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There has been consistent interest among speech signal processing researchers in the accurate

estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0

estimation algorithms (some well-established and some proposed more recently) to determine

which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/.

Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation

algorithms based on quality and performance measures is proposed, using an adaptive Kalman

filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117

synthetic realistic phonations obtained using a sophisticated physiological model of speech

production and (b) a database of 65 recordings of human phonations where the glottal cycles are

calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch

estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the

proposed KF approach resulted in a �16% improvement in accuracy over the best single F0 estimation

algorithm. These findings may be useful in speech signal processing applications where sustained

vowels are used to assess vocal quality, when very accurate F0 estimation is required.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4870484]
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I. INTRODUCTION

The estimation of the fundamental frequency (F0) is a

critical problem in the acoustic characterization of speech

signals.1 For example, it is found in speech coding in com-

munications, automatic speaker recognition, analysis of

speech perception, and in the assessment of speech disor-

ders.2 Typically, F0 is evaluated over short-term time

intervals and the time course of the F0 values over the

entire speech signal is known as F0 time series (or F0 con-
tour). The existing difficulties in accurate F0 estimation

are well reported in the speech signal processing literature,

with an excellent summary found in a study authored by

Talkin.3 According to Talkin these difficulties include:3 (1)

F0 is time-varying, and may change between vocal cycles, (2)

sub-harmonics (components of a waveform whose frequency

is an integer fraction of the F0) appear frequently, (3) F0 may

vary widely over successive vocal cycles, although often large

F0 variations are assumed to be artifacts of the estimation

algorithm because such abrupt changes seem fairly rare, (4)

vocal tract resonances affect the vocal folds (that is, there is

feedback from the vocal tract to the vocal folds2) resulting in

harmonics which are multiples of the actual F0, (5) it is diffi-

cult to estimate F0 at voice onset and offset (due to transient

effects), (6) there is considerable inter-observer variability on

the actual values of F0, and (7) periodic background noise

might be challenging to differentiate from breathy voiced

speech (their spectra may be similar). Additional problems

include differentiating between voiced and unvoiced segments
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of speech, and specific cases which are very hard to deal with

(e.g., where the signal is of extremely short duration).3

A related task to F0 estimation is the determination of

pitch, which is the psycho-acoustic equivalent of F0. We

emphasize that the focus of this study is F0 estimation. Some

researchers often use the terms pitch detection algorithm
(PDA) and F0 estimation algorithm interchangeably; strictly

speaking, PDA is a misnomer because pitch is inherently a

continuous phenomenon and estimating the fundamental fre-

quency of a signal is not a detection problem. For this reason

we will only use the expression “F0 estimation algorithm” to

refer to the algorithms described in this study.

The assessment of vocal performance is typically achieved

using either sustained vowel phonations or running speech.2

Clinical practice has shown that the use of sustained vowels,

which avoids articulatory and other confounding factors in run-

ning speech, is very practical and sufficient for the assessment

of general vocal performance; we refer to Titze and references

therein for more details.2 In voice quality assessment sessions,

subjects are often requested to produce the open back

unrounded vowel /a/ at a comfortable pitch for as long and as

steadily as possible.2 This vowel provides an open vocal tract

configuration where the mouth is maximally open compared to

other vowels, which minimizes the reflected air pulse back to

the vocal folds (therefore, there is low acoustic interaction

between the vocal folds and the vocal tract).2 Using the sus-

tained vowel /a/ instead of running speech alleviates some of

the difficulties highlighted previously, by avoiding (a) the need

to characterize frames (segments of the original speech signal,

usually pre-specified with a duration of a few milliseconds) as

voiced or unvoiced, (b) reducing the range of possible F0 val-

ues, and (c) minimizing the possible masking effects formants

may have on F0 during running speech (for example, when the

formants of a word complicate the identification of F0 because

they may match its multiples—a problem often referred to as

pitch halving or pitch doubling).2

Roark4 highlighted the existence of more than 70 algo-

rithms to estimate F0, which reflects both the importance

and difficulty of the problem. Roark emphasized that there is

no simple definition of F0 if it does not just refer to the pe-

riod, and demonstrated that simple disturbances in the pa-

rameters of typical F0 estimation algorithms may lead to

divergent results. Overall, as Talkin suggests,3 it is probably

impossible to find a universally optimal F0 estimation algo-

rithm for all applications. Some F0 estimation algorithms

may be better suited to particular applications, depending on

the type of speech signals (e.g., conversational signals or

singing); computational considerations may also need to be

considered (for example, in speech coding applications).

