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Abstract
Previous vocal fold modeling studies have generally focused on generating detailed data

regarding a narrow subset of possible model configurations. These studies can be inter-

preted to be the investigation of a single subject under one or more vocal conditions. In this

study, a broad population-based sensitivity analysis is employed to examine the behavior of

a virtual population of subjects and to identify trends between virtual individuals as opposed

to investigating a single subject or model instance. Four different sensitivity analysis tech-

niques were used in accomplishing this task. Influential relationships between model input

parameters and model outputs were identified, and an exploration of the model’s parameter

space was conducted. Results indicate that the behavior of the selected two-mass model is

largely dominated by complex interactions, and that few input-output pairs have a consis-

tent effect on the model. Results from the analysis can be used to increase the efficiency of

optimization routines of reduced-order models used to investigate voice abnormalities.

Results also demonstrate the types of challenges and difficulties to be expected when

applying sensitivity analyses to more complex vocal fold models. Such challenges are dis-

cussed and recommendations are made for future studies.

Introduction
The mechanism by which human voice is produced is incredibly complex, consisting of multi-
ple material and geometric nonlinearities [1, 2]. Furthermore, the system which produces voice
(vocal folds, glottis, trachea, etc.) is very difficult to access for the purpose of data collection,
thus making the acquisition of experimental data very difficult. These challenges have led
many researchers to use numerical models to investigate certain aspects of human phonation.
In general, the purpose of these models is to provide insights regarding the actual physical sys-
tem which they represent. However, the behavior of even the simplest vocal fold models
involves complex, nonlinear interactions and multidimensional solution spaces containing
numerous discontinuities and bifurcations [3–6]. These complexities can obscure important
relationships and present an obstacle to obtaining a comprehensive understanding of overall
model behavior(s) that can be generalized to the human population. In fact, the global behavior
of the vast majority of vocal fold models has never been fully characterized.
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Numerical vocal fold studies have generally focused on generating detailed data regarding a
narrow subset of model configurations. For example, a number of studies have examined
lumped mass vocal fold models using bifurcation diagrams and regime plots to study model
effects across two parameters [1, 7]. This approach serves to illustrate regions with similar kine-
matic behavior. However, it fails to capture interactions with other parameters, which (as
shown later) are highly influential in this system. A partial sensitivity analysis of a two-mass
model was performed by Sciamarella and d’Alessandro [8], in which they analyzed 7 out of 21
input parameters using pairwise variations. The role of model parameters in certain topics of
interest, such as the effect of acoustic coupling, the ability to reproduce common ranges of pho-
nation, and the prevalence of bifurcations, was investigated. However, an a priori ranking of
parameter sensitivities was used to neglect the influence of two-thirds of the parameter set,
multi-parametric interactions were neglected, and a methodology for performing a more com-
prehensive sensitivity analysis was not discussed. Using a finite element model, Pickup and
Thomson [9] used a screening method to explore the role of 13 geometric factors of a finite ele-
ment model of vocal fold vibration. However, all 7 material parameters were held constant,
and the screening method used by Pickup and Thomson utilized a small number of simulations
(28), with the goal of having a first-order approximation of model sensitivity. These previous
studies, along with results from bifurcation diagrams, regime plots and partial sensitivity analy-
ses are informative but they are limited in scope. In particular, if one of the uninvestigated
parameters in such a study is altered, the results of the study may no longer be applicable.
These types of studies in which a confined set of model inputs are investigated can be inter-
preted as an investigation of a single virtual individual under numerous phonation regimes.

In the current paper we advocate a different sensitivity analysis and modeling paradigm in
which unique instances of a selected model are used to represent a (virtual) population of sub-
jects. Sensitivity analyses are then conducted on each member of the virtual population. This
approach involves simultaneous variation of allmodel parameters and generates a “virtual
population of human subjects” [10, 11] who possess a broad spectrum of possible vocal behav-
iors and are defined by widely spaced initial parameter sets. This approach (hereafter termed
“population-based analyses”) produces an entire distribution of sensitivity values for the effect
of each model input on each model output (as opposed to the traditional approach which pro-
duces a single sensitivity value for each input-output pair). This broader approach enables the
identification of input parameters that have a consistent effect across the entire model’s param-
eter space. It also allows identification of input parameters that have erratic effects, and inputs
which consistently have very minimal effect on model behavior. This type of analysis can be
viewed as an experiment that has been repeatedly conducted on a representative sample of
individuals so that statistical confidence is obtained, whereas traditional or partial sensitivity
analyses are more akin to a single experiment conducted on a single individual.

Computational costs of population-based sensitivity analyses are high; however, they pro-
duce comprehensive understanding of global model behavior, and can therefore identify both
reliable and unreliable model effects that span the entire population. In other words, results of
population-based analyses can be used with confidence whereas results from partial sensitivity
analysis or confined parametric variations of models (the traditional study design) do not real-
istically depict biological variation which exists in the real world population and are therefore
limited in overall scope of relevance and applicability [12]. In particular, the traditional study
design can fail to capture overall population trends [13] and extreme caution must be exercised
if results from these analyses are extrapolated (i.e., generalized) to uninvestigated regions of the
model’s parameter space. For additional explanation of population-based modeling and sensi-
tivity analysis the reader is referred to [10, 11].

