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Abstract— Removal of artifacts induced by muscle activity
is crucial for analysis of the electroencephalogram (EEG), and
continues to be a challenge in experiments where the subject may
speak, change facial expressions, or move. Ensemble empirical
mode decomposition with canonical correlation analysis (EEMD-
CCA) has been proven to be an efficient method for denoising of
EEG contaminated with muscle artifacts. EEMD-CCA, likewise
the majority of algorithms, does not incorporate any statistical
information of the artifact, namely, electromyogram (EMG)
recorded over the muscles actively contaminating the EEG.
In this paper, we propose to extend EEMD-CCA in order to
include an EMG array as information to aid the removal of
artifacts, assessing the performance gain achieved when the
number of EMG channels grow. By filtering adaptively (recursive
least squares, EMG array as reference) each component resulting
from CCA, we aim to ameliorate the distortion of brain signals
induced by artifacts and denoising methods. We simulated several
noise scenarios based on a linear contamination model, between
real and synthetic EEG and EMG signals, and varied the
number of EMG channels available to the filter. Our results
exhibit a substantial improvement in the performance as the
number of EMG electrodes increase from 2 to 16. Further
increasing the number of EMG channels up to 128 did not
have a significant impact on the performance. We conclude by
recommending the use of EMG electrodes to filter components,
as it is a computationally inexpensive enhancement that impacts
significantly on performance using only a few electrodes.

Index Terms— Adaptive filtering, artifact removal, blind-
source-separation, electroencephalogram (EEG), electromyogram
(EMG), muscle artifacts.

I. INTRODUCTION

THE electroencephalogram (EEG) is an electrophysiolog-
ical technique for recording the electrical activity of the

brain by placing electrodes on the scalp. EEG signals consist
of differences in electrical potentials between a reference
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electrode and the electrode array. Among the various brain
imaging techniques, EEG has a very high time resolution,
enabling the study of sensory and cognitive processes in
the time scale in which they occur. The broad adoption of
the EEG in the biomedical and scientific domains includes
its use for diagnosis, analysis, and brain–computer inter-
faces (BCIs) [1]. The electrical field emanated by the brain
activity passes through the skull and reaches the electrodes
(by physical volume conduction), rendering a low signal-to-
noise ratio (SNR) for brain signals, with a spectrum in the
range of 0.01–100 Hz [1]. Muscle activity is considered the
primary physiological artifact source in the EEG, as they also
emanate electrical activity that reaches the electrodes. In most
cases, muscular sources are closer to scalp electrodes than
the brain, contributing significant energy with broad spectral
noise source. Proper removal of muscle artifacts is crucial for
achieving real neurofeedback training, constructing efficient
BCI, and making reliable analyses of brain potentials. Muscle
contamination is a serious concern in the EEG, especially since
it has been recently shown that these undesired signals could
perfectly mimic brain activity in neurofeedback training [2],
becoming especially critical when estimating EEG sources
under conditions that involve intense muscle activity, such as
changing facial expressions, walking, exercising, and speaking.

We summarize the hallmarks of muscle interference in two
main situations. First, single motor units (SMUs) activations
are found in all EEG electrodes without time delay [3] (at
least when sampling the EEG below 1 kHz), due to volume
conduction, and where the SMUs’ activation is present even
in resting state conditions [3]. In addition, studies involving
partial induced or total paralysis are supporting reasons for
considering the background myogenic activity as noise [4], [5].
The second situation is the spectral overlap between muscle
and brain signals. Muscles’ activation appears in a burst,
present tonic, and spontaneous components and has different
spectral signatures across individual and group muscles [6].
Nevertheless, brain signals are known to be much more
autocorrelated (at lag 1) than muscle signals. For instance,
the activity of temporal and frontalis muscles can be modeled
as a white noise process, due to the presence of power in all
EEG frequencies [as the electromyogram (EMG) spectrum is
in the range of 0.01–200 Hz] [7].