Research comparing the accuracy of different F0 estima-

tion algorithms is not new in the speech literature.5–8

However, most of these comparative studies focused on

healthy, or mildly dysphonic voices. For example, Titze and

Liang6 studied three F0 estimation algorithms when pertur-

bations in F0 were lower than 5%. Parsa and Jamieson5 were

the first to investigate the performance of various F0 estima-

tion algorithms in the presence of vocal disorders, a topic

which has received comparatively little attention because the

potentially fraught task of accurately determining F0 is

exacerbated in vocal disorders.2 Parsa and Jamieson5 ran a

series of experiments to investigate the accuracy of F0 esti-

mation algorithms in determining the F0 of the sustained

vowel /a/. They produced synthetic signals using a stylized

model which attempted to simulate the main characteristics

of the vocal production mechanism generating the sustained

vowel /a/. This simple model does not closely represent

physiologically plausible characteristics of voice patholo-

gies, as it is based on linear filtering of a series of impulses

with added noise and perturbations. Furthermore, many

more sophisticated F0 estimation algorithms have been pro-

posed since the publication of Parsa and Jamieson’s study in

1999.5 More recently (2007), Jang et al.7 compared seven F0

estimation algorithms in pathological voices using the sus-

tained vowel /a/, where the ground truth F0 time series was

obtained manually. However, the F0 estimation algorithms

investigated by Jang et al.7 do not reflect contemporary

advances (the two most recent F0 estimation algorithms in

that study were proposed in 1993 and 2002).

Some studies have evaluated the performance of soft-

ware tools in accurately estimating the ground truth jitter (F0

perturbations), which can be considered a proxy for the esti-

mation of F0, see, for example, Manfredi et al.8 One problem

with this approach is that jitter lacks an unequivocal mathe-

matical definition;2 another is that the time windows (refer-

ence time instances) used by each algorithm to obtain the F0

time series may differ, which complicates the interpretation

of the results. Moreover, as Parsa and Jamieson5 correctly

argued, it is possible to have the same jitter values for differ-

ent F0 time series: in other words, there is no unique map-

ping from jitter to F0 time series. See also the extended

criticism by Ferrer et al.9 Manfredi et al.8 synthesized ten

sustained vowel /a/ phonations with a physiologically plausi-

ble model and compared four F0 estimation algorithms in

their ability to detect jitter. Although this methodology can

provide a general impression of the accuracy of F0 estima-

tion, we agree with Parsa and Jamieson5 and Ferrer et al.9

that assessing jitter does not directly quantify the accuracy

of F0 estimation, and should be avoided when comparing the

performance of the F0 estimation algorithms. Moreover,

compared to the study of Manfredi et al.8 we examine a con-

siderably larger database of speech signals, and a more com-

prehensive set of F0 estimation algorithms.

The motivation for this study comes from our research on

objective quantification of voice disorders using speech signal

processing algorithms (dysphonia measures) to process sus-

tained vowel /a/ phonations.10–13 Since disordered voices may

be highly aperiodic or even stochastic,2 the task of F0 estima-

tion algorithms is further complicated because some algo-

rithms rely heavily on periodicity assumptions and their

performance is known to degrade in the presence of noise.5

The dysphonia measures we typically investigate include F0

perturbation (jitter variants),10 and some dysphonia measures

which explicitly require F0 estimates as an input;2 we refer to

Tsanas et al.10 and references therein for algorithmic details.

Thus, it can be inferred that those dysphonia measures which

rely on F0 estimates would benefit from accurate F0 data.10

Moreover, researchers have attributed, at least partly, the suc-

cess of some dysphonia measures to the fact that they quantify
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properties of the signal without requiring prior computation of

F0 estimates.10,11,14 We clarify that although our main

research interests are in pathological voice assessment, the

aim of the present study is more general: obtaining accurate

F0 estimates can be beneficial in many diverse applications

which rely on speech signal processing.1,2 Therefore, the F0

estimates computed here are not intended to be used to com-

pute any dysphonia measures.