Population-Based Sensitivity Analysis of a Two-Mass Model
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In this study one of the most common modeling frameworks in phonation is investigated: a
two-mass model [4]. Like other lumped mass models, it makes use of a collection of discrete
coupled mass-spring-damper systems subjected to an aerodynamic loading function. Numer-
ous alterations to model geometries [14–16], aerodynamic loadings [17–19], acoustic loadings
[6, 20], and contact forces [7, 21, 22] have been presented for lumped mass models and they
have been used to study voice quality and singing [5, 23], voice pathologies [4, 13, 24, 25], voice
instabilities [6, 26], co-articulation [27, 28], and inverse analysis from high-speed video [29,
30].

The two-mass model of Steinecke and Herzel (S&H model) was chosen for this study
because of its simplicity and the fact that it has been extensively studied in normal and patho-
logical phonation [13, 31–34]. The low computational cost of the model enabled comparison
of several different sensitivity analyses, a feat that would be infeasible with more complex and
computationally expensive phonation models. Furthermore, although the S&H model has been
utilized in numerous studies, definitive ranges for all 16 input parameters of the model have
yet to be determined.

Specific goals of this study were to (a) determine the feasibility of various sensitivity analysis
approaches for voice models, (b) to determine feasible ranges for input parameters of the S&H
model, and (c) to obtain a comprehensive collection of sensitivity values relating model inputs
to each model output. These sensitivity values allow determination of model inputs that have
consistent, significant, negligible, or erratic effects on model behavior. Furthermore, an
increased understanding of input-output relationships provide a more comprehensive perspec-
tive on model behavior.

Methods
Several types of sensitivity analyses were applied to the S&Hmodel. These included three
designed experiment type analyses and a population-based Monte Carlo type analysis [35].
Designed experiment approaches included the one at a time approach (OAT), Cotter’s method,
and a quadratic response surface method (RSM). Comprehensive descriptions of each of these
methods are available in standard textbooks on sensitivity analysis [36, 37], however, a brief
description of each method is provided for the reader’s convenience. The following paragraph
describes the S&H model, and subsequent sections describe the sensitivity analysis techniques.

The S&H model is completely defined by 16 input parameters (Table 1 and Fig 1). The
model produces a time history of glottal air-flow from which standard measures of phonation
can be extracted, including fundamental frequency, mean flow rate, unsteady flow (AC flow),

Table 1. Input parameters and nominal values.

Inputs Abbreviations Nominal Value(s)

(g-cm-ms unit system)

Transglottal Pressure P 0.008 (gm/cm/ms2)

Masses m1, m2 0.125, 0.025 (g)

Springs k1, k2, kc 0.08, 0.008, 0.025 (g/ms2)

Dampers r1, r2 0.02 0.02 (g/ms)

Physical Dimensions d1, d2, L 0.25, 0.05, 1.4 (cm)

Collision Constants c1, c2 0.24, 0.024 (g/ms2)

Initial Displacements a01, a02 0.05, 0.05 (cm)

Reference Position x0 0.05 (cm)

doi:10.1371/journal.pone.0148309.t001
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steady flow, maximum declination rate (MFDR), harmonic richness factor (HRF), and the dif-
ference between the first and second harmonic (H1-H2). These measures of vocal function
have been used to study soft, normal, and loud voice [38], as well as pathological cases [39].
For a complete description of each of these measures see [5, 39, 40]. The current study was lim-
ited to the investigation of normal, steady phonation, as defined by the ranges for model out-
puts listed in Table 2. Model instances that did not produce outputs within the limits of
Table 2 were excluded from the study. It should be noted that the model was symmetric, with
no Coanda effect, no time varying model parameters, and no turbulence. As a result, variations
in amplitude and period were minimal for each simulation.

Population-based Monte Carlo sensitivity analysis
Monte Carlo methods [36] are often referred to as a “brute force” approach since they require a
large random sample from the underlying population. However, for systems which contain
numerous inputs and possess nonlinear solution spaces, they are more efficient and better
describe model behavior than comprehensive designed experiment approaches [35]. For exam-
ple, a full factorial designed experiment approach of a model with 16 input parameters would
require at least 65,536 model simulations. In this study, we were able to accurately describe the
behavior of the 16 input parameter S&H model using a population of just 1000 models (i.e.,

Fig 1. Schematic of two-mass vocal fold model of Steinecke and Herzel.

doi:10.1371/journal.pone.0148309.g001

Table 2. Ranges for each characteristic, within whichmodel behavior was considered as representa-
tive of normal human phonation.

Characteristic Range Source

Fundamental Frequency 88–263 Hz [55]

Mean Flow Rate 50–420 cm3/sec [56]

AC Flow Rate 40–800 cm3/sec [55]

Maximum Declination Rate 100–1150 liters/sec2 [51]

Harmonic Richness Factor -19–2.1 dB [40]

Difference Between First and Second Harmonic -24–11 dB [57]

doi:10.1371/journal.pone.0148309.t002
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virtual human subjects). A convergence test indicated that this sample size was appropriate for
the S&H model.

Monte Carlo sampling was employed to obtain input parameter values for an initial population
of 1000 unique virtual subjects. Sampling was performed in a coordinate system which was nor-
malized (i.e., adjusted so that each input parameter could be fairly compared to other parameters
independent of units). Normalization was performed using the nominal parameter values reported
by Steinecke and Herzel [4]. The set of nominal parameter values are displayed in Table 1.

