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A B S T R A C T

Mathematical models that accurately simulate the physiological systems of the human body serve as cor-
nerstone instruments for advancing medical science and facilitating innovative clinical interventions. One
application is the modeling of the subglottal tract and neck skin properties for its use in the ambulatory
assessment of vocal function, by enabling non-invasive monitoring of glottal airflow via a neck surface
accelerometer. For the technique to be effective, the development of an accurate building block model for
the subglottal tract is required. Such a model is expected to utilize glottal volume velocity as the input
parameter and yield neck skin acceleration as the corresponding output. In contrast to preceding efforts that
employed frequency-domain methods, the present paper leverages system identification techniques to derive
a parsimonious continuous-time model of the subglottal tract using time-domain data samples. Additionally,
an examination of the model order is conducted through the application of various information criteria. Once
a low-order model is successfully fitted, an inverse filter based on a Kalman smoother is utilized for the
estimation of glottal volume velocity and related aerodynamic metrics, thereby constituting the most efficient
execution of these estimates thus far. Anticipated reductions in computational time and complexity due to the
lower order of the subglottal model hold particular relevance for real-time monitoring. Simultaneously, the
methodology proves efficient in generating a spectrum of aerodynamic features essential for ambulatory vocal
function assessment.
1. Introduction

Voice production is a product of the intricate interplay between
airflow and the various structures of the phonatory system. For voiced
sounds, the pressure from the lungs provides sufficient energy to induce
self-sustained oscillations of the vocal folds (VFs) that result in the
main aeroacoustic sound source at the glottis. These sound waves are
propagated above and below the glottis through the supraglottal and
subglottal systems, respectively. The supraglottal system, also com-
monly referred to as the vocal tract, provides the main filtering effects
that are associated with speech articulation [1,2], while the role of the
subglottal system is less well understood. Previous efforts have found
that the subglottal system plays a key role in the complex interactions
between the resulting sound waves and the airflow at the glottis that
alter voice quality [3–6], trigger bifurcations and voice breaks [7,8],
and yield natural quantal differences for the vowel space [2,9,10].

The study of voice aerodynamics, particularly its interaction with
the supraglottal and subglottal systems, has been crucial in advancing
our understanding of clinical issues, such as assessing vocal hyper-
function. Vocal hyperfunction (VH) is a type of voice disorder that
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is associated with abuse and misuse of voicing [11], and affects ap-
proximately 6.6% of the adult population with a lifetime prevalence of
30% [12,13]. Prior studies have shown significant differences between
normal vocal function and VH patients by measuring aerodynamic
measures extracted from the glottal airflow signal, also referred to as
glottal volume velocity (GVV) [14,15] from recordings of oral airflow
(or oral volume velocity, OVV) with a pneumotachograph mask [16].
Notably, the GVV signal can also be obtained using subglottal inverse
filtering methods using models of the subglottal system [17,18] for a
neck-skin accelerometer (ACC) signal. The non-invasive, noise-robust,
and portable nature of the ACC signal has resulted in significant inter-
est in subglottal inverse filtering for studying VH [15,19,20] through
ambulatory voice monitoring devices (e.g Mehta et al. [21]).

Mathematical representations of the subglottal system [22–24] have
played an important role in the development of the signal processing
components needed for subglottal inverse filtering. A transmission line
model that represents the subglottal system was proposed by Zañartu
et al. [18] to physiologically relate the ACC and GVV signals, in an
approach referred to as impedance-based inverse filtering (IBIF).
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As a result, aerodynamic features can be obtained from GVV such
as peak-to-peak AC flow, open quotient, and maximum flow dec-
lination rate [25–27]. These features can then be used to identify
phonatory mechanisms associated with VH, which are supported by
glottal aerodynamic measures of subglottal air pressure and glottal
airflow [15]. To achieve this, researchers have utilized a transfer
function impedance-based model to obtain aerodynamic parameters
using a neck surface accelerometer for evaluating, monitoring, and
comparing differences between VH and healthy controls [18–20]. How-
ever, a significant challenge in these studies is how to accurately
estimate subject-specific parameters related to the subglottal system
and neck-surface mechanical properties.