Newly proposed F0 estimation algorithms have been

validated in the following scenarios: (a) F0 values have been

provided by expert speech scientists following visual inspec-

tion of the glottal cycles from plots of the signal, (b) using

electroglottography (EGG) (a device placed externally to the

larynx records EGG, and the glottal cycles are detected from

the EGG signal), and (c) using synthetic signals where the

ground truth F0 values are known in advance. All these vali-

dation approaches have been used to assess the performance

of F0 estimation algorithms, but each approach has its limita-

tions. First, speech experts observing a plot of a signal often

do not agree on the exact length of each vocal period,3 and

hence it is not clear how to define the ground truth unambig-

uously. Similarly, EGGs may provide faulty estimates of F0

(particularly for pathological voices) which are often cor-

rected manually, casting doubt on the validity of this

approach.15,16 Therefore, we argue that the third approach,

using synthetic signals where the ground truth is known in

advance, may be the most appropriate method for establish-

ing the accuracy of F0 estimation algorithms, if signals that

closely resemble actual speech signals can be generated. The

ability to accurately replicate disordered voice signals is

related to the nature of the model used to synthesize the sig-

nals, and its capacity to mimic the origin and effects of dif-

ferent voice disorders. On the other hand, it could be argued

that the physiological speech production model might not be

able to adequately express some diverse characteristics

which appear in actual speech signals, or that the error

caused by the speech production model may be more severe

than the errors in the EGG method. This is because, in gen-

eral, physiological models attempt to develop a mathemati-

cal framework to replicate the observed data, and therefore

are inherently limited both by the finiteness and measure-

ment error of the collected data (due to sources of physiolog-

ical and environmental variability that affect data recorded

in real-world experiments), and also the mathematical

assumptions used in the model. Hence, in practice it may be

useful to also investigate a database with actual signals

where simultaneous EGG recordings are available.

In this study, we use both realistic synthetic signals

where the ground truth F0 is exactly known, and also a data-

base with actual speech signals where the ground truth F0 is

derived by simultaneous EGG measurements. The physio-

logical model of speech production generated realistic sus-

tained vowel /a/ signals where the F0 values are determined

from the glottal closure instants, i.e., vocal fold collision

instants. If there is any type of voicing, the minimum glottal

area signal (even under incomplete closure) captures all rele-

vant physical interactions (tissue dynamics, airflow, and

acoustics), and determines the periodicity of the speech sig-

nal.17 This is a more stable and reliable approach than using

just the glottal airflow or radiated acoustic pressure at the

lips because in those cases many additional components can

impede the F0 estimation process (e.g., added harmonic

components due to acoustic coupling, noise, and other

acoustic sources). Specifically, we used a numerical lumped-

mass model which was described in detail by Za~nartu.18 The

model was capable of mimicking various normal, hyper-

functional (inappropriate patterns of vocal behavior that are

likely to result in organic voice disorders) and pathological

voices, where the exact system fluctuations were known.

The aim of this study is twofold: (a) to explore the accu-

racy of ten established F0 estimation algorithms (most of which

were relatively recently proposed) in estimating F0 in both

healthy and disordered voices and (b) to investigate the poten-

tial of combining the outputs of the F0 estimation algorithms

aimed at exploiting the best qualities from each, and improve

F0 estimates. With the exception of a simple combination of

three F0 estimation algorithms,10 we are not aware of any sys-

tematic investigation into combining the outputs of F0 estima-

tion algorithms in the speech literature. The combination of the

F0 estimation algorithms can take place in a supervised learn-
ing setting and is known as ensemble learning in the statistical

machine learning literature. Alternatively, the combination of

information from various sources (here the F0 estimation algo-

rithms) in an unsupervised learning setting is known as infor-
mation fusion (or data fusion). Ensemble learning and

information fusion are particularly successful in contexts where

different methods capture different characteristics of the data,

and have shown great promise in diverse applications.19,20 In

this study, we extend a recently proposed information fusion

framework, which relies on the adaptive Kalman filter (KF)

and algorithmic robustness metrics, to weigh the F0 estimates

from each of the ten F0 estimation algorithms. We demonstrate

the adaptive KF fusion framework for estimating F0 outper-

forms, on average, the single best F0 estimation algorithm.