In addition to these two characteristics of signal inter-
ferences, the absence of ground truth for brain and muscle
signals makes the quantification of the distortions (induced
by muscles and artifact removal algorithms) a difficult
problem [4], [8]–[12]. To validate and compare different
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method to remove EMG artifacts, simulations assuming a
contamination model are performed, using real and syn-
thetic signals. Although validation procedures on experimen-
tal recordings have been proposed [13], they rely on using
two or more instruments (EEG + functional near-infrared
spectroscopy or magnetoencephalogram), to obtain a highly
correlated signal for estimating an EEG ground truth.

A. Current Muscle Artifact Removal Methods

Most of the relevant techniques for muscular artifact
removal relies on solving a linear blind source separation
(BSS) problem, using algorithms such as independent com-
ponent analysis (ICA) [14] and canonical correlation analysis
(CCA) [7], [15]. Typically, the procedure consists of decom-
posing the EEG array into N sources, where the artefactual
sources are identified and removed, and the remaining sources
(artifact-free) are projected back onto the EEG array. This
procedure is often made by manual inspection of artefac-
tual sources, and although automatization methods have been
proposed, it is impossible to assure that found sources are
either pure artifacts or brain components, leading to potential
information loss and brain signal attenuation.

More specifically, the technique used to solve the BSS prob-
lem depends on artifact characteristics. In the domain of ocular
artifact removal, ICA has shown better performance [16] (less
error in reconstructing simulated signals with realistic ocular
noise), because the ocular movement artifact is stereotyped and
does not resemble a Gaussian noise. Note that solving BSS
through ICA is, in essence, to maximize the non-Gaussianity
of the sources [17]. For removal of temporal and frontalis mus-
cle activity, CCA has shown better performance [7], [15], since
the activity of those muscles is fast, appears in bursts, and is
much less autocorrelated than brain signals (CCA aims to find
sources that are maximally autocorrelated). Chen et al. [18]
proposed the use of independent vector analysis (IVA) for the
removal of muscle artifacts. IVA is a technique that aims to
take advantage of both ICA and CCA, outputting sources that
are consistently dependent among several data sets and, at
the same time, independent of each other within a data set.
Although it is reported to outperform ICA and CCA for mild
to good SNRs (>0 dB), it requires multiple data sets and the
computation time is at least 50 times larger than ICA.

In addition, BSS requires a multichannel array, and it
generally assumes that the number of sources is less or equal
than the number of electrodes. Moreover, this estimation
problem could be considered underdetermined when, e.g.,
the number of sources exceeds the number of EEG electrodes;
and by the same reason, it is generally accepted that a higher
number of channels would lead to better performance [19].
The hybrid single-channel variation of BSS-CCA proposed
in [15] is composed of two main steps. First, using ensemble
empirical mode decomposition (EEMD), the EEG channel is
decomposed into multiple components. Second, BSS is applied
to the resulting matrix (CCA), canceling the sources that are
assumed to be mostly artifacts, for finally backproject the
artifact-free components and apply inverse EEMD on those.

The discussion on whether a single-channel or multichannel
technique is more suitable for the artifact removal problem was
recently investigated for facial muscle artifacts [19]. In this
paper, multichannel BSS-CCA and single-channel EEMD-
CCA are compared, and the single-channel technique achieved
better results when reconstructing signals. The authors sug-
gested that a possible reason behind this finding could be
the high variability in the number of sources. Thus, using
more channels and assuming a square mixing matrix B can
lead to mixing up more myogenic and brain sources than
separating them. Following this idea, two hybrid algorithms
were proposed, based on the same decomposition steps of
a single electrode and then BSS was applied. Maddirala
and Shaik [20] decomposed a single electrode using singular
spectrum analysis (SSA) and then applied ICA (SSA-ICA).
The authors reported that decomposing the signal using SSA
performed better than Wavelet-ICA [21], EEMD-ICA [14],
and SSA-adaptive noise canceller [22]. In [23], a method
to utilize the interdependency information on surrounding
electrodes was proposed. This idea was performed by decom-
posing a reduced number of EEG channels (three to eight) by
means of multivariate EMD (MEMD) and then applying CCA.
Their results performed better than single-channel EEMD-
CCA thus indicating that the multichannel approach can,
in fact, introduce the expected performance enhancement if
handled properly.