To ensure even distribution of parameter values both above and below the nominal value
when sampling at broad ranges, a multi-step sampling technique was used. First, a random vari-
able, R, was defined to be distributed in a uniform fashion between 1 and an upper limit, Rmax
(in symbolic terms: R* U(1,Rmax), where*means “to be distributed as”). This variable (R),
was defined to describe the absolute normalized distance from the nominal value. Second, a dis-
crete Bernoulli random variable, A* B(-1,1) was used to determine whether to apply R above or
below unity. Using r to represent a single sampled value of R, a to represent a single sampled
value of A, and P0 to represent the vector of nominal S&H parameter values, the following equa-
tion describes how each parameter i, of each virtual human subject, Psubject, was generated:

Psubject i ¼ P0;iðraÞ ð1Þ

For example, suppose r = 1.25 and a = -1. If this r and a value were applied to the first
parameter in the model, then Psubject,1 = P0,1 (1.25−

1) = P0,1(0.8), or 80% of the value of the first
parameter of the nominal model (P0,1). For each virtual subject, unique values of r and a were
chosen for each parameter, thus producing 1000 unique models. This process produces (on
average) an equal number of subjects having parameters above and below each nominal value
while also allowing broad sampling ranges to be used. Each virtual subject was simulated indi-
vidually, and results were compared to the conditions of Table 2 to determine if each subject
produced normal, realistic phonation. Sampling continued until 1000 virtual subjects were
obtained, all of which exhibited normal phonation (i.e., adhered to all conditions of Table 2).

Local sensitivity analyses were performed on each of the 1000 virtual subjects. This was
accomplished by individually varying each of the 16 input parameters by 1% and recording the
corresponding change in behavior. When varying each of the 16 input parameters, all other
parameters were held constant. To allow comparison between sensitivity values of different
input-output pairs (which have different units), non-dimensional sensitivity values were calcu-
lated. This was accomplished by non-dimensionalizing both the input and output by the values
at the sampled point. The following equations define non-dimensional sensitivity, S

�
for a sin-

gle output F(x), and a single input x, where x0 is the value of x at the sampled point.

F�ðxÞ ¼ FðxÞ
Fðx0Þ

ð2Þ

x� ¼ x
x0

ð3Þ

S� ¼ dF�ðxÞ
dx�

ð4Þ

Sensitivity values can be interpreted as percentage change in output due to percentage
change in input (e.g., a sensitivity value of 1 indicates a 1% change in output due to a 1%
change in input). This approach was extended to the six model outputs and 16 input parame-
ters of each virtual subject.

Population-Based Sensitivity Analysis of a Two-Mass Model
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Five different parameter ranges which represent both narrow and broad parameter bounds
were used in this study. Following the conventions described above, ranges were defined as fol-
lows: Rmax = [1.10, 1.20, 1.50, 2.00, 5.00]. A sample of 1000 virtual subjects was obtained for
each of these ranges, for a total of 5000 virtual subjects over the entire Monte Carlo study (i.e.,
the process described in the preceding paragraphs was replicated five times, once for each
parameter range).

Designed experiment sensitivity analyses
Designed experiment approaches utilize a predetermined set of design points to calculate sensi-
tivities. For low dimensional spaces, this approach is often more cost-effective than the Monte
Carlo approach. Brief descriptions of each of the designed experiment approaches employed in
the current study are listed below.

Response surface method (RSM). Response surface techniques [41] are used to obtain
simplified representations of the response of complex models and are often employed in opti-
mization problems. As is done in multiple regression, the calculation of a response surface is
based on a collection of data points to which a surface is “fitted”. The location of each datum
point is typically specified by a “design of experiments” to improve accuracy of the resulting fit.
The D-optimality criterion [42, 43] was used in the current study to specify 231 points in the
design space. Simulations were run at each of these points, and the resulting data were fit to a
second-order, quadratic response surface. Sensitivity values were calculated based on the slope
of the fitted response surface.

Cotter’s method. Cotter’s method [44] is a sensitivity analysis method used to rank model
input parameters based on their influence on each model output. This approach uses a two-
level fractional factorial design with all parameter values set to either the high or low extremes
of parameter ranges. The first simulation (case zero) is performed with all parameters set to
low values and the final simulation is performed with all parameters set to high values. Inter-
mediate simulations consist of a single parameter being set to one extreme while all other
parameters are set to the opposite extreme. Implementation of Cotter’s method required a total
of 34 simulations.

One-at-a-time variation (OAT) method. The OAT approach [45] is a very common sen-
sitivity analysis method in which one parameter is varied parametrically while holding all other
model parameters at their nominal value. It should be noted that while this method requires
very few model simulations it is not capable of detecting nonlinear effects or interactions
between input parameters. Implementation of the OAT method in the current study with 2 lev-
els for each parameter required 32 model simulations.

Results
The designed experiment sensitivity analysis approaches failed to produce reliable sensitivity
values for all but the narrowest of parameter ranges. The Monte Carlo analysis produced reli-
able results at all parameter ranges investigated and accurately described the global behavior of
the S&H model. Results from the Monte Carlo analysis are presented first with results from the
designed experiment analyses and their associated shortcomings and challenges presented
second.