The study of voice pathologies has been grounded in mathematically
modeled first-principles based on physical principles [23,28,29]. Alter-
natively, a data-driven approach may be followed when only partial or
no knowledge of the physical principles acting upon the system is used.
In this case, a ‘‘grey box’’ approach can be applied when only certain
parameters are unknown or physical knowledge is used to define the
model structure (where then the parameters are estimated). Also, a
‘‘black box’’ modeling can be applied where both the structure and
the parameters are chosen based solely on the available data [30–32].
In this paper, GVV and ACC are respectively defined as the input and
output signals of the system to be identified, and then a ‘‘black box’’
system identification approach is applied.

System identification aims to derive a mathematical model, whether
linear or nonlinear, that effectively captures the dynamic behavior
of a system and exhibits a high level of accuracy. This identification
process is conducted using input–output data from the system. In
previous studies, the subglottal system has been represented using a
linear model, and the impulse response has been obtained by inverse
Fourier transformation of the frequency domain response [18,20]. The
linearity assumption in the subglottal system is justified since the
nonlinearity associated with frequencies dependent on resistances has a
minor overall impact on the system behavior [18]. Furthermore in Fant
[1], the cavities responsible for transforming the glottal source were
presented as linear filters.

In this paper we propose the use of linear time-invariant (LTI)
models, to describe the subglottal system in continuous-time and to
use the simplified refined instrumental variable method for continuous-
time (SRIVC) model estimation method to fit these models using real
input–output data.

SRIVC is widely recognized as one of the most successful direct
methods for continuous-time model identification from sampled data
[33]. This method has been extensively applied in different fields,
including chemical processes, electronic circuits, and biological systems
modeling [34,35].

Additionally, in this paper we study the model order selection
problem. Once the candidate continuous-time models for the subglottal
system have been estimated, the Akaike, Bayes, and Young information
criteria methods can be employed to determine the optimal order and
structure among them. These criteria methods play a crucial role in
the trade-off between accuracy of model fitting and complexity. The
information criteria enable a systematic and data-driven approach in
selecting the most appropriate model order [36].

The remainder of the paper is structured as follows: Section 2
presents the subglottal system description. Then, Section 3 presents
SRIVC as the system identification method and the information criteria
to be used to select the best model order and structure. In Section 4, the
data processing required before performing the estimation for the set
of candidate models is explained, and a linearity test is also conducted.
Later in Section 5, the results of the model identification are pre-
sented together with the discussion of model order selection. Section 6
presents the application of the obtained model for inverse filtering
using a Kalman Smoother to obtain estimates of the glottal volume
velocity airflow and the associated aerodynamic features. Finally, in
Section 7 conclusions are presented.
2

Fig. 1. Block diagram representation of the phonatory system.

2. System description

Several works have proposed to measure the acceleration on the
neck skin surface generated by the airflow in the glottis to study
VH. The acceleration data has been used to estimate certain param-
eters of an impedance-base (IB) model, which is a mechano-acoustic
representation of a physiologically-based transmission line [18]. An
inverse filtering has been then applied to the IB model to obtain an
accurate estimation of the aerodynamic source of voice sounds at the
glottis [18–20].

The skin acceleration is measured by attaching an accelerometer to
the neck surface between the thyroid prominence and the suprasternal
notch [17]. The main advantage of measuring acceleration is that it
is a non-invasive method of studying the health of the speech system.
Additionally, it is also immune to noise, making it particularly suitable
for ambulatory studies [21,37].

We consider the subglottal system as represented in the block
diagram shown in Fig. 1, where 𝑢(𝑡) is the input signal GVV, 𝑦(𝑡) is the
measured signal ACC, and 𝑤(𝑡) is assumed to be white measurement
noise.

As mentioned in the introduction, the input GVV is not directly
measured, however, it is obtained from OVV using a linear prediction
(LP) filter [38,39].

The subglottal system in Fig. 1 can be expressed as the following
continuous-time model

𝑦(𝑡) = 𝐺(𝑝, 𝜃)𝑢(𝑡) +𝐻(𝑝)𝑤(𝑡) (1)

where 𝑝 represents the differential operator 𝑝 = 𝑑
𝑑𝑡 , 𝐻(𝑝) = 1 is assumed

as the noise filter, and the subglottal system is then given by

𝐺(𝑝, 𝜃) =
𝐵(𝑝, 𝜃)
𝐴(𝑝, 𝜃)

=
𝑏𝑚𝑝𝑚 + 𝑏𝑚−1𝑝𝑚−1 +⋯ + 𝑏0
𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1 +⋯ + 𝑎0

(2)

where 𝐺(𝑝, 𝜃) is assumed to be proper (𝑛 ≥ 𝑚) and the parameter vector
is 𝜃 =

[

𝑎𝑛−1 ⋯ 𝑎0 𝑏𝑚 ⋯ 𝑏0
]𝑇 ∈ R𝑛+𝑚+1.