Summarizing, the majority of research addressing the
muscle artifact removal problem focus on limited sensing
capabilities, giving additional support to single-channel tech-
niques due to their inherent instrumental simplicity and clinical
applicability. In this paper, we explore if the best performance
in the literature could be improved by adding statistical
information of the artifact by using an EMG electrode array.
For this end, we extended a well-established single-channel
method (EEMD-CCA) to include the EMG array by making
regression on the found sources adaptively. Our goal is to
enable the user to make natural facial expressions and talk
during the EEG experiment. It is worth remarking that the
scope of the method we describe only takes into consideration
EMG signals synchronously recorded with EEG, thus allowing
zero-lag interference removal.

This paper is structured as follows. Section II introduces
the methods and the proposed scheme in detail. Section III
describes the data sets used as well the data genera-
tion, the contamination model and performance measures.
Section IV presents and discusses the results for the various
simulation conditions along the validity of the study. Section
V concludes our study with recommendations regarding the
use of EMG electrode-arrays on EEG experiments that involve
subject movement.

II. METHODS

A. EEMD Expansion

Empirical mode decomposition (EMD) decomposes a signal
into a variable number of intrinsic mode functions (IMFs).
Each IMF satisfies two conditions: 1) the difference between
the number of zero crossings and extreme values must be less
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than or equal to one and 2) for all time points, the average
of the upper and lower envelopes is zero. The first IMF c1
is obtained by subtracting the average between the upper and
lower envelopes of the original signal y recursively, until the
resulting signal satisfies the IMF conditions. When an IMF
is found, it is subtracted from the original signal, obtaining a
residual r1 = y − c1. The same procedure is then applied to
the residual r1, in order to obtain a second IMF c2, and so
on. The iteration stops when the residual signal rP becomes a
monotonic function, giving the number of resulting IMFs (P).
The original signal can be reconstructed by summing all IMFs
and the last residual cP , i.e., y = ∑P

i=1 ci + rP .
EEMD [24] is a variation of the previous algorithm that

is more robust against noise and outliers. A fixed number
(I ) of ensembles is chosen (ten or more according to [19]).
Following, EMD is applied I times on the original signal with
added independent identically distributed (i.i.d.) noise whose
variance is equal to 0.2 times the original signal variance [24].
I ensembles of P IMFs are obtained, for then averaging all
of them. The implementation of EEMD used is libeemd [25],
which is freely available as open source software.

B. Multichannel BSS-CCA

The BSS problem assumes that Y (k) = BS(k), where B ∈
R

N×N is the mixing matrix, and, Y (k), S(k) ∈ R
N×T are

the EEG data matrix (in the EEMD-CCA algorithm, the mul-
tichannel output of EEMD over a single electrode) and the
sources, respectively. The goal is to find W ≈ B−1 in order
to obtain an approximation of the sources by S̃(k) = WY (k).
CCA is one way to solve the BSS problem, by constraining
the sources to be maximally autocorrelated (at a specific lag)
and mutually uncorrelated.

Define Y1(k) as a delayed version of the original data
matrix, i.e., Y1(k) = Y (k − 1). CCA aims to maximize the
correlation between linear combinations of Y and Y1

max
w0,w1

ρ(wT
0 Y, wT

1 Y1) = wT
0 �01w1√

(wT
0 �00w0)(w

T
1 �11w1)

(1)

where w0, w1 ∈ R
N . �00,�11 are the autocovariance matrices

of Y and Y1, respectively, and �01 is the covariance matrix
between them.