Furthermore, we demonstrate the KF fusion approach provides

robust and accurate estimates for both noisy and low sampling

frequency speech signals (conditions which cause considerable

performance degradation in terms of accurate F0 estimation for

most F0 estimation algorithms).

The paper is organized as follows. In Sec. II we describe

the data used in this study, including a brief description of

the physiological model which was used to generate the

simulated phonations. In Sec. III we review the F0 estima-

tion algorithms used in this study, and describe in detail the

information fusion scheme that combines the individual

algorithms. Section IV compares the performance of the F0

estimation algorithms (both individually and their combina-

tions). Finally, Sec. V summarizes the main findings, out-

lines the limitations of the current approach, and suggests

potential areas of interest for future research.

II. DATA

A. Synthetic data: Model used to generate sustained
vowel /a/ signals and computation of ground truth F0

time series

The physiological model used to generate the sustained

vowel /a/ signals was described in detail by Za~nartu;18 here
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we summarize the mechanisms. This physiological model

is an extended version of the original body-cover model of

the vocal folds by Story and Titze,21 and allows a realistic

generation of normal and pathological voices. Asymmetric

vibration of the vocal folds was controlled by a single fac-

tor proposed by Steinecke and Herzel22 for modeling supe-

rior nerve paralysis. The material properties of the vocal

folds and their dependence on muscle activation followed

Titze and Story,23 with an extension to include neural fluc-

tuations that affect muscle activity. These fluctuations were

modeled as a zero-mean, Gaussian white noise signal. They

were processed by a low-pass, finite-impulse response fil-

ter. The flow model incorporated the effects of asymmetric

pressure loading.24 The airflow solver allowed for interac-

tions with the surrounding sound pressures at the glottis

and the inclusion of incomplete glottal closure from a pos-

terior glottal opening. This model of incomplete glottal clo-

sure enhanced the ability to represent voiced speech, as it is

commonly observed in both normal and pathological voi-

ces.25 The effects of organic pathologies (e.g., polyps and

nodules) were modeled as described by Kuo,26 including an

additional component to reduce the vocal fold contact.24

Sound propagation was simulated using waveguide models

of the supraglottal and subglottal tracts, with waveguide

geometries determined from previous studies.27 In addition,

the wave reflection model included the mouth radiation im-

pedance and different loss factors for the subglottal and

supraglottal tracts, which allowed for nonlinear interactions

between the vocal folds and the vocal tract, and also

affected the vocal fold dynamics.28 A time step correspond-

ing to a sampling frequency of 44.1 kHz was used in a

fourth order Runge–Kutta ordinary differential equation

solver.

Each simulation produced 1 s of voiced speech uttering

a sustained vowel /a/, where initial transients (typically

about four periods) do not provide reliable information

regarding the oscillating pattern of the vocal folds (until the

model reaches a stable state depending on the initial condi-

tions). To ensure that the ground truth is reliable, the initial

50 ms of each signal were discarded from further analysis. In

total, 125 sustained vowel /a/ signals were generated. Cases

which resulted in unnatural-sounding voices (following aural

inspection by A.T.) were removed before any analysis. Thus,

we processed 117 signals which were used to evaluate the

performance of the F0 estimation algorithms. The period of

each cycle was computed from the instant the vocal folds

begin to separate, after vocal fold collision was present (if

any) or immediately after the glottal area was minimized (in

cases where no vocal fold collision took place). The distribu-

tions of the ground truth F0 values for all signals are sum-

marized in Fig. 1, which presents the median and the

interquartile range values for each speech signal. We remark

that the speech signals were generated over a relatively wide

range of possible F0 values, with variable F0 fluctuations

(jitter). Care was taken to generate signals using a large

range of average F0 for each phonation (60–220 Hz), includ-

ing 20 signals with low F0 (<100 Hz), because recent

research suggests such phonations are notoriously difficult

for most of the commonly used F0 estimation algorithms.29

The synthetic speech signals are available on request by

contacting the first author.