Population-Based Monte Carlo analysis
The S&H model produced realistic phonation in the vicinity of the nominal input parameter
set defined in [4]. As parameter ranges increased an exponential decrease in the proportion of
models exhibiting normal phonation characteristics were observed (see Fig 2). For example,

Population-Based Sensitivity Analysis of a Two-Mass Model
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when Rmax = 5, over 60,000 virtual subjects had to be created and simulated to find 1000 vir-
tual subjects exhibiting normal phonation.

The influence of each input parameter on normal phonation was assessed by generating his-
tograms of the distribution of normal phonation for each individual input parameter. These
histograms can be seen in Fig 3. The X axis of each histogram displays the normalized parame-
ter value while the Y axis shows the relative frequency of successful model completion. Certain
parameters (namely d2, c1, c2, x0 and r2) appear as nearly uniform distributions, indicating
that all parameter values within their specified ranges are equally likely to produce regular,
realistic phonation. However, other parameters are clearly skewed from the original uniform
distribution from which they were sampled (namely a02, a01, k1, L, kc, r1, P and m1). These
parameters are more likely to produce realistic phonation when their values lie within particu-
lar regions of the specified range.

The information from Fig 3 can be used to create probability distributions to improve
computational efficiency of optimization strategies which involve quasi-random sampling. For
example, when sampling input parameters from a uniform distribution, with Rmax = 5, only
1.6% of the simulations produced normal phonation. However, the sampling success rate can
be improved significantly by recursive sampling. For example, the histograms of Fig 3 were
used to create probability distributions for each input parameter (via curve fitting). Points were
then sampled from these new probability distributions instead of from uniform distributions.
When this approach was carried out, the success rate (i.e., rate at which normal phonation was
produced) increased more than six-fold from 1.6% to 10%. The dashed line of Fig 2 displays
the resampling success rates at each of the five parameter ranges investigated in the current
study.

A total of 480,000 unique sensitivity values (6 outputs × 16 inputs × 5 parameter
ranges × 1000 virtual human subjects) were calculated as part of the Monte Carlo approach. A
new visualization technique was developed to enable the presentation of these data: the multi-
dimensional sensitivity distribution plot (MDSD plot). The MDSD is illustrated in Fig 4 for a

Fig 2. As the maximum range of input parameters was increased (increasingRmax) an exponential
decrease was observed in the number of model instances that produced normal realistic phonation
(solid line).However, when model instances were created by sampling input parameters from a probability
distribution a significant increase in the number of models producing normal, steady phonation was observed
(dashed line).

doi:10.1371/journal.pone.0148309.g002
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single input-output pair. The Y axis displays the non-dimensional sensitivity value, and sensi-
tivity histograms for each of the 5 parameter ranges are presented as vertical bands along the X
axis. The intensity of each pixel (i.e., shade from white to black) in each histogram is related to
the frequency at which that particular sensitivity value occurred in the virtual population of
subjects (i.e., the most commonly encountered sensitivity values are the darkest regions in each
column of pixels). Thus, darker regions represent areas of high relative density and the vertical
position of the region represents the value of the most commonly encountered sensitivity val-
ues. Fig 5 summarizes the entire sensitivity data set (480,000 sensitivity values) across 5 critical
dimensions: input parameter, model output, sensitivity value, range (Rmax value), and relative
frequency. The model input parameters listed at the top of Fig 5 are ordered from the most
influential (left) to the least influential (right). Model outputs listed on the left of Fig 5 are
ranked from top to bottom according to mean sensitivity.

The MDSD plot (Fig 5) allows one to quickly gain meaningful insights about the behavior
of the S&H model. For example, input-output pairs that have a consistent effect across the
entire sampled population can be identified by histograms with dark and narrow bands. Input-
output pairs that have relatively little effect on the model are characterized by narrow histo-
grams centered on 0. The Fig also demonstrates that variance in sensitivity values between sub-
jects depends greatly upon the output type: nearly all subjects demonstrated consistent

Fig 3. Histograms demonstrating the distribution of model success rates and their respective means (red line) are plotted for each of 16 input
parameters. The range of each input parameter (horizontal axis) spans from 1/5 of the nominal value of the parameter to 5x the nominal value of the
parameter. Some parameters are non-uniformly distributed (a02, a01, k1, L, Kc, r1, P, m1) indicating that certain values for these parameters increase the
likelihood of nonrealistic phonation being produced. Other parameters are more uniformly distributed (c2, x0, r2, c1) suggesting that any value of these
parameters is equally likely to lead to realistic phonation.

doi:10.1371/journal.pone.0148309.g003
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sensitivity values with regards to fundamental frequency while sensitivity values related to
speed quotient vary significantly across the population. Interestingly many input-output pairs
exhibit sensitivity values both above and below zero. In other words, certain subjects demon-
strate a positive relationship between a given input and output while other subjects obtained
from the same population demonstrate a negative correlation between the same given input

Fig 4. Example of a sensitivity distribution plot. The input variable is listed above the respective data (in
this case, L) while the output parameter (in this case, MFDR) is listed to the left. Sensitivity data gathered
from each of the parameter ranges investigated in the current study are depicted in vertical columns, as
shown above. The Y axis indicates the non-dimensional sensitivity value. Grayscale intensity indicates the
relative density of sensitivity values (i.e., the most common sensitivity values are the darkest).