It can be proven that the optimization problem mentioned
earlier reduces to the following eigenproblem:{

�−1
00 �01�

−1
11 �10w0 = ρ2 w0

�−1
11 �10�

−1
00 �01w1 = ρ2 w1

(2)

giving the first pair of canonical variates wT
0 Y and

wT
1 Y1. The next pairs of canonical variates (i.e.,

{wT
2 Y, wT

3 Y1}, {wT
4 Y, wT

5 Y1}, and so on) can be obtained
solving the same eigenproblem, by adding the constraint of
being orthogonal to the previous canonical variates.

The source matrix S̃(k) is constructed by concatenating the
first of each pair of canonical variates obtained by (2) as rows.
The sources are sorted from high to low autocorrelation. With
the assumption that the least autocorrelated sources are mostly

of myogenic origin, a threshold on the autocorrelation of the
sources is applied to separate myogenic and brain sources.

The implementation of CCA used in this study is included
on the FieldTrip Toolbox for MATLAB [26].

C. Adaptive Filter Over BSS

CCA aims to find sources (linear combinations of the
measurements) that are maximally autocorrelated and mutu-
ally uncorrelated, taking advantage of the knowledge that
brain signals are highly autocorrelated. A threshold on the
autocorrelation of resulting sources is applied, then the least
autocorrelated sources are assumed to be pure artifacts and
thus set to zero.

The proposed scheme filters the sources adaptively (using
a recursive least-squares filter) instead of removing some of
them, by subtracting the contribution of a reference signal
(EMG electrodes), according to a linear model of interference.
This is a more subtle way to process the artefactual sources
than setting them to zero and thus, helping to mitigate the
potential information loss issue in BSS.

Let N be the number of resulting artefactual sources,
represented by s̃n(k) ∈ R

T , n ∈ {1, . . . , N}.
Over the assumption that EMG signals are positioned

sufficiently far for not capturing any brain signals and that
activations of EMG signals are immediately visible on all EEG
electrodes, a linear model of interference was proposed [27]

s̃n(k) = sn(k) + X T (k)� (3)

where sn(k) is the true EEG source and X (k) =
[x1(k), . . . , xNM (k)]T is the EMG data matrix. In addition,
� ∈ R

NM are the coefficients in which every EMG electrode
x j influences (linearly) the EEG electrode yi in question.
These coefficients are expected to behave inversely propor-
tional to the distance, by assuming that the interference of
distant EMG electrodes has less reflection amplitude than the
close ones to the EEG electrode.

The extended recursive least-squares (ERLS) algorithm
[16], [28] is proposed to find the parameters � for each
artefactual source s̃m(k) by

�(k) = s̃m(k) − X T (k)�̂(k − 1) (4)

r�(k) = βk + X T (k)P(k − 1)X (k) (5)

�̂(k) = A�̂(k − 1) + κ(k)�(k) (6)

κ(k) = AP(k − 1)X (k)/r�(k) (7)

P(k) = A[P(k − 1) − P(k − 1)X (k)X T (k) (8)

P(k − 1)/r�(k)]AT + βkq I

where �(k) is the error signal, κ(k) is the weight for parameter
updating, �̂(k) is for the current estimation of �, and P(k) is
the EMG autocovariance matrix. In addition, the parameter β
is the forgetting factor of the ERLS and q is a weight between
model variation and measurement disturbances.

The filtered source ŝn(k) can be thus obtained by

ŝn(k) = s̃n(k) − X T (k)�̂(k). (9)

This filtering process is repeated for every artefactual
source n ∈ {1, . . . , N}, constructing a filtered BSS source
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Fig. 1. (a) RealEEG channel Cz and (b) SimEEG 4-s window sample.

matrix Ŝ(k). Inverse BSS is applied by Ŷ (k) = BŜ(k),
to finally, sum the rows of Ŷ (k) (inverse EEMD) thus, yielding
the filtered single EEG channel ŷi (k).

