering procedures. In this common clinical exercise used to measure in vivo subglottal pressure, a
steady sustained vowel is interrupted with a bilabial plosive that alters the pressure in the airways
such that the IOP approximates the subglottal pressure. The IOP pressure peaks are extrapolated
to compute the driving subglottal pressure during the intermediate voiced segments. In this study,
we compare this standard lip occlusion method in vivo with the proposed Bayesian estimates that
use the actual voiced segments information. This study is the first step toward the long-term aim
of applying the proposed framework to obtain subglottal pressure and other measures of interest
for various vocal gestures, where the direct measures cannot be obtained.

Fig. 1. (Color online) Clinical signals for a repetitive /pa/ gesture of the subject. Top: Intraoral pressure. Center: Glottal area
waveform. Bottom: Oral (thick line) and inverse-filtered glottal (thin line) volume velocity. Differences in signal dynamics
indicate voiced and plosive segments.
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2.2 Bayesian estimation of vocal function measures

In comparison with other Bayesian estimators, the EKF performs very well for inferring vocal
fold biomechanical variables at a dramatically lower computational cost.5 Herein, a previous
effort5 is extended by incorporating the inference of activation level of the TA muscle, subglottal
pressure, and VF contact pressure, as well as the observation of multimodal in vivo signals
(GAW and GVV). Our EKF estimator uses a state-space model representation of a symmetric
three-mass body-cover model with posterior glottal opening.9 Cover masses delimited the mem-
branous glottal area, Am, whereas the posterior glottal opening, APGO, was assumed an
unknown, constant parameter. Thus the total glottal area was defined as Ag ¼ Am þ APGO.9

Physiologically inspired rules10 were applied for controlling the body-cover model parameters,
where normalized activation levels for the CT and TA muscles (aCT and aTA, respectively) simu-
late muscle contraction effects. Activation of the lateral cricoarytenoid muscle was held constant
at 0.5 to anchor the “just touching” vocal fold configuration.10 The subglottal pressure, Ps, dur-
ing phonation was inferred. The three-way interaction among tissue, flow, and sound was consid-
ered. Glottal volume velocity, Ug, was estimated as a function of Ag, Ps, and the acoustic waves
impinging on the glottis.11,12 Acoustic wave propagation through the vocal tract was modeled
with the wave reflection analog method. To this end, known vocal tract area functions13 were ini-
tially used, and subsequently tuned to match observed formant frequencies in the acoustic pres-
sure signal using sensitivity functions.14 The VF contact pressure, PCP, refers to the non-linear
collision term introduced in the body-cover model to account for the overlapping of the left and
right cover masses during closure.12

The phonation process can be described for time index n ¼ 1; 2; … ; N through the state
vector

x n½ � ¼ xu n½ �; vu n½ �; xl n½ �; vl n½ �; xb n½ �; vb n½ �; APGO n½ �; Ps n½ �; aCT n½ �; aTA n½ �; PCP n½ �ð ÞT; (1)

where x and v represent the positions and velocities of the upper (u), lower (l), and body masses
(b), respectively. This state vector gathers the minimum set of variables describing or controlling
the most important features of the selected voice production model. This formulation brings forth
the Bayesian estimation of all the variables in Eq. (1), including four additional states (APGO, Ps,
aTA, and PCP) not present in the prior Bayesian framework.5 Two different observation models
are investigated herein. Case I considers only the GAW as observable, whereas case II incorpo-
rates both GAW and GVV in the observation vector. The aim is to investigate the effects on the
estimated phonatory parameters when combining observable data. State transition and measure-
ment covariance matrices as well initial state information were set to promote stability and con-
vergence in the estimation procedure. This tuning was performed only once (for vowel /a/) and
maintained unchanged for all other scenarios.