B. Database with actual speech signals and
computation of F0 based on EGG

We used a database consisting of 65 sustained vowel /a/

phonations from 14 subjects diagnosed with Parkinson’s dis-

ease (PD). They all had typical PD voice and speech charac-

teristics as determined by an experienced speech-language

pathologist, i.e., reduced loudness, monotone, breathy,

hoarse voice, or imprecise articulation. The subjects’ enrol-

ment in this study and all recruiting materials were approved

by an independent institutional review board. The 14 PD

subjects (8 males, 6 females), had an age range of 51 to 69

years (mean 6 standard deviation: 61.9 6 6.5 years). They

were instructed to produce phonations in three tasks regard-

ing pitch: comfortable pitch, high pitch, and low pitch, sub-

jectively determined by each subject. The sustained vowel

phonations were recorded using a head-mounted microphone

(DACOMEX-059210, which is omnidirectional and has a

flat frequency response with a bandwidth of 20 to 20 kHz) in

FIG. 1. (Color online) Summary of ground truth F0 values for (a) 117

speech signals generated using a physiological model of speech production

(synthetic signals) and (b) 65 actual speech signals where simultaneous

EGG recordings were available. The middle point represents the median and

the bars represent the interquartile range. For convenience in presentation,

the signals are sorted in ascending order of F0. Outliers (if any) are marked

individually with circles.
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a double-walled, sound-attenuated room. The voice signals

were amplified using the M-Audio Mobile Pre model and

sampled at 44.1 kHz with 16 bits of resolution (using the

Tascam US-122mkII A/D converter). The data were

recorded using a Sony Vaio computer which had an Intel dis-

play audio and Conexant 20672 SmartAudio HD device

(high frequency cut-off 20 kHz). Simultaneously with the re-

cording of the sustained vowels, EGGs were recorded using

the VoceVista model. The glottal cycles were automatically

determined using the EGGs with the SIGMA algorithm,30

which almost always correctly identifies the true vocal

cycles. Visual inspection of the signals and their associated

EGGs verified that the SIGMA algorithm was indeed very

accurate at determining the vocal cycles.

III. METHODS

This section is comprised of (a) a review of ten widely

used F0 estimation algorithms which were tested in this

study, (b) a description of a novel combination scheme using

the outputs of multiple F0 estimation algorithms, and (c) a

description of the framework for validating the F0 estimation

algorithms. All the simulations and computations were per-

formed using the MATLAB software package, although in

some cases interfaces to other programs were used [for

example, to access PRAAT (Ref. 31) which is described in

Sec. III A 2].

A. F0 estimation algorithms

Overall, there may be no single best F0 estimation algo-

rithm for all applications.3 Here, we describe some of the

most established, longstanding algorithms, and some more

recent, promising approaches. We tested widely used F0 esti-

mation algorithms for which implementations were available

and hence are convenient for testing; we do not claim to

have made an exhaustive comparison of the full range of F0

estimation algorithms. There have been various approaches

attempting to categorize F0 estimation algorithms, mainly

for methodological presentation purposes.3 One useful way

is to cluster them as time-domain approaches (most time-

domain approaches rely on autocorrelation, such as PRAAT

presented in Sec. III A 1, and some rely on cross-correlation

such as RAPT presented in Sec. III A 3), or frequency domain

approaches (frequency spectrum and cepstral approaches). A

further distinction for time-domain approaches can be made

if F0 estimation algorithms work on windows (frames), thus

providing local F0 estimates, or detect single glottal cycles,

thus providing instantaneous F0 estimates. The F0 estimation

algorithms that use short time windows are typically applied

to a small, pre-specified segment of the signal (e.g., 10 ms),

and the F0 estimates are obtained by a sliding window

method. A further differentiation of time-domain F0 estima-

tion algorithms is the method used to estimate F0, the most

common being peak picking (for example, identifying suc-

cessive negative or positive peaks) and waveform matching

(matching cycle to cycle waveforms). The overall consensus

is in favor of waveform matching because of its improved

robustness against noise.32 We stress that the above general

description is not the only practical categorization

framework, and in fact some F0 estimation algorithms can

equally well be interpreted as time- or frequency-domain

approaches (for example, see NDF presented in Sec. III A 8).