The implementation of the ERLS filter is an in-house
MATLAB R2018a script.

III. DATA SET DESCRIPTION, SIMULATIONS, AND

PERFORMANCE COMPARISON

Two EEG data sets were used to test the proposed method.
The first data set consists of 32-channel of EEG recorded
from two subjects involved in a passive listening task (auditory
oddball paradigm during hypnosis), obtained from BNCI Hori-
zon 2020 Project, freely available under Creative Commons
license.1 Eye-motion artifacts were removed using ICA and
setting to zero the components by manual inspection. The
resulting clean EEG is called RealEEG. In order to have an
additional realization of a clean EEG signal, we simulated a
second data set using SimEEG software [29], which imple-
ments a wavelet analysis approach on real EEG signals in
order to generate EEG data with similar spectral composition
(simulated EEG bands activity). This data set is labeled as
SimEEG. Both data sets are considered to be clean of artifacts
and were divided into 4-s windows (T = 2048 samples), for
then normalizing each window, subtracting their mean and
dividing by their standard deviation. The selection of the 4-s
window length is based on the interest to compare our results
with the literature, e.g., the original EEMD-CCA [15], [19],
where the window length was always 4 s. Two sample win-
dows for RealEEG and SimEEG are shown in Fig. 1.

EMG signals were recorded from a subject in resting state
and in an exercise of vocalization, uttering a set of long
syllables. The signals were acquired using eight EMG elec-
trodes sampled at 8192 Hz, distributed uniformly around the
cheeks and neck of the subject. Postprocessing of these signals
included downsampling to 512 Hz, a bandpass filter between
0.1 and 256 Hz, and electrocardiogram removal is done
manually using ICA. Signals were divided in 4-s windows
that were Z -score normalized by removing their mean and
dividing by their standard deviation. These signals were treated
as muscular sources and called RealEMG. A second data set
of EMG muscular sources was simulated to resemble typical
EEG simulations [19], [30], i.e., spontaneous bursting behavior
of Gaussian noise. Herein, every source is a train of impulses

1http://bnci-horizon-2020.eu/database/data-sets

Fig. 2. Sample of 4 s of eight-channel. (a) SimEMG. (b) RealEMG.

.

drawn from a Poisson process, with impulse amplitudes uni-
formly distributed between 0 and 1. The bursting behavior was
obtained by passing a sliding window, setting the window to
0 (no activations) if there are 2 or less activation inside the
window. Each train of impulses is then convolved by Gaussian
noise, with variance equal to the amplitude of the impulse and
random duration between 100 and 500 ms, uniformly chosen.
Twenty-five windows of 4-s length were simulated and called
SimEMG. To match the number of sources available by EMG
measurements, NM = 8 sources were generated. The number
of sources will be discussed at the end of this paper. A sample
window of these sources is shown in Fig. 2.

A. Contamination Model

A linear model of contamination is proposed between clean
EEG signals yi (a 4-s window) and both RealEMG and
SimEMG X ∈ R

NM ×T . First, we mixed the muscular sources
multiplying them by a random matrix C ∈ R

NM ×NM , for then
sum every row (C X) j to obtain an artifact a(k), which is
added to the clean EEG window. The λ parameter is used to
control the SNR between artifact and ground truth EEG. One
clean EEG channel i , yi (k) was contaminated by the sum of
all EMG channels x j (k), as shown in (11)

a(k) =
NM∑
j=1

(C X) j (10)

ỹi (k) = yi (k) + λa(k). (11)

The SNR and the root mean squared (rms) value is defined
as follows:

SNR = 10 log
rms(yi )

rms(λa)
(12)

rms(x) =
√√√√ 1

T

T∑
k=1

x2(k). (13)

In order to test the algorithms in a high-noise environment, we
set eight values of λ to obtain SNRs in the range of −10–1 dB.
For the same reason, to increase nonstationarity, a new C
matrix was drawn on every window. Table I summarizes the
signals used in the simulation trials and Fig. 3 presents a
window sample of each signal for the worst SNR (−10 dB).
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Fig. 3. Contaminated signal samples for all data sets used in simulations, for SNR = −10.5 dB. (a) S1. (b) S2. (c) S3. (d) S4. Black line: ground truth signal
(artifact-free EEG). Superimposed gray: contaminated signal.