3. Results and discussion

3.1 Inference from sustained vowels

Results obtained for the two observation cases are presented in Fig. 2 for vowels /a/ (left column)
and /i/ (right column). The first and second rows show the measured GAW and computed GVV
signals (solid lines), and the corresponding model approximations Ag and Ug extracted from the
EKF (case I: dashed lines, case II: dash-dotted lines). Similarly, the estimated states Ps and PCP

are plotted in the third and fourth rows, respectively. The 95% confidence bounds are shown as
shaded regions.

The approximated area waveforms illustrate that the proposed method captures the
overall glottal area behavior for both observation cases reasonably well, with better tracking dur-
ing the closing phase of the cycle. Root-mean-square errors for both cases were 0.03 cm2 for
vowel /a/, and 0.06 cm2 for vowel /i/. Estimated APGO for all cases was less than 0.01 cm2 for
both vowels, in accordance with the negligible minimum area exhibited in the GAW signals in
Fig. 2. Glottal flow pulses obtained in case II portrayed right-skewed shapes and superimposed
fluctuations due to the non-linear source-filter coupling, in addition to a flat response during the
closed phase. Root-mean-square errors for flow approximations were 40 mL/s for vowel /a/ and
55 mL/s for vowel /i/.

Estimates of subglottal pressure shown in Fig. 2 are nearly constant, with some
observed fluctuations. This is more noticeable for case II, and could result from a better repre-
sentation of the three-way interaction in the larynx with the added flow observation. The Ps

contours are consistent with the fact that we are estimating the unsteady subglottal pressure.
The rather constant value observed during the closed phase for this estimate can be associated
with the driving lung pressure. The statistical information for the estimates of Ps is reported in
Table 1. The estimated mean subglottal pressure significantly differs across observation cases,
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with case I producing significantly higher pressure levels than case II and with higher uncer-
tainty. Incorporating the additional volume velocity observation, however, reduces the esti-
mates to the range of subglottal pressure levels reported for comfortable loudness during
human phonation,8 highlighting the importance of the additional observation for the given
vocal function model.

Estimates of VF contact pressure in Fig. 2 for vowels /a/ and /i/ exhibit a peak value
during the contact phase, with differences in magnitude and shape between the observation
cases. The maximum peak contact pressure, PþCP, for vowels /a/ and /i/ are also reported in
Table 1. Case I shows a high contact pressure peak for both vowels with high uncertainty, con-
sistent with the higher subglottal pressure estimate. The additional flow observation in case II
allows for a more robust and reliable behavior in the contact pressure estimate, and it better
resembles other recent results.1,3 Although it is difficult to assert that contact pressure estimates
are physiologically accurate, the results illustrate that the proposed Bayesian processor is able
to suitably aggregate clinical data and biomechanical modeling to give insights into VF
collision.

Estimates of aCT and aTA for both observation cases are reported in Table 1. The esti-
mates converged to constant values, as previously demonstrated for sustained phonation.5 All
estimates are in accordance with low muscle activation levels representative of conversational
speech. For each case, no significant differences are observed between aCT and aTA for the two
vowels. This can be partly explained by the fairly similar fundamental frequency (102.6 Hz for
vowel /a/ and 107.0 Hz for vowel /i/). However, the differences are more significant between
observation cases, with case II exhibiting lower aCT and higher aTA in comparison with case I.
Direct in vivo validation for these estimates is difficult.

3.2 Analysis of a repetitive /pa/ gesture

The proposed Bayesian estimation method was also assessed in contrast with the standard clini-
cal evaluation of subglottal pressure from repeated /pa/ gestures. Measured GAW and computed

Fig. 2. (Color online) Observed data (solid line), model approximations, and estimates extracted from EKF and sustained
vowel data for case I (dashed line) and case II (dash-dotted line). Shaded regions represent 95% confidence bounds.

Table 1. Mean (standard deviation) of subglottal pressure and muscle activation extracted from sustained vowel data for
both observation cases. Maximum peak contact pressure pressure PþCP is also reported.

