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Introduction

I Currently, we are studying the vocal behavior of individuals with typical voices and voice
disorders by analyzing weeklong recordings using a smartphone-based ambulatory voice
monitor. An Impedance-based Inverse Filtering (IBIF) algorithm is used to estimate the glottal
(airflow) volume velocity (GVV) from a neck-surface acceleration signal. However, the IBIF
estimation is obtained performing a sustained vowel /a/, which is a different scenario than
continuous speech. In this work we explore the performance of IBIF in continuous speech and
his impact in vocal measures of clinical relevance.

Goal

I To determine the uncertainty of non-invasive glottal aerodynamic measures that
are obtained using subglottal impedance-based inverse filtering (IBIF) of the
signal from a neck-placed accelerometer during continuous speech.

Methods

I Simultaneous and synchronous recordings of oral volume velocity (OVV) and neck skin
acceleration (ACC) signals were performed by two adult females, one with vocal hyperfunction
(polyp) and her matched control with normal vocal status.

I A band-pass filtered version of OVV signal was inverse filtered based on minimizing the
formant ripple [1].

I Q factors related to the IBIF model [2] were selected to assess a statistical estimation of IBIF
parameters based on 1) the Maximum Likelihood Method (ML-model), and Bootstrap
(BT-Model) [3] re-sampling technique. For ML-model we fit a Gamma distribution, and for
BT-model a trimmed mean at 20%. From the derived statistical model, Monte Carlo random
simulations were performed to estimate the Maximum Flow Declination Rate (MFDR) with
their uncertainties.

Results

I In Figure 1 and 2, probability density distributions are presented for each Q parameter. Table
1 are shown the estimated Q parameters for both subjects and models as well, including an
estimation using sustained vowel /a/.
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Figure 1: Q parameters distribution for subject NF026. Bar

cyan: Histograms. Solid blue: Gamma distribution fit.
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Figure 2: Same description as figure 1 for a subject PF026.

Table 1: Estimated Q parameters from both models.
√

Variance in parentheses

Subject NF026 Subject PF026
IBIF Parameters ML model BT model ML model BT model

Q1 1.4 (0.4) 1.5 (0.1) 3.4 (0.55) 3.5 (0.12)
Q2 1.4 (0.7) 1.7 (0.2) 1.6 (0.53) 1.8 (0.1)
Q3 1.8 (2.0) 2.9 (0.6) 3.6 (2) 4.4 (0.38)

Results

I In Figures 3 and 4 Glottal airflow waveforms (solid blue) from ACC filtered signal closely
follows the estimated glottal airflow from OVV signal (solid black). The uncertainties in
glottal waveforms appears to be time-dependent (dashed red line in figure 3 and 4).
Over the closing phase is greater than the opening phase of the glottal pulse.
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Figure 3: Results of ML-model for subject NF026.

A) Glottal airflow estimation (GVV) from ACC signal.

B) Time-derivative of GVV.
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Figure 4: Results of BT-model for subject PF026.

A) Glottal airflow estimation (GVV) from ACC signal.

B) Time-derivative of GVV.
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Figure 5: MFDR mean values (bold circle) and percentile 5% and 95% (vertical black line behind bold

circle) using the ML-model for subject NF026. Red-solid: median of MFDR values (bold circle). Dashed: percentile

5% and 95% of MFDR values.
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Figure 6: MFDR mean values (bold circle) and percentile 5% and 95% (vertical black line behind bold

circle) using the ML-model for subject PF026. Red-solid: median of MFDR values (bold circle). Dashed: percentile

5% and 95% of MFDR values.

Results

I Figures 5 and 6 shows MFDR values for both subjects.
The resulted uncertainties of MFDR seems to be
amplitude dependent, as is expected for a Gamma
distribution. Under previous observation, a relative error
(standard error divided by mean value) is better suited to
characterize the uncertainties for MFDR, which are
presented in Table 2 for each subject and model as well.
Both models perform consistently.

Table 2: Average uncertainty for MFDR measures

Subject 01 - NF026 Subject 02 - PF026
ML model BT model ML model BT model

Relative error (%) 35.9 4.9 22.4 2.2

Conclusion

I The frame-based Q parameters closely follow the
proposed Gamma distribution, showing a well
defined central tendency and dispersion. This behavior
suggests that the ensemble of several frame-based Q
parameters in continuous speech provide a wider
overview of the underlying inverse filtering
mechanism compared to a single sustained vowel.

I The uncertainty of MFDR was described by a simple
relative error which indicate the precision of the estimate.

I The glottal airflow derived from our method,
perform reasonably well for continuous speech in a
healthy and pathological subject as well.
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