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Abstract
Physiological-based synthesis using low order lumped-mass
models of phonation have been shown to mimic and predict
complex physical phenomena observed in normal and patho-
logical speech production, and have received significant atten-
tion due to their ability to efficiently perform comprehensive
parametric investigations that are cost prohibitive with more
advanced computational tools. Even though these numerical
models have been shown to be useful research and clinical
tools, several physiological aspects of them remain to be ex-
plored. One of the key components that has been neglected is
the natural fluctuation of the laryngeal muscle activity that af-
fects the configuration of the model parameters. In this study,
a physiologically-based laryngeal muscle activation model that
accounts for random fluctuations is proposed. The method is ex-
pected to improve the ability to model muscle related patholo-
gies, such as muscle tension dysphonia and Parkinson’s disease.
The mathematical framework and underlying assumptions are
described, and the effects of the added random muscle activity
is tested in a well-known body-cover model of the vocal folds
with acoustic propagation and interaction. Initial simulations
illustrate that the random fluctuations in the muscle activity im-
pact the resulting kinematics to varying degrees depending on
the laryngeal configuration.
Index Terms: Speech synthesis, vocal folds, voice, muscle ac-
tivation

1. Introduction
Lumped-element models of voiced speech are capable of inves-
tigating a wide range of controlled scenarios at minimal com-
putational cost. These models can mimic and predict complex
physical phenomena observed in speech production and have
been shown to be useful tools for the investigation, diagnosis,
and treatment of voice disorders [1] [2]; furthermore, they have
received significant attention due to their ability to efficiently
perform comprehensive parametric investigations that are cost
prohibitive with more advanced computational tools [3]. Re-
cently, these reduced order models have been recently shown
advantageous in that they can yield data that are difficult or im-
possible to clinically acquire, by means of Bayesian estimation
methods [4]. In spite of these notable advancements, several
physiological aspects of these reduced order models remain to
be incorporated, particularly when describing their connection
with the nervous system.

Reduced order vocal fold (VF) models are constituted by a
set of coupled components, namely a lumped element descrip-
tion of the VFs, an analytical solution of the glottal flow behav-

ior, and a plane wave representation of the sub and supra glottal
acoustic fields. Herein, the VF model is typically configured us-
ing physiological rules of muscle activation [5], that allow for a
meaningful construction of the VF model parameters. However,
the activation rules are based upon several untested assumptions
and neglect any neural description of the laryngeal muscle ac-
tivity. The lack of such neural descriptions results in perfectly
constant muscle activations and unnatural sound quality for the
synthetic voices.

In this study, a physiologically-based laryngeal muscle ac-
tivation scheme that accounts for random fluctuations is pre-
sented. The proposed method is expected to improve both the
physiological relevance of the overall speech production model
and the ability to model muscle related pathologies, such as
muscle tension dysphonia and Parkinson’s disease. At the same
time, natural random fluctuations in the model parameters are
expected to enhance the resulting sound quality of the voice
synthesizer.

2. Methods
2.1. Physiological and morphological aspects of muscular
activation

From a neural perspective, the basic unit of a muscle is the
motor unit (MU), which consists on a motor neuron and mus-
cle fiber innervated by the axon of the neuron. Large muscles
with wide and gross movements have thousands of fibers per
motor neuron, while muscles that perform precise contractions
have fewer fibers per motor neuron. When a neuronal signal is
sent, a MU action potential is generated, which stimulates the
fibers to contract synchronously. The electric impulse gener-
ated, which corresponds to the sum of all action potentials, is
known as motor-unit action potential.

For each spike that stimulates a fiber, a single twitch (or
fiber contraction) is produced on them, lasting for a fraction of
time. Successive twitches may add up to generate a stronger
action [6]. Figure 1 illustrates the temporal summation effect
of successive twitches. If spikes are fired at a higher rate, the
resulting contraction is larger, thus having a wave summation
effect, resulting in temporal variability. This effect is also illus-
trated in Figure 1, in which neuronal variability can be observed
at a single fiber level.

Amplitude and temporal properties of a twitch depend on
the type of fiber that comprises a MU. In our scheme, all mus-
cle fibers in a MU are assumed to be of the same type, and
although there are many types of fibers, they can be simplified
into two principal groups: Type I or slow, and Type II or fast
[7]. Slow fibers are fatigue-resistant, with the smallest force
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or twitch tension and slowest contraction. Fast fibers can also
be fatigue-resistant, with large forces and faster contraction, or
easily fatigable but having the largest force and fastest contrac-
tion. Figure 2 shows typical slow and fast twitches for laryngeal
muscles, using an alpha waveform as a template [8].

A muscle is composed of many groups of motor units. Nor-
mally, not all MUs in a muscle are identical, having a propor-
tion of slow and fast MUs. Also, MUs are not triggered in-
dependently: if the activity in motor neurons increases, then
additional motor units are also activated to correspond to the
increasing contraction strength. This effect is known as recruit-
ment [9] [10].
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Figure 1: Force of contraction of a single muscle fiber as a func-
tion of time for various motor neuron firing rates. Wave sum-
mation effect creates variability allong time.