Our interest in this paper is to estimate the parameter vector 𝜃 in
(2), for a given model structure (i.e., 𝑛 and 𝑚), based on input and
output sampled data: 𝑢(𝑡𝑘) corresponding to GVV and 𝑦(𝑡𝑘) correspond-
ing to ACC, for a regular sampling interval 𝑇𝑠. The sampling instants
are 𝑡𝑘 = 𝑘 𝑇𝑠, for 𝑘 = 1,… , 𝑁 , where 𝑁 is the number of available
synchronized data points. Thus, for identification purposes we consider
the following hybrid model

𝑦𝑢(𝑡) = 𝐺(𝑝, 𝜃)𝑢(𝑡)

𝑦(𝑡𝑘) = 𝑦𝑢(𝑡𝑘) +𝑤(𝑡𝑘)
(3)

where 𝑦𝑢(𝑡) is the noise free output of the subglottal system, and 𝑤(𝑡𝑘) is
assumed to be a discrete-time Gaussian distributed white measurement
noise 𝑤(𝑡𝑘) ∼  (0, 𝜎2𝑤).

3. Parameter estimation and information criteria

This section presents the parameter estimation method used to per-
form identification of the subglottal system from synchronized input–
output data. The input signal is the glottal flow GVV and the output is
the accelerometer signal ACC.
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Furthermore, this section also presents the information criteria em-
ployed for model order selection from a set of candidate models. The
criteria used are the Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC) and the Young Information Criterion (YIC),
which are commonly used to select the best model order from a set of
candidate models.

3.1. Continuous-time transfer function estimation using time-domain data

When the theory of system identification first appeared, it was
mainly aimed at the estimation of continuous-time LTI models. How-
ever, with the advance of digital computers and data acquisition sys-
tems, the estimation of discrete-time models gained prominence. In the
last decades, the increase both in computation power and sampling
frequency has led to a resurgence of the estimation of continuous-time
models from sampled data [32,40].

Some of the difficulties that appear in discrete-time identification
are related to the sampling time, which may lead to loss of information
when the sampling period 𝑇𝑠 is small. Numerical issues may appear in
discrete-time since all the poles of the transfer function approach the
point 𝑧 = 1 (in the 𝑧-plane) for fast sampling rates [40,41].

The estimation of continuous-time models from a sampled dataset
has been shown to have advantages over discrete-time methods when
using real data [34]. Moreover, the obtained continuous-time models
can be discretized for different sampling rates if needed [32].

Simplified refined instrumental variable method for continuous-
time (SRIVC) modeling is one of the most applied continuous-time
identification methods in the literature. It is an iterative instrumental
variable method that generates filters (that depend on the system
parameters) that are applied to the available input–output data at each
iteration. It has been shown that SRIVC provides a consistent and
optimal estimator for additive white noise [42,43].

One might consider applying the Refined Instrumental Variables for
Continuous-Time Model (RIVC) method for identification, given the
likelihood of colored noise in practical scenarios. However, the results
that we obtained with such approach closely resemble those obtained
with SRIVC. This is common in applications where the noise level is
relatively small. [32].

For SRIVC the error function is given by the output error

𝜀(𝑡𝑘, 𝜃) = 𝑦(𝑡𝑘) −
𝐵(𝑝, 𝜃)
𝐴(𝑝, 𝜃)

𝑢(𝑡𝑘) (4)

The input–output signals in (4) are filtered by the following para-
meter-dependent filter

𝐿(𝑝, 𝜃) = 1
𝐴(𝑝, 𝜃)

(5)

Then, from (4), we obtain

(𝑡𝑘, 𝜃) = 𝐴(𝑝, 𝜃)�̃�(𝑡𝑘) − 𝐵(𝑝, 𝜃)�̃�(𝑡𝑘) (6)

here �̃�(𝑡𝑘) and �̃�(𝑡𝑘) are the variables pre-filtered by 𝐿(𝑝, 𝜃)
A drawback of the previous formulation is that the polynomial in

he denominator of the transfer function 𝐺(𝑝, 𝜃) and its parameters
re unknown, and, as a consequence, an initial parameter estimate is
equired [33]. Then, the error in (6) can be iteratively optimized by
olving in every iteration the following recursion