TABLE I

DESCRIPTION OF SIGNALS IN SIMULATIONS

In addition, we considered that the noise measurements
matrix (EMG input to the RLS filter) is not the same matrix
used for contamination (C X). This is based on the assumption
that the EMG electrodes are relatively far from the true
muscular sources X and the measured data reflects a different
mixture of those C X that yielded the artifact a. Let X̃ = J X
be the measurement matrix, used as input of the ERLS filter
in the proposed algorithm. The shape of J (and therefore X̃ )
is used to control the number of EMG channels available for
the measure, mixing the sources into less (or more) channels.
In this paper, three shapes of J were considered to assess the
influence of the number of channels of measurement in the
performance of artifact removal: 2×NM , 4×NM , and 8×NM .
Fig. 4 presents a sample of the difference between both arrays
for a 8 × 8 simulation. We also draw a new random matrix J
for every window, to increase the difficulty of the estimation
problem. These simulation conditions will be discussed in the
results section.

B. Performance Comparison

The three variations of the proposed algorithm
(EEMD-CCA + regression with two-, four-, and eight-
EMG channels) were compared with the original algorithm
(EEMD-CCA) and another recently published algorithm that
reported better results than EEMD-CCA for muscular noise,
namely, SuBAR [30].

A performance comparison was done in the time domain
and frequency-domain using the following metrics:

1) Relative Root Mean Squared Error: The relative root
mean squared error (RRMSE) of reconstructing the ground
truth signals is defined as

RRMSE = rms(yi − ŷi)

rms(yi )
(14)

where yi represents the ground truth and ŷi represents the
recovered signal for a given algorithm. The same error measure

Fig. 4. Sample of 4-s window of C X (left) and J X (right), for (a) RealEMG
and (b) SimEMG. C X is the matrix whose sum of rows yield the artifact a
that interferes the clean signals. J X is the EMG measurements used as the
reference signal in the ERLS filter.

is used to compare the error on reconstructing the ground truth
spectra between 0 and 50 Hz.

2) Power Difference in Information Bands: In order to
quantify the expected distortion in the EEG spectral bands,
we computed the difference of spectral power between the
ground truth and the recovered signal in each band. The EEG
information bands under consideration were: δ-band (0–4 Hz),
θ -band (4–8 Hz), α-band (8–12 Hz), β-band (12–30 Hz), and
γ -band (30–40 Hz). To calculate each frequency band power,
we normalized the squared Fast Fourier transform (FFT) (with
2048 samples) by the average power between 40 and 50 Hz,
where our signals did not show any activity of interest for this
method, neither in RealEEG nor SimEEG. At the same time,
this procedure allowed us to avoid the 50-Hz powerline notch
filter.
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Fig. 5. RRMSE in time domain as a function of the SNR. The averages are
taken across all windows and then across all electrodes. Intervals indicate the
average standard deviation across electrodes.

IV. RESULTS

We applied all the methods for comparison to each data
set S1, S2, S3, and S4, consisting of 25 windows, 4 s
each. A parameter grid was constructed in order to optimize
the parameters of the ERLS filter, by selecting the parameters
that achieved the best performance (in terms of RRMSE).
The chosen parameters were q = 10−4, λ = 0.999, and
A = I , with initial conditions �(0) = 0 and P(0) = I .
Parameters of EEMD-CCA, such as the number of IMFs and
the autocorrelation threshold were set to resemble the literature
testing these methods, i.e., setting the IMFs number to 12 and
the autocorrelation threshold to 0.9 [19], [23].