Many of the F0 estimation algorithms we examine here

have three main stages:3 (a) pre-processing, (b) identification

of possible F0 candidates, and (c) post-processing to decide

on the final F0 estimate. The pre-processing step depends on

the actual F0 estimation algorithm requirements. One example

of pre-processing is low-pass filtering of the speech signal to

remove formants. This step is useful in general, but can also

introduce problematic artifacts: reducing the bandwidth

increases the inter-sample correlation and could be detrimen-

tal to F0 estimation algorithms which detect periodicity using

correlations.3 Post-processing is typically used to avoid sud-

den jumps in successive F0 estimates, which may not be phys-

iologically plausible (but this is not universally true in all

applications). One straightforward and simple post-processing

approach is to use running median filtering (for example, see

YIN presented in Sec. III A 6) or dynamic programming (for

example, see DYPSA presented in Sec. III A 1) to refine the esti-

mates; we will see both approaches used in the description of

specific F0 estimation algorithms.

In all cases we used the default settings for the F0 estima-

tion algorithms. To ensure a fair comparison, where appropri-

ate we set the F0 search range between 50 and 500 Hz.

Although the expected physical maximum F0 cannot, realisti-

cally, be so high in the case of comfortably produced sus-

tained vowel /a/ signals, we wanted to test the full range of

inputs to the F0 estimation algorithms. Since this study only

deals with voiced speech and there is no need to identify

whether parts of the speech signal are voiced or unvoiced, that

(very interesting) aspect of the F0 estimation algorithms will

not be addressed here. To avoid putting those F0 estimation

algorithms that inherently detect voiced or unvoiced frames at

disadvantage, where possible this option was disabled.

1. DYPSA

The dynamic programming projected phase-slope algo-

rithm (DYPSA) (Ref. 33) is the only F0 estimation algorithm

used in this study which aims to directly identify the glottal

closure instances (i.e., works on the vocal cycles and not on

time windows). It identifies candidate glottal closure events

and uses dynamic programming to select the most plausible

event by finding the optimum compromise for a set of crite-

ria (such as minimizing the time difference between succes-

sive glottal cycles).

2. PRAAT (two algorithms, PRAAT1 and PRAAT2)

The PRAAT F0 estimation algorithm31 was originally pro-

posed by Boersma.34 It can be viewed as a time-domain

approach which relies on autocorrelation to compute F0 esti-

mates. The signal is divided into frames using an appropriate

window function to minimize spectral leakage, and F0 esti-

mates are provided for each frame. PRAAT normalizes the auto-

correlation of the signal by dividing the autocorrelation of the

signal with the autocorrelation of the window function. The

original algorithm34 used the Hanning window, but Boersma

has later indicated that PRAAT provides improved estimates
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when the Gaussian window is used. We tested both

approaches: we call PRAAT1 the F0 estimation algorithm using

the Hanning window and PRAAT2 the algorithm using the

Gaussian window. PRAAT uses post-processing to reduce large

changes in successive F0 estimates (post-processing was used

for both PRAAT1 and PRAAT2).

3. RAPT

RAPT is a time-domain F0 estimation algorithm (like

PRAAT) but it uses the normalized cross-correlation instead of

the autocorrelation function. It was originally proposed by

Talkin.3 RAPT compares frames of the original speech signal

with sub-sampled frames of the original signal, and attempts

to identify the time delay where the maxima of the cross-

correlation is closest to 1 (excepting the zero time lag which

is 1 by definition). Once F0 candidates for each frame have

been chosen, RAPT uses dynamic programming to determine

the most likely estimate for each frame.

4. SHRP

SHRP computes F0 estimates in the frequency domain

using the sub-harmonics to harmonics ratio, and aims to esti-

mate pitch. It was proposed by Sun35 who found in a series

of experiments that pitch is perceived differently when sub-

harmonics in a signal increase. Therefore, he proposed a cri-

terion for analyzing the spectral peaks that should be used to

determine pitch.