�̃�(𝑛)(𝑡𝑘, �̂�𝑗 ) = �̃�𝑇 (𝑡𝑘, �̂�)𝜃𝑗+1 + 𝜀(𝑡𝑘, �̂�𝑗 ) (7)

here the regressor vector is given by
̃𝑇 (𝑡𝑘, �̂�) =

[

�̃�(𝑚)(𝑡𝑘, �̂�𝑗 ),… , �̃�(𝑡𝑘, �̂�𝑗 ),

−�̃�(𝑛−1)(𝑡𝑘, �̂�𝑗 ),… ,−�̃�(𝑡𝑘, �̂�𝑗 )
] (8)

where �̂�𝑗 and �̂�𝑗+1 are the estimated parameters at the 𝑗th and (𝑗 +
𝑡ℎ
3

1) iterations, respectively, and the superscripts (𝑛), (𝑚), and (𝑛 − 1)
correspond to (approximate) time derivatives. The SRIVC estimator is
then given by

�̂�𝑗+1𝑆𝑅𝐼𝑉 𝐶 =

[

1
𝑁

𝑁
∑

𝑘=1
�̃�(𝑡𝑘, �̂�𝑗 )�̃�𝑇 (𝑡𝑘, �̂�𝑗 )

]−1

[

1
𝑁

𝑁
∑

𝑘=1
�̃�𝑇 (𝑡𝑘, �̂�𝑗 )�̃�(𝑛)(𝑡𝑘, �̂�𝑗 )

]

(9)

where �̃�(𝑡𝑘) denotes the filtered instrument and is given by

̃ (𝑖)(𝑡𝑘, �̂�𝑗 ) =
𝑝(𝑖)

𝐴(𝑝, �̂�𝑗 )
�̃�(𝑡𝑘, �̂�𝑗 ) (10)

More details about the SRIVC algorithm and its applications can be
found, for example, in Garnier [35],Young [42],Young and Jakeman
[44],González et al. [45].

3.2. Information criteria

Model order selection is an important task in the analysis of time
series, signal processing, and system identification [46]. To determine
the best order and structure of the subglottal LTI model, information
criteria such as Akaike, Bayes and Young’s Information Criterion (AIC,
BIC and YIC respectively) can be used.

Akaike information criterion
AIC is a Kullback–Leibler (KL) cross validation approach, in which

the model order is chosen such that it minimizes the KL discrepancy
between the true probability distribution function and the likelihood
of the model [47]. The AIC is given by

𝐴𝐼𝐶 = −2 ln 𝑝𝑛𝜃 (𝑦, �̂�
𝜂) + 2𝑛𝜃 (11)

where 𝑦 is the vector of available output data of size 𝑁 , 𝑛𝜃 is the num-
er of parameters, �̂�𝜂 is the estimated parameter vector, and 𝑝𝑛(𝑦, �̂�𝜂)

is the probability density function of the data vector. The value of
the above expression is obtained for a set of candidate models, among
which the one that yields the minimum value is chosen. In this way,
the goodness of fit is rewarded and over-fitting is penalized [48].

Bayes information criterion
BIC is a second possible information criterion used to select model

order that is given by

𝐵𝐼𝐶 = −2 ln 𝑝𝑛𝜃 (𝑦, �̂�
𝜂) + 𝑛𝜃 ln𝑁 (12)

Eq. (12) has a structure similar to the AIC. However, it differs in
last penalty component that is associated with the assumption that 𝑝(𝜃)
is independent of 𝑁 , resulting in an increasing ratio of estimation to
validation samples as the number of data points 𝑁 grows [47].

Similar to the case of AIC, BIC is determined for a set of candidates
model, taking into account model fit and penalizing over-fitting, and
the model order that minimizes the BIC in (12) is then selected.

Young information criterion
YIC is a third model order selection criterion that, as a differ-

ence compared to AIC and BIC, uses the covariance matrix estimate
associated with the estimated parameters [32,49,50].

In fact, YIC involves the coefficient of determination 𝑅2
𝑇 (13) and

the variance-error norm to define the model that best fits the data and
best estimates the parameters [49].