doi:10.1371/journal.pone.0148309.g004

Fig 5. Multi-dimensional sensitivity distribution plot showing sensitivity distributions for each input-output pair of the S&Hmodel and for various
ranges of Rmax. Both Fig 4 and the text describe how to correctly interpret the sensitivity distribution plots. Along the X axis input parameters are listed from
left to right in order of most influential to least influential. On the Y axis model outputs are ranked from top to bottom according to mean sensitivity.

doi:10.1371/journal.pone.0148309.g005
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and output. This was an unexpected result that demonstrates the complexity of model dynam-
ics, the semi-chaotic behavior of phonation models, and that large errors can be produced by
generalizing model behaviors based on limited sampling (as done in partial sensitivity analy-
ses). Sensitivity distributions that include both positive and negative sensitivities are indicators
of strong nonlinear interactions within the model that are prevalent across broad ranges of
input parameters. In general, the variance of sensitivity values increased with parameter sam-
pling range.

Fig 5 also demonstrates that the average value of parameter sensitivities vary based on out-
put type and that many input-output relationships agree with prior research. For example, fun-
damental frequency is most sensitive to m1 and k1 (which are known to relate to fundamental
frequency) while both maximum instantaneous and mean flow are most sensitive to vocal fold
length (L) and subglottal pressure (P), as predicted by the Bernoulli flow model. As with L and
P, larger areas on the medial surface (d1, x0, L) result in higher flow and MFDR. The width of
the inferior mass (d1) determines the surface that controls the applied fluid loading, thus being
proportional to the energy transfer and in turn creating larger amplitude of oscillation. On the
other hand, the stiffness (k1) of the same mass is inversely related to the amplitude of displace-
ment, thus producing the opposite effect of d1. Vocal fold length (L) and transglottal pressure
(P) were found to be the most influential parameters overall followed by the parameters associ-
ated with mass one (d1, k1, m1, c1, r1), followed by the parameter that links mass 1 to mass 2
(kc), followed by the parameters related to mass 2 (m2, r2, c2, k2).

The MDSD plot of Fig 5 also reveals that certain parameters have a minimal effect on all
model outputs (see for example a01, a02, and x0). It is interesting to note that although a01
and a02 have minimal effect on actual phonation outputs, these two parameters do signifi-
cantly affect the success rate of the model (i.e., contribute to the likelihood of the model pro-
ducing normal phonation) (see Fig 3).

While the MDSD effectively communicates a large amount of information, and visually
describes the model behavior across a population, no single figure can adequately describe a
16-dimensional space. For example, Fig 5 does not display any type of statistical measure and it
is therefore not immediately obvious which model inputs have statistically significant or reli-
able model effects. To address this shortcoming, the mean and standard deviation of sensitivity
values for each input-output pair were computed and plotted. Fig 6 shows the mean vs. stan-
dard deviation plot for Rmax = 1.5. The shaded regions of this figure represent areas in which
the ratio of standard deviation to the absolute mean sensitivity (i.e., the coefficient of variation)
is greater than 0.5. In general, points within the shaded regions represent sensitivities that are
not consistently above or below 0 (i.e., not reliably above or below zero). On the other hand,
input-output pairs with a high mean sensitivity and low standard deviation represent signifi-
cant effects that are consistent across the entire population. These pairs are plotted in the white
region of Fig 6. The effects of these pairs are consistent across virtually all subjects. On the
other hand, input-output pairs with high standard deviations and relatively low means repre-
sent unpredictable sensitivities or behaviors which vary from person to person (i.e., effect can-
not be generalized to the population).

Presenting data in this manner allows one to quickly determine which input-output pairs
are consistently related across the entire population. Perhaps the most striking feature of Fig 6
is that the vast majority (91%) of all input-output pairs lie within the shaded regions, thus dem-
onstrating the highly variable and nonlinear nature of the S&H model’s solution space (i.e., the
majority of input parameters have unpredictable effects on model outputs). Only 8 input-out-
put pairs (8%) have a consistent effect across the sampled population. This demonstrates the
danger of conducting traditional sensitivity analyses or partial parameter investigations of pho-
nation model’s and generalizing their results to unexplored regions of the models parameter

Population-Based Sensitivity Analysis of a Two-Mass Model
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space. Such generalizations could be wrong 91% of the time due to strong interactions between
model parameters and the semi-chaotic nature of phonation.

Tables 3 and 4 summarize key findings observed in Figs 5 and 6 by listing specific input-out-
put pairs that have a reliably significant or reliably insignificant effect on the model. The
median sensitivity values as well as the 5th and 95th percentile sensitivity values (averaged
across all parameter ranges) are listed for each input-output pair. Medians and percentiles are
reported instead of averages since non-normal distributions were often encountered.

Fig 6. Plot of mean versus standard deviation of sensitivity values for each input-output pair
(Rmax = 1.5). The shaded regions represent sensitivity values in which the mean is less than 1 (dark grey) or
2 (light grey) standard deviations and thus are highly variable. The vast majority of sensitivity values lie within
these regions. Consistent sensitivity values are labeled in the unshaded region.

doi:10.1371/journal.pone.0148309.g006

Table 3. Most influential input-output pair sensitivities.