2.2. Wave summation model

MUs are recruited into group of motor units (GMUs), where we
assume that all GMUs are identical for a given muscle; that is,
they have the same proportion of slow and fast MUs. In addi-
tion, the rule of five is assumed for the recruitment of GMUs,
in which each subsequent GMU is recruited if an active GMU
increases its firing rate by aproximetly 5[Hz] [11]. Considering
N Groups of MUs, in which the first one is firing at F [hz], then
the set of equations that governs the recruitment of GMUs are :

pm(F,N) =

Na∑
j=1

∞∑
k=0

ns · ps(t− k/Fj)+ (1)

Na∑
j=1

∞∑
k=0

nf · pf (t− k/Fj)

ps,f (t) =
t

τs,f
e−(t−τs,f )/τs,f (2)

Na = min (N,F/5) (3)

Fj = F − 5(j − 1), j = 1, ..., Na (4)

where pm is the resulting time series of contraction force for
a given muscle m, ns and nf are the numbers of slow and
fast fibers in a GMU, respectively, ps and pf are the slow and
fast twitch responses (for the slow and fast fibers), respectively,
and τs and τf are the respective time constants for the twitches.
Equation 1 defines pm as a successive summation of twitches,
considering the effect of each GMU. An infinite spike train
is considered as an input, represented by the summation in k.

Each time a spike arrives, a twitch is triggered. This twitch is
mathematically represented by equation 2.

Equation 3 defines Na as the maximum number of active
GMUs, considering a firing rate F , and equation 4 defines the
firing rate of recruited GMUs (rule of five). Each GMU (labeled
by j = 1, ..., Na) is firing at a different rate Fj , as noted by
Mårtensson [12]. A single GMU can only fire at a maximum
rate of Fmax. If Fj > Fmax, then Fj is set at Fmax. Logically,
this is applied after the recruitment step, so there may be some
GMUs firing at Fmax while there are others below this value.
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Figure 2: Fast (right) and slow (left) twitches waveforms. Each
time a MU fires a spike, a corresponding twitch is triggered as
a response. The sum of successive twitches is the basis of the
wave summation model.

In an effort to capture the inherent variability in neural fir-
ing, and thus the contraction response, a degree of randomness
is also added to various components. First, a the rule of five,
each time a new GMU is recruited, the firing rate for the new
GMU is set at a value between 3 to 7 (normal distribution with a
mean of 5 and a standard deviation of 2), instead of 5 Hz fixed.
Also, it is known that intervals between spikes are not regu-
lar. Based upon the results of Moritz et al [13] that describes
the inter spike interval (ISI) in muscular activation, a normally
distributed ISI with a coefficient of variation (CV) of 0.2 was
considered.

We now normalize the resulting force of contraction to de-
scribe the resulting muscle activation. Thus, the activation am
for a given muscle m is defined as follows:

am(F,N) =
pm(F,N)

max {pm(Ftet, N)} (5)

in which pm is the time series for the force of contraction
with random components (note the bold notation to differentiate
from pm which has no random components). For the normal-
ization step, the model described in equation 1 is used (without
any random components). The muscle activation am is normal-
ized, so the muscle is considered fully activated (or tetanized)
if am = 1. Conversely, a muscle has no activation related if
am = 0, which has no firing rate associated. However, this sit-
uation is never used because a fully relaxed muscle has a resid-
ual muscle tension. Ftet is the fire rate at which all GMUs are
firing at maximum capacity, considering pm (with no random
components). Ftet should be higher that Fmax due to the rule
of five.

2.3. Model Parameters

The model proposed can be used to simulate any muscle in
which muscle activation is required. In this case, two mus-
cles were simulated: the thyroarytenoid (TA) and the lateral
cricoarytenoid (LCA), due to their importance in voice phona-
tion. Both TA and LCA are considered fast muscles, with 10%
of slow fiber and 90% of fast fiber [12]. The parameters related
to the model are presented in Table 1
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Table 1: Parameters for CT and LCA

Muscle TA LCA

Type of muscle Fast Fast
Number of MU per GMU 350 370

Fibers per MU 10 17
Fibers per GMU 3500 6290

Slow fibers per GMU ns 350 629
Fast fibers per GMU nf 3150 5661

For the twitch waveforms, the alpha function was used [8],
which is described in equation 2. For the time constants, values
of τs = 35[ms] and τf = 15[ms] were used for slow and fast
twitches respectively [12] (see equation 2). At the same time,
N=10 GMUs were considered for every simulation [12].

The simulation time was 5 seconds, discarding the first sec-
ond, so the transient of the system was not considered in the
statistical analysis. It is important to notice that each time a
signal was generated, the mean value of am was different. To
correctly estimate the mean value of am, 40 simulations were
considered for each frequency of fire.
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Figure 3: Example of muscle activation for the TA muscle, firing
at 100[Hz]. Activation is around 0.5. For this case, 1[s] is
simulated. It can be seen that in this case, it takes around 0.2[s]
to get to stationary state.