The coefficient of determination 𝑅2
𝑇 is a metric that assesses the

accuracy of the identified model to represent the actual model [33,51],
by considering the simulation error. The 𝑅2

𝑇 values range between 0
and 1, indicating the relation between the identified model and the
real-world observations. The 𝑅2

𝑇 is defined by Garnier [35]

𝑅2
𝑇 = 1 −

𝜎2�̂�
2

(13)

𝜎𝑦
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where 𝜎2�̂� is the variance of the estimated error, and 𝜎2𝑦 is the variance
of the measured output which are respectively given by

𝜎2�̂� = 1
𝑁

𝑁
∑

𝑘=1
(�̂�(𝑡𝑘) − �̄�(𝑡𝑘))2 (14)

𝜎2𝑦 = 1
𝑁

𝑁
∑

𝑘=1
(𝑦(𝑡𝑘) − �̄�(𝑡𝑘))2 (15)

�̂�(𝑡𝑘) = 𝑦(𝑡𝑘) − �̂�(𝑡𝑘, �̂�𝜂) (16)

where �̄�(𝑡𝑘) and �̄�(𝑡𝑘) are the mean values of the estimated noise and the
measured output signal of the system, �̂�(𝑡𝑘, �̂�𝜂) is the estimated output
signal, and �̂�𝜂 is the estimated parameter vector given by the SRIVC
algorithm.

The YIC is then given by

𝑌 𝐼𝐶 = ln

(

𝜎2�̂�
𝜎2𝑦

)

+ ln

(

1
𝑛𝜃

𝑛𝜃
∑

𝑖=1

�̂�𝑖𝑖
�̂�2𝑖

)

(17)

where 𝑛𝜃 is the number of estimated parameters, �̂�𝑖𝑖 is the 𝑖th diagonal
element of the covariance matrix of the estimated parameter vector
�̂�𝜂 [32].

4. Data pre-processing

To estimate the parameters of different possible models, we have an
input–output dataset comprising 262165 samples, sampled at 20𝑘𝐻𝑧,
corresponding to the pronunciation of the vowel a five times with
temporal separation. It is worth mentioning that high-frequency signal
processing can be computationally expensive and, in some cases, unnec-
essary for accurate system identification. Therefore, down-sampling the
high-frequency signals to a lower sampling rate can be beneficial [52].

Considering the impact of high-frequency data on parametric es-
timation, we resample the ACC and GVV signals to a frequency of
𝐹𝑠𝑢𝑏 = 8192 Hz. A similar down-sampling strategy has been applied, for
example, in Espinoza et al. [15]. The power spectrum of the resampled
data is shown in Fig. 2. The analysis of the power spectrum is crucial
for understanding signal characteristics such as dominant frequencies,
energy distribution, and gain. Moreover, it may enhance experimental
identification results.

Furthermore, we opted for the second vocalization from the resam-
pled dataset, comprising 2000 time data points, with the assumption
that the first vocalization may exhibit a greater transient effect. This
choice was made to enhance the accuracy and fit of our experimental
identification results.

The resampled GVV and ACC signals are shown in Figs. 3 and 4,
respectively. In these figures, the data points in red belong to down-
sampled signal, and the blue lines represent the original signal sampled
at high-frequency (20 kHz).

Previous studies in the literature assume a linear model for the
subglottal system, neglecting the impact of frequency-dependent resis-
tances in the physically based model since they do not significantly
impact the overall behavior of the system [18]. In this section, we test
this assumption using the coherence method. The analysis shows that
the assumption of linearity between the measurements of ACC and GVV
could be, in fact valid in the frequency bandwidth of interest.

Spectral coherence is a powerful signal processing tool, that has
been applied to analyze the relationship between two random signals or
processes [53,54], and has extensively used in diverse fields, including
communication systems, acoustics, and biomedical engineering [55].
Spectral coherence measures the degree of linear correlation between
two given signals in the frequency domain, providing a coherence value
spanning from 0 (indicating no correlation) to 1 (indicating perfect
correlation).

The coherence between two signals 𝑥 and 𝑦 is defined by the
following quotient

𝐶(𝑥,𝑦)(𝑓 ) =
|

|

|

𝑃(𝑥,𝑦)(𝑓 )
|

|

|

2

∈ [0, 1] (18)
4

𝑃(𝑥,𝑥)(𝑓 )𝑃(𝑦,𝑦)(𝑓 )
Fig. 2. Input–output resampled dataset power spectrum.

Fig. 3. Glottal volume velocity (GVV) original and resampled signal.