Input Output 5%-ile Median 95%-ile

L ! MFDR 1.25 1.94 2.77

P ! MFDR 1.00 1.48 2.08

d1 ! MFDR 0.47 0.98 1.58

L ! Max Flow 0.93 1.42 2.03

P ! Max Flow 0.89 1.22 1.64

d1 ! Max Flow 0.38 0.71 1.12

k1 ! Max Flow -1.06 -0.43 -0.01

L ! Mean Flow 0.29 1.15 1.80

P ! Mean Flow 0.60 1.07 1.44

k1 ! Mean Flow -1.10 -0.61 -0.18

d1 ! Mean Flow 0.11 0.57 0.94

c1 ! Mean Flow 0.00 0.40 0.74

k1 ! Frequency 0.12 0.40 0.59

m1 ! Frequency -0.59 -0.39 -0.08

L ! OQ -1.22 -0.36 -0.01

doi:10.1371/journal.pone.0148309.t003
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Designed experiment sensitivity analyses
The designed experiment sensitivity analyses only produced acceptable results in very narrow
regions of the model’s parameter space located near the nominal parameter set. When investi-
gating broad parameter ranges model simulations would frequently fail to produce normal
phonation thus preventing computation of sensitivity values (i.e designed experiment
approaches rely upon obtaining normal phonation at all of the pre-determined sample points).

The response surface method proved to be problematic at all of the parameter ranges inves-
tigated except for Rmax = 1.10. The accuracy or goodness of fit for the response function
within this range was tested by comparing it to additional simulations of the S&H model at 100
randomly selected points. The average maximum error was less than 5% suggesting that the
response surface was indeed a good fit.

Cotter’s method and OAT failed at each of the five parameter ranges investigated in the cur-
rent study. The maximum parameter range for which Cotter’s method was able to calculate
sensitivity values was ±2% of the nominal parameter value. The maximum parameter range for
OAT was ±7% of the nominal parameter value. Both methods produced results which were
generally in agreement with each other as well as with the Monte Carlo results. However, the
narrow regions in which these methods could be successfully applied were unsuitable for the
purpose of this study, which was to investigate trends across a broad population. Results from
these methods are therefore not presented in detail.

Table 5 lists the advantages and disadvantages of each sensitivity analysis method investi-
gated. The most surprising feature of Table 5 may be the extremely small percentages of the
design space which were analyzed by the designed experiment methods. For example, ±7% of
the nominal parameter values may at first seem adequate, but such a domain represents much
less than 1 trillionth of 1 percent of the domain analyzed by the Monte Carlo method when
Rmax = 5. This result can be verified by calculating the volume of the model’s parameter space
interrogated using each parameter range.

Discussion

Ranges for input parameters of the S&Hmodel
One purpose of the current study was to determine feasible ranges for input parameters of
S&H model. Unfortunately, a concrete or discrete input parameter boundary beyond which

Table 4. Least influential input-output pair sensitivities.

Input Output 5%-ile Median 95%-ile

x0 ! Frequency -0.06 0.00 0.06

a02 ! Frequency -0.07 0.01 0.08

a01 ! Frequency -0.05 0.04 0.15

c2 ! Frequency -0.18 0.01 0.14

k2 ! Frequency -0.13 0.03 0.16

x0 ! Mean Flow -0.10 0.00 0.09

a02 ! Mean Flow -0.12 0.03 0.19

x0 ! OQ -0.16 0.00 0.15

a01 ! OQ -0.16 0.01 0.19

a02 ! OQ -0.13 0.03 0.20

x0 ! Max Flow -0.17 0.00 0.15

x0 ! MFDR -0.19 0.00 0.20

doi:10.1371/journal.pone.0148309.t004
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normal phonation is not produced was not found for the S&H model. Even in the broadest
parameter range explored in this study, none of the parameters exhibited a region in which
normal phonation was not achieved. As the distance of any given parameter's value deviated
from the nominal value, the probability of the model producing normal phonation was reduced
but the probability never reached 0. In other words, an incredibly large range of broadly spaced
initial parameter sets can lead to normal phonation. This type of behavior is typical of many
biological systems and such systems are better explained by probabilities and distributions
than by discrete values or averages [46]. Therefore, feasible ranges for input parameters to the
S&H model are presented as distributions and not as set values beyond which normal phona-
tion is not encountered. These distributions are presented in Fig 3. In an ideal situation the dis-
tributions of input parameters would be based on empirically derived probability distributions
(as opposed to model derived probability distributions). However, this study was performed
precisely because such data are not available for the S&H model. Observation of Fig 3 reveals
that the nominal set of S&Hmodel parameters is not the set of parameters most likely to lead
to normal phonation. Rather, the statistical mode of each histogram in Fig 3 represents the
parameter set most likely to lead to normal phonation.

The parameter distributions of Fig 3 were useful in reducing the computational burden of
subsequent sampling trials. For example, when sampling from a uniform distribution with
Rmax = 5, the success rate (percent of virtual subjects that produced normal phonation) was
1.6%. However, when the probability distributions of Fig 3 were used as a sampling basis, the
success rate increased by more than 6 fold to an overall rate of 10% (Fig 2). Future modeling
studies can be improved by using cumulative distribution functions to select sampling points
instead of sampling from a normal or uniform distribution. This approach can reduce the
number of simulations required to achieve a desired population of virtual subjects and when
performing optimizations which rely on selective sampling.