3. Results
The relationship between rate of fire and mean activation is first
characterized. Although this was done for the TA muscle, the
result is the same for LCA. The mean activation was computed
by averaging all mean activations obtained at each fire rate,
starting from 10[Hz], up to 300[Hz]. The result is illustrated in
Figure 4. The range between 40[Hz] and 180[Hz] is known as
dynamic range. In this range, the model has a linear behavior.
Below this range, some GMUs start to become inactive, thus
decreasing the effect on mean activation. On the other side,
above 180[Hz] GMUs start to fire at their maximum capacity,
reaching tetanization at around 200[Hz]. When tetanization is
reached, activation saturates just below am = 1.

The linear relationship provides a mapping between fire rate
and mean activation, thus allowing an analysis of the effect of
noise in the activation on models that consider this parameter
as fixed. For the purpose of this study, the body-cover model
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Figure 4: Mean activation vs firing rate, for TA muscles. In
this case, Fmax is set at 150[Hz], so the tetanization frequency
Ftet is approximately 200[Hz], due to the rule of five. At this
frequency, all 10 GMUs are firing at Fmax. Between 40 and
180 [Hz] a linear behaviour can be observed.

(BCM) developed by Titze and Story [14] was considered. This
low-dimensional model was chosen due to its simplicity, but
also because it enables a natural connection between contraction
of the cricothyroid and thyroarytenoid muscles and stiffness pa-
rameters. This dependence is ruled by a set of physiologically-
based equations described also by Titze and Story [5].

3.1. Effect of Neural Noise on the Body-Cover Model

The BCM model is controlled by a set of parameters that de-
pends on the muscular activation of different muscles, like TA
and LCA. For the following simulations, fire rates for TA and
LCA are set at values in which mean activations are the same as
fixed activations in the simulation without noise. This values are
aTA = 0.25 and LCA at aLCA = 0.5. Also, fixed activation
for the non-simulated muscle cricothyroid is set at aCT = 0.2.

Figures 5a and 5b show that with a noisy simulation of TA
activation, a variation in time can be incorporated in parameters
of the body-cover model. Also, this are just two of the many
parameters that are affected by this.

For a given combination of muscle activations, the BCM
can enter on a self-oscillating state, or can start a damped os-
cillation. With this behavior in mind, a comparison between a
constant and a noisy activation was made, so the effect of noise
can be directly seen on the VF oscillation. Figure 6 illustrates
this idea. Muscle activation for LCA is simulated, introducing
noise in the model and showing how it reflects on a glottal area
graph. As it can be seen, with a combination of activations of
aTA = 0.25, aLCA = 0.5 and aCT = 0.2, the model enters
in a stable oscillation state. With noise however, this oscillat-
ing state becomes very irregular in its amplitude, but keeping
its fundamental frequency relatively constant.

The muscle activation plot (MAP) that Titze and Story pre-
sented in their study [5] can be used to understand the results
presented in Figure 6. Data points show region of self-sustained
oscillation with the convergence rule, and for the given com-
bination, oscillation is effectively happening. However, self-
sustained oscillation state is limited by a narrow band around
0.5 for lateral cricoarytenoid activity. This implies that if noise
is induced in LCA activation, then the BCM could continuously
step in and out of the self-sustained oscillation state, which ex-
plains the irregular behavior in glottal area waveform.

Figure 7 shows a second comparison, in which noise in TA
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Figure 5: Effect of noise in TA muscle activation on vocal fold
length (5a) and coupling constant (5b) of the BCM. Dashed line
shows the value with no noise on the activation, considering the
mean value of the noisy case.
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Figure 6: Comparison between a simulation using the normal
and noisy activation. Activations on cricothyroid (CT) and thy-
roarytenoid (TA) are set at 0.2 and 0.25 respectively. Fire rate
for lateral cricoarytenoid is set at 97[Hz], which gives a mean
activation around 0.5.

activation is induced. In this case, differences are minimum,
showing that in this case the model is almost not affected by
noise in this activation. In the two previous cases, fundamental
frequency is not affected, althought the waveform is different.
This illustrates that the effect of the neural noise is variable de-
pending upon the model configuration and requires further eval-
uation in a parametric study.

4. Conclusion
The wave summation model can be used to include neural vari-
ability in muscular activation over time. Although the proposed
neural scheme has been tested only in the Body-Cover Model, it
is possible to use it in other vocal fold numerical models, like a
bar-plate model [5]. The scheme looks promising in the context
of studying the effect of noisy muscle activation in vocal fold
numerical models where the behavior of the body cover model
can vary significantly in terms of its glottal area.
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Figure 7: Comparison between a simulation using the normal
and noisy activation. Activation on cricothyroid (CT) and lat-
eral cricoarytenoid (LCA) are set at 0.2 and 0.5, while TA had
a mean value of 0.25.

The neural noise scheme for muscle activation presented in
this study can be use to simulate a different set of muscles si-
multaneously. In future efforts, cricothyroid will be simulated,
given its impact on fundamental frequency regulation [15]. A
comprehensive sensitivity analysis will be performed to assess
the effect of the neural noise in various configurations.
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