Fig. 4. Acceleration (ACC) signal original and resampled signal.

where 𝑃(𝑥,𝑥)(𝑓 ) and 𝑃(𝑦,𝑦)(𝑓 ) are the power spectral densities of each
signal, and 𝑃(𝑥,𝑦)(𝑓 ) is the cross power spectral density between two
signals.

The coherence function provides a direct and independent measure
of system excitation, data quality, and system response linearity [56].
Poor coherence value can be attributed to either a poor signal to
noise ratio (which is not the case in our application) or to nonlinear
effects in the dynamics. Therefore, good coherence data is important for
determination the linearity assumption of the system. The input–output
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Fig. 5. Coherence between ACC and GVV.

data can then be used to estimate the parameters of the selected linear
model.

In our case, the signals utilized for coherence analysis are the
accelerometer measurements ACC and the glottal airflow GVV, which
are the same signals used to perform the model parameter estimation.
The results are presented in Fig. 5, which shows the coherence between
the two signals as a function of frequency. It can be noticed that, in
the frequency range from approximately 220 Hz to 1kHz, the average
coherence value is higher than 0.7. This suggests that the signals are
highly correlated in that frequency range, and a linear model may be
appropriate. This result is closely related to the graph of the power
spectrum of the signals shown in Fig. 2, where the peaks appear within
the same frequency bandwidth.

5. Continuous time model identification

In this section we present the identification results obtained for the
subglottal system using the SRIVC estimator.

For the system identification procedure, the input–output data are
of the glottal airflow signal GVV and the accelerometer measurement
signal ACC, which have already been resampled, as explained in Section
4.

In this study, system identification is conducted for a range of can-
didate models, for different model orders and relative degrees. Then we
have to consider the trade-off between the flexibility of the estimated
model that may overfit the training data and having a parsimonious
model that may offer a more concise representation [57]. Parameter
estimation is performed for all possible combinations of candidate
models, using coefficients ranging from 1 to 10 in both the denominator
and numerator. Then the SRIVC algorithm is applied for each of them
to obtain parameter estimates.

The AIC, BIC, and YIC information criteria are utilized to compare
the performance of each candidate model. These criteria provide a
systematic approach to assess the trade-off between model complexity
and goodness of fit, allowing for the selection of the best model among
the candidates. Figs. 6, 7, 8 show the AIC, BIC, and YIC matrices,
respectively, obtained when continuous-time system identification is
performed using SRIVC.

From the information criteria shown in Figs. 6, 7 and 8 it can be
noticed that the three information criteria suggest that the best model
structure is the one having 5 poles and 4 zeros.

In order to complement the analysis provided by the information
criteria, we use the root mean square error (RMSE)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1

𝑁
∑

(𝑦(𝑡𝑘) − �̂�(𝑡𝑘, �̂�𝜂))2 (19)
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𝑁 𝑘=1
Fig. 6. Heatmap of AIC coefficients.

Fig. 7. Heatmap of BIC coefficients.

Fig. 8. Heatmap of YIC coefficients.

where 𝑁 is the number of samples.
The RMSE between the measured ACC signal and the simulated ACC

signal is computed for the group of candidate models (see Fig. 9). In
this figure it can be seen that the structure with 5 poles and 4 zeros
has the lowest RMSE value, which corresponds to the same structure
selected by the three information criteria.

Moreover, Fig. 10 shows the coefficient of determination obtained
for the estimated models. It can be noticed that the highest value of the



Biomedical Signal Processing and Control 95 (2024) 106394J.G. Fontanet et al.
Fig. 9. Root mean squared error of the candidates models.

Fig. 10. Heatmap of 𝑅2
𝑇 coefficients.

coefficient 𝑅2
𝑇 = 1 is obtained for the same model structure selected by

the information criteria, i.e., the model having 5 poles and 4 zeros.
From the analysis above, the choice of the best model structure is

clear since information criteria, RMSE, and coefficient of determination
provide the same result, namely, an LTI model for the subglottal system
having 5 poles and 4 zeros. Moreover, the analysis above also shows
that the model structure with 8 poles and 7 zeros, could also be
considered, however, at the expense of more complexity and possible
overfitting.