Sensitivity values for the S&Hmodel
A second purpose of this study was to determine sensitivity values for the S&H model. The
holistic sensitivity analysis approach undertaken in the current study provides a more compre-
hensive description of the S&H model’s solution space than provided by studies employing a
standard modeling paradigm (i.e., using partial sensitivity analyses or regime plots to investi-
gate different phonatory regimes of a single virtual subject). For example, prior studies [13, 31–
33], have observed that isolated regions of the S&H model’s solution space exhibit complex
behaviors and nonlinear interactions between input parameters. The population-based analysis
presented in this study demonstrates that these nonlinear behaviors dominate the entire solu-
tion space of the S&H model in such a way that the vast majority of model inputs have

Table 5. Comparison of sensitivity analyses.

Required % Design

Model Evaluations Reliability Space Interactions

Analyzed

Cotter's n+1 = 17 Low 1e-32 Yes

OAT 2n+2 = 34 Low 1e-23 No

RSM Variable. For the current study, n = 231 Dependent on fit 1e-21 Yes

Monte Carlo Variable, for the current study n = 17,000 for each range, for a total of 85,000. High 100 Yes

n = number of input parameters

doi:10.1371/journal.pone.0148309.t005
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unpredictable effects on model outputs (see Fig 6). Population-based analyses avoid serious
errors associated with extrapolating results into unexplored regions of a model’s parameter
space and present sensitivity values in a more correct context (i.e., as distributions and proba-
bilities as opposed to discrete values).

This study made an assumption of sampling independence between model parameters.
However, physical vocal fold parameters are known to be interconnected (e.g., changes in L
affect d1, k1, m1) through physiological rules for muscle activation [47, 48]. Inclusion of physi-
ological correlations in this study would have better represented the underlying physiology, but
would have likewise prevented quantification of independent parameter sensitivities. Further-
more, sensitivity results would have been influenced by the assumed physiological relation-
ships. With this clarification in mind, analysis of the independent parameter sensitivities
computed in this study reveal several interesting insights.

We observed that all of the independent parameter sensitivities of the S&H model do not
agree with prior experimental studies which have measured human phonation characteristics.
For example, experimental studies have shown that female subjects have shorter vocal folds
[49, 50], and therefore lower aerodynamic measures (MFDR, peak flow, mean flow, etc.), and
higher fundamental frequency than male subjects [51]. The independent parameter sensitivi-
ties of the S&Hmodel likewise indicate that changes in vocal fold length affect the aerodynamic
measures and fundamental frequency. However, the degree to which fundamental frequency is
influenced by vocal fold length was less significant in this study than in experimental studies
involving humans. In addition, human speech typically exhibits more substantial fluctuations
in frequency due to vocal fold posturing (d1, k1, m1) [52, 53] than those indicated by the inde-
pendent parameter sensitivities of the S&H model. Lastly, the S&H model indicates that funda-
mental frequency increases with lung pressure at a rate of approximately 1 Hz per cm H2O.
This is somewhat lower than has been reported with respect to human data (3–5 Hz per cm
H2O) [53]. This particular discrepancy is likely due to the fact that the S&H model does not
capture vocal fold elongation that is observed in humans at high transglottal pressures [53].
The other discrepancies are likely tied to the assumption of sampling independence between
model input parameters. As mentioned previously, in the human condition physiological
changes in vocal fold length are accompanied by other simultaneous changes to the vocal folds.
The principal advantage of an independently sampled sensitivity approach is that it decouples
coordinated efforts of multiple control parameters observed in humans so that the influence of
each individual parameter can be determined. This is generally not possible in human studies.
In the future physiological relationships (e.g., Titze and Story, 2002) could be incorporated into
the sampling scheme of a sensitivity analysis of the S&Hmodel. However, as mentioned previ-
ously, it must be realized that these physiological relationships will directly affect the sensitivity
outcomes, and separating the effects of the rules that control imposed physiological relation-
ships from the natural intrinsic model complexity becomes challenging. The independently
sampled sensitivity approach presented in this manuscript is the first step toward a subsequent
examination that includes parameter interdependence.

Applying sensitivity analyses to other models
What lessons and experience in this study can be applied to more complex models of the
human vocal apparatus? First, we observed that the global behavior of the S&H model could
not be fully described by OAT, Cotter’s or response surface methods. This is partially due to
the highly variable, multidimensional, nonlinear, bifurcated solution space of the model [4, 7],
and partially due to the fact that this study restricted analysis to “normal” phonation. Designed
experiment approaches provide the advantage of reduced sample sizes, but are problematic
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when parameter spaces are defined by numerous regimes of different behavior and when one
or more tests are used to include or exclude results from the study (e.g., excluding irregular
phonation). We therefore anticipate that designed experiment type sensitivity analyses of more
complex voice models will likewise fail if broad input parameter ranges are investigated. It
should be noted that this study originally began without a requirement of “normal” phonation.
However, many parameter combinations lead to entirely unrealistic phonation or fail to pro-
duce phonation all together.