Vowel /a/ Vowel /i/

Case Ps [kPa] aCT [—] aTA [—] PþCP [kPa] Ps [kPa] aCT [—] aTA [—] PþCP [kPa]

I 1.22 0.24 0.19 2.63 1.64 0.20 0.27 2.37
(60.16) (60.03) (60.03) (60.87) (60.16) (60.03) (60.03) (60.79)

II 0.81 0.12 0.37 1.31 0.91 0.15 0.41 1.24
(60.06) (60.02) (60.02) (60.16) (60.06) (60.02) (60.02) (60.16)

J. Acoust. Soc. Am. 147 (5), May 2020 Alzamendi et al. EL437

https://doi.org/10.1121/10.0001276

E
X

P
R

E
S

S
L

E
T

T
E

R
S

https://doi.org/10.1121/10.0001276


GVV signals for the /pa/ gesture were segmented and every voiced segment was extracted.
Bayesian inference was applied for each segmented section for the two observation cases, and the
subglottal pressure was estimated. The voiced segments in this vocal gesture clearly exhibited
incomplete glottal closure in the GAW signal (see Fig. 1), with an average APGO of 0.03 and
0.04 cm2 for cases I and II, respectively. The IOP signal for five consecutive /pa/ gestures, and
the corresponding Ps estimates for the two observation cases are shown in Fig. 3. All data were
low-pass filtered at 80 Hz with a fifth-order Butterworth filter to enhance data visualization.8

Detailed information for the IOP pulses and the statistical information for Ps estimates
are reported in Table 2. Similar to the simulations involving vowel data, the two observation
cases produce significantly different subglottal pressure estimates. Case I seems to dramatically
underestimate the subglottal pressure and to produce overly wide confidence intervals. On the
other hand, case II takes advantage of the additional observation and improves the estimates
and confidence interval bounds. The absolute relative error across the five segments is larger than
50% for case I, whereas for case II it is below 5.0%. Thus, the results suggest that the Bayesian
processor requires multimodal information (observation) in order to return viable sugblottal pres-
sure estimates for the model used in this study. Furthermore, this case study illustrates the poten-
tial of the Bayesian approach with in vivo clinical data, as the error in estimating subglottal
pressure for our best-case scenario is smaller than recent studies with an excised larynx,2 and
comparable with those from silicone model experiments.3 Future works will investigate the appli-
cability of subglottal pressure estimation in more complex vocal gestures and with more compre-
hensive clinical data.

4. Conclusion

This single-subject study is, to the best of the authors’ knowledge, the first attempt to apply the
Bayesian inverse analysis framework to in vivo vocal fold data. This proof-of-concept illustrates
that the proposed Bayesian framework with a lumped-element model of phonation can success-
fully fuse data from HSV and glottal airflow signals to produce meaningful estimates of clinically
relevant variables that are difficult, if not impossible, to directly measure. This is the first step
toward the long-term goal of applying the proposed framework to obtain clinical measures of
interest, such as subglottal pressure, muscle activation, and vocal fold contact pressure, in run-
ning speech. The study highlights the sensitivity to the observation data, where both glottal area
and glottal airflow were required to obtain robust and reliable estimates. Further studies

Fig. 3. (Color online) Comparison of IOP signal (solid line) for a repetitive /pa/ phonation, and estimated Ps obtained
through EKF (case I: dashed line, case II: dash-dotted line). Shaded regions represent 95% confidence bounds.

Table 2. IOP peak measures for five consecutive /pa/ emissions and mean (standard deviation) subglottal pressure Ps esti-
mated through EKF for both observation cases. All the pressure values are reported in kPa.

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Average

IOP 0.94 0.91 0.85 0.95 0.90 0.91
Case I 0.39 0.39 0.34 0.34 0.34 0.36

(60.14) (60.15) (60.16) (60.14) (60.14) (60.15)
Case II 0.92 0.88 0.87 0.92 0.88 0.90

(60.05) (60.05) (60.05) (60.05) (60.05) (60.05)
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involving data from a greater number of participants with normal and disordered voices are
required to corroborate and extend the observations in this study.
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