Additionally, Figs. 11 and 12 show the pole/zero map and Bode
magnitude plot of the selected model (with 5 poles and 4 zeros),
and Fig. 13 shows the comparison between the simulated response
corresponding to the selected model and the measured output (i.e. the
accelerometer signal ACC). In that figure, the comparison between the
measured acceleration validation data and the simulated acceleration
data results in a model fit of 93.9% computed by:

𝐹𝐼𝑇 =

(

1 −
‖𝑦(𝑡𝑘) − �̂�(𝑡𝑘, �̂�𝜂)‖
‖𝑦(𝑡𝑘) − �̄�(𝑡𝑘)‖

)

100% (20)

6. Inverse filtering

In the previous section, system identification was performed ap-
plying SRIVC and information criteria were used to select a model
order and structure that provides a good fit between simulated and
observed acceleration. However, a key objective of obtaining a model
6

Fig. 11. Poles and zeros map of the selected model estimated using SRIVC.

Fig. 12. Bode diagram of the selected model estimated using SRIVC.

Fig. 13. Comparison of the estimated model with SRIVC and resampled data simulation
against validation data.

for the subglottal system is to apply it for inverse filtering, i.e., to
estimate the glottal airflow (GVV, the input signal) from accelerometer
measurements (ACC, the output signal). In fact, in ambulatory studies
such as [18], the estimated glottal airflow is used to obtain indicators
of the speech health of the patients.

In this work, inverse filtering is performed applying a Kalman
smoother strategy as presented in Morales et al. [58]. A key difference
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Fig. 14. GVV estimation with Kalman Smoother and SRIVC estimated model.

Table 1
Aerodynamic metrics computed from GVV.

Measures
Model GVV_ACC GVV_OVV

H1-H2
(dB) 8.43 ± 2.5 9.82 ± 3.7

HRF
(dB) 7.19 ± 3.3 7.98 ± 4.4

MFDR
(L/s2) 142.1 ± 83.8 178.37 ± 107.53

ACFL
(mL/s) 97.99 ± 56.2 112.07 ± 65.7

NAQ 0.15 ± 0.03 0.15 ± 0.04

with that work is that the linear models obtained in that paper for the
subglottal system were based in a frequency response of an impedance-
based model which parameters were previously fitted by particle swarm
optimization.

The results of the Kalman smoother estimation of the glottal airflow
(using the optimal model obtained by SRIVC) are shown in Fig. 14.
In this figure, the GVV signal derived from OVV and Kalman filtered
GVV signal from the SRIVC estimated model can be compared. The
associated RMSE obtained is 10.62 × 10−3 mL∕s.

To be able to assess the validity of the estimated glottal airflow,
acoustic and aerodynamic measures obtained from GVV are used. These
measures consider the first two harmonics (H1-H2), the harmonic
richness factor (HRF), the maximum flow declination rate (MFDR), the
AC flow (ACFL), and the normalized amplitude quotient (NAQ) [59].

Table 1 shows the aerodynamic features computed using the mea-
sured GVV (that is actually derived from OVV) and the aerodynamic
features computed using the estimated GVV obtained from ACC mea-
surements by Kalman filtering. In the table, these two sets of features
are labeled GVV_OVV and GVV_ACC, respectively.

Moreover, aerodynamic features shown in Table 1 obtained from
ACC are similar to previous results in the literature when applying
Kalman filtering, such as, for example Table 2 in Cortés et al. [60] and
Table 4 in Morales et al. [58]. However, compared to those previous
results, in this study we have used a lower-order model (5 poles and
4 zeros) estimated directly from time-domain data. This implies a
reduction in model order of 77% (5/22) against recent efforts [58] and
98.6% (5/350) against previous ones [60]. The clear reduction in the
model order for the subglottal system certainly leads to an important
reduction in the computational time and complexity, which are key
issues for real-time monitoring applications.

7. Conclusions

In this paper a continuous-time, linear time-invariant models were
7

obtained for the subglottal system. The identification process employed
sampled data, encompassing both neck skin acceleration and glot-
tal airflow. Utilizing the SRIVC estimator, system identification was
performed for a range of candidate models. Selection of the optimal
parsimonious model was based on information criteria, and further
verified by RMSE and coefficient of determination analysis. Our results
indicate that the SRIVC algorithm effectively estimates a low-order
model, achieving a high level of fit. Moreover, this model was applied
in a Kalman smoother for inverse filtering, enabling the extraction of
glottal airflow estimates based on neck skin acceleration measurements.
The approach allows us to estimate glottal aerodynamic features using
a lower order model compared to previous studies in the literature,
offering a novel alternative for real-time ambulatory assessment of
vocal function.
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