Fig. 5 presents the average RRMSE across all electrodes.
Fig. 6 presents a sample window for the recovery of ground
truth (in the time domain) for each data set and for every
algorithm. The results for the RRMSE in the frequency domain
are not shown due to that is essentially the same for the time
domain, as the squared FFT is a linear transformation of the
signal up to 50 Hz.

A sample of the spectral recovery for one electrode is shown
in Fig. 7, where is shown that the clean, noisy, and recovered
power spectral density up to 50 Hz. The power difference in
all information bands is presented in Table II.

Spectral composition and characteristics of RealEEG and
SimEEG are very similar, so we divided our analysis compar-
ing real and simulated EMG signals.

A. Real EMG Signals

The distortions induced by RealEMG signals are character-
ized by DC fluctuations and white noise. As shown in Fig. 6
(S1 and S3), both EEMD-CCA and SuBAR failed to overcome

TABLE II

POWER DIFFERENCE IN INFORMATION BANDS

the DC fluctuations while our method could successfully follow
the slow variations as noise. In terms of RRMSE, all methods
performed very similar for good SNRs (SNR > 0 dB), and as
SNR became lower, the differences between our variations of
EEMD-CCA and the original algorithm increased. The original
EEMD-CCA performed almost equally to SuBAR along all
SNRs, having an RRMSE average between 2 and 3 for
SNR < −5 dB while in all of our variations became at most
2 for the worst SNR. EEMD-CCA with eight-channel EMG
filtering was the only algorithm that achieved an RRMSE
average below 1 (SNR > −3 dB in real EEG signals and
SNR > −6 dB in simulated EEG signals), and presented
the most stable behavior (low slope). Visually in the spectral
domain, in the sample shown in Fig. 7, it can be seen that
our algorithm was the only one that could recover the spectra
successfully. The spectral recovery is quantified (for the infor-
mation bands) in Table II, where our variations showed the
smaller averages and standard deviations.

B. Simulated EMG Signals

Our simulated EMG noise is characterized as a white noise
with bursting behavior. In the time domain, results for S2
and S4 were similar to the data sets employing RealEMG
signals, with the difference that results for S2 and S4 in
the original EEMD-CCA performed better than SuBAR and
our variations, with two and four EMG electrodes, for all
SNRs. Again, EEMD-CCA with eight-channel EMG filtering
outperformed all other methods by presenting a highly stable
RRMSE average of 0.5 approximately, across all SNRs. In
terms of spectral recovery (Table II), the best results were
obtained for S4 (simulated EEG and EMG), where the spectral
difference in all bands never was higher than 1, followed by
S2 (simulated EEG with real EMG).
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Fig. 6. Sample window of clean (black) and recovered (gray) signals for all methods and data sets, at the worst SNR, electrode O2. (a) S1. (b) S2. (c) S3.
(d) S4. SuBAR, EEMD-CCA, and EEMD-CCA with two-channel EMG, four-channel EMG, and eight-channel EMG (top to bottom).

Fig. 7. Average spectra over all windows for the worst SNR of clean, noisy, and recovered signals between 0 and 50 Hz (O2 channel). The first row shows
the spectra for the original (in olive) and postcontamination (in red) data set. The rest of the rows shows the recovered spectra by the algorithms (in violet)
and the original spectra (in olive). In our algorithm, the 2-EMG and 4-EMG variations are in brown and dark brown colors, respectively.

Further Extension: We asked whether adding more statisti-
cally relevant information to the adaptive filter could improve
the performance of the method here proposed. The assumption

that a fixed number of muscular sources interfere with clean
brain signals is ideal in the sense that muscles activation
arises from an undetermined number of locations and sources.
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Fig. 8. Average RRMSE in the time-domain, for all electrodes, SNRs,
as a function of the number of EMG electrodes used for the two simulation
scenarios, dynamic (green) and static (black) mixing matrices.