The population-based sensitivity analysis approach provided exceptionally detailed and
comprehensive data, but required a total of 85,000 simulations. Such high numbers of simula-
tion cases may not be possible for some models due to computational expense. Consequently,
the majority of prior studies have conducted partial sensitivity analyses in which only a limited
number of input parameters are varied over fairly small ranges. While beneficial, such results
can be misleading as they describe an extremely narrow region of a highly variable, semi-cha-
otic design space. Such results cannot be accurately extrapolated, extended or generalized to
other areas in the model’s parameter space or to the human population.

Tradeoffs between higher order and lower order models
Complex higher order models are most suitable for understanding physical mechanisms, but
are not currently appropriate for obtaining generalizable results that account for variations that
occur within a population. This is primarily due to their computational expense. Frequent
interactions between advanced models, reduced-order models, and population-based studies
are needed to effectively translate physical insights obtained from advanced models to results
that are generalizable to the human population. For example, reduced-order models can be
refined to more accurately account for details revealed by more advanced models. These
improved, reduced-order models can then be used to verify if the advanced physical insights
provided by the more complex models persist across populations. However, the trend in recent
years seems to favor the creation of more and more advanced models, with less emphasis
placed on reduced-order models and sensitivity analysis studies focused on understanding
model behavior. More reduction of order and sensitivity analysis studies are needed to fully uti-
lize the insights provided by advanced models. In addition, more partial sensitivity analyses of
higher order models are needed, as they provide valuable information about local model
behavior.

Finally, the advantage of the population-based modeling and sensitivity analysis approach is
highlighted by examining the difference between a partial multi-parameter sensitivity analysis
in which a few input parameters are investigated and a comprehensive population-based
multi-parameter sensitivity study in which all input parameters are varied. In a previous partial
sensitivity study of a lumped mass model [8], 7 of 21 input parameters were varied while the
remaining 14 parameters were held constant. The results of such a study are informative, but
must be interpreted correctly. What effects might be observed if the 14 fixed parameters of [8]
are varied? Results from this study suggest that a different set of 14 fixed parameters may give
very different results. Unfortunately, the degree of discrepancy is unknowable unless the fixed
parameters are varied. For well-behaved systems, results can reasonably be extrapolated into
unexplored regions of the parameter space with minimal loss in accuracy. However, for highly
nonlinear systems which can at times demonstrate chaotic behavior (such as phonation mod-
els) serious problems result from extrapolating results into unexplored regions of the parame-
ter space. Thus, while partial sensitivity analysis models are a step in the right direction, their
results cannot be used with confidence or generalized to the human population unless simulta-
neous variation of all parameters is considered.

Population-Based Sensitivity Analysis of a Two-Mass Model

PLOS ONE | DOI:10.1371/journal.pone.0148309 February 4, 2016 15 / 19



Summary and Conclusion
A comprehensive population-based sensitivity analysis of the S&H vocal fold model was con-
ducted to provide a global description of model behavior representing normal phonation.
Results demonstrate that lumped mass vocal fold models are relatively simple in their construc-
tion and simulation but they capture complex global behaviors characteristic of human phona-
tion. These behaviors challenge normal intuition, and cannot be accurately described using
single discrete values or even average sensitivity values. Consequently, results from the current
study were presented in terms of probabilities and distributions which provide a more accurate
and comprehensive description of model behavior. Future studies may benefit from similar
population-based modeling approaches. The parameter rankings and parameter distributions
reported in this study can be applied to improve the sampling efficiency of future studies which
rely upon optimization of two-mass model parameters to match voice recordings.

Of the four sensitivity methods investigated (OAT, Cotter’s Method, Response Surface
Methology, and population based-method), only the population-based Monte Carlo approach
was able to accurately and comprehensively describe the behavior of the two mass S&H model.
This approach successfully identified important input-output pairs, and revealed that the two
mass model is dominated by numerous nonlinear interactions between parameters, leading to
high levels of variance in the majority of outputs. It also demonstrated that very broad ranges
for all input parameters of the S&H model can produce normal phonation.

Higher order vocal fold models include more physical effects and input parameters and
therefore more accurately represent real world conditions. However, their computational bur-
den prevents a comprehensive analysis of global model behaviors thus making it difficult if not
impossible to generalize model results to the real world population. On the contrary, lower
order models typically exhibit fewer degrees of freedom, fewer physical mechanisms and rela-
tionships, and a relatively small number of input parameters. These simplifications drastically
reduce computational expense. Comprehensive population-based sensitivity analyses of these
models allow model results to be more readily generalized across the real world human popula-
tion. In the future, frequent interactions between advanced models, reduced-order models, and
population-based studies can provide an effective path for translating the physical insights
obtained in advanced models to results that are generalizable across a population. Three-
dimensional lumped mass type models in particular are sufficiently complex to mimic clinical
phenomena, while remaining computationally efficient enough to enable their solution spaces
to be quantified via sensitivity analyses. Such models, continuously informed and improved by
more complex models, may be prime candidates for future studies seeking to contribute to
advances in voice and speech therapy.

Douglas Osheroff, the Nobel Prize winning physicist has said, “we can never understand
our scientific tools too well” [54]. As the field of voice production continues to generate com-
plex biomechanical models, we must continuously reflect on our capability to comprehensively
analyze, predict, and quantify the behavior of our models.
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