The performance gain (as the number of EMG channels grow
from 2 to 8) can be justified as the number of EMG electrodes
for filtering (measurement matrix) is approaching the number
of muscular sources that originally contaminated the ground
truth.

To investigate the effect of the number of muscular sources
and EMG electrodes on the behavior of our results, we further
extended the simulations by enlarging C and J matrices up
to 32 × NM and 128 × NM , respectively, to obtain a
contamination matrix C X of NS = 32 sources and an EMG
measurement matrix X̃ of #EMG = 128 channels. However,
the number of original sources was not modified, so this
tweak can be seen as taking the same original information and
representing it (for contamination and filtering) in a sparser
way. Furthermore, we investigated the effect of changing the
matrices J and C for every window and ran simulations with
static J and C matrices for the enlarged problem.

Fig. 8 shows the RRMSE averages for all EEG electrodes
and NS , as a function of the number of EMGs used for mea-
surement (shape of J ), in the two scenarios of dynamic and
static mixing matrices J and C . In the case of dynamic mixing
matrices, it is observed that performance degradation as the
number of EMG channels increases. We attribute this effect
of performance degradation to the hardness of the estimation
problem in this scenario; specifically, the number of EMGs is
directly related to the size of the covariance matrix and the
regression coefficients inside the ERLS algorithm (noted P
and �). P is not symmetric, and the estimation problem in
this scenario changes every 2048 samples; therefore, a longer
window length is required as the number of EMG channels
increases. In the second case of static mixing matrices, this
effect is not observed and the RRMSE remains stable, as the
EMG array becomes larger.

In an experimental setting, it is worth noticing that the
EEG and the EMG signals must be recorded with the same
acquisition system, or applying a precise synchronization tech-
nique between them, in order to account for the instantaneous
reflection effect.

V. CONCLUSION

In this paper, we introduce a novel method for incorpo-
rating multisensor statistical information of the noise source
for BSS-based muscular artifact removal methods. We argue
that adaptive regression on the resulting sources helps to
mitigate both instantaneous reflections and spectral overlap.
Using real and synthetic signals, we measured the performance
gain for various conditions, including under massive noisy
environments (SNR < 0 dB). Our results show that inde-
pendently of the number of muscular sources, a substantial
performance improvement is expected by placing additional
EMG electrodes over the face and neck muscles. The number
of optimal EMG channels must be associated with the number
of SMU units interfering the signal. In our case, when adding
over 16 EMG electrodes, the filter becomes unable to capture
muscular source characteristics. Furthermore, increasing the
number of channels required additional samples in a window
to achieve good estimations of the covariance matrix, thus
indicating a tradeoff between the number of EMGs used and
the hardness of the estimation problem. Although EEMD-CCA
and SuBAR performed almost equally in all scenarios, there
is an advantage of EEMD-CCA over SuBAR, as EEMD-CCA
can be intuitively extended to account for the hallmarks of the
muscle interference problem we mentioned, namely, spectral
overlap (partially separated by BSS) and zero-lag interference
(mitigated by the ERLS algorithm). On the other hand, SuBAR
is an algorithm that relies its effectivity on replacing wavelets
coefficients of random realizations of a signal, thus, extending
this algorithm to account hallmarks of the specific problem
could be confusing. For this reason, we argue that SuBAR
is designed as a general-purpose artifact removal algorithm,
whereas EEMD-CCA with AF is specific for the muscle
problem interference.

Therefore, we recommend the placement of EMG electrodes
over muscles expected to produce activity in an experimental
scenario, and thus, to automate BSS-based algorithms, as it
is a computationally inexpensive enhancement that could
substantially reduce the distortions induced by voluntary and
involuntary muscular activations.
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