5. SWIPE

The sawtooth waveform inspired pitch estimator (SWIPE)

algorithm was recently proposed by Camacho and Harris,36

and as with SHRP, it is a frequency domain approach that esti-

mates pitch. Instead of focusing solely on harmonic locations

(peaks in the spectrum) as in SHRP, SWIPE uses the available

information on the entire spectrum using kernels. SWIPE iden-

tifies the harmonics in the square root of the spectrum and

imposes kernels with decaying weights on the detected har-

monic locations. We clarify that here we used SWIPE
0, an

extension of SWIPE which was also proposed in the original

study,36 but we refer to it as SWIPE for notational simplicity.

6. YIN

Conceptually, YIN is similar to PRAAT and relies on the

autocorrelation function37 to provide F0 estimates at pre-

specified time intervals. It uses a modified version of the av-

erage squared difference function: expanding the squared

expression results in the autocorrelation function and two

additional corrective terms. The authors demonstrated that

these two additional terms account for YIN’s improved per-

formance over the naive use of autocorrelation. YIN uses a

final post-processing similar to median filtering to avoid spu-

rious peaks in successive F0 estimates.

7. TEMPO

The TEMPO algorithm was proposed by Kawahara et al.38

and uses the log frequency domain. A filter bank of equally

spaced band-pass Gabor filters is used to map the central fil-

ter frequency to the instantaneous frequency of the filter out-

puts. The original proposal suggested using 24 Gabor filters

in an octave, and the instantaneous angular frequency is

obtained using the Hilbert transform.

8. NDF

The nearly defect-free (NDF) F0 estimation algorithm

was proposed by Kawahara et al.39 and relies on both time-

domain and frequency-domain information to provide F0

estimates. The algorithm combines two components to deter-

mine F0 candidate values: (a) an instantaneous frequency

based-extractor and (b) a period-based extractor. The

frequency-based extractor is similar to TEMPO, and the

period-based extractor computes sub-band autocorrelations

using the fast Fourier transform, where the power spectra are

initially normalized by their spectral envelope prior to the

computation of the autocorrelations. Then, the F0 candidates

from the instantaneous frequency and period-based extrac-

tors are mixed using the normalized empirical distribution of

side information to determine the most likely candidates.

9. XSX

The excitation structure extractor (XSX) was recently

proposed by Kawahara et al.40 These researchers wanted to

provide a fast alternative to NDF (see the preceding section),

which their experiments demonstrated to be very accurate,

but also computationally demanding. XSX relies on spectral

division using two power spectral representations. XSX uses a

set of F0 detectors spaced equidistantly on the log-frequency

axis which cover the user specified F0 range.

B. Information fusion with adaptive KF

So far we have described ten popular F0 estimation

algorithms, some of which are longstanding and established,

and others which were proposed more recently. Since there

is no universally single best F0 estimation algorithm3,4 and

different F0 estimation algorithms may be in their optimal

setting under different signal conditions, it is possible that

combining the outputs of the F0 estimation algorithms could

lead to improved F0 estimates. Recently, Tsanas et al.10 pro-

posed a simple ensemble approach to obtain the F0 time se-

ries by introducing fixed weights for three of the F0

estimation algorithms described in the preceding sections

(PRAAT1, RAPT, and SHRP). In this study, we investigate more

thoroughly the concept of combining an arbitrary number of

F0 estimation algorithms with adaptive weights to reflect our

trust in the estimate of each F0 estimation algorithm.

KF is a simple yet powerful technique which can be

used for fusing information from different sources, and has

been successfully used in many applications over the last 40

years.41 The sources (here F0 estimation algorithms) provide

information which may be potentially redundant or comple-

mentary in terms of estimating the underlying (physiologi-

cal) quantity of interest, usually referred to as the state (here

F0). The aim is to fuse the information from the measure-

ments (ten scalar values, one for each of the ten F0
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estimation algorithms at each step where we have F0 esti-

mates) recursively updating the state over time (for F0 esti-

mation applications, this is usually every 10 ms).

Specifically, the KF in its general basic form has the follow-

ing mathematical formalization:

xk ¼ Akxk�1 þ Bkuk þ wk�1; (1)

zk ¼ Ckxk þ vk; (2)

where xk is the state, Ak is the state transition model to

update the previous state, Bk is the control-input model

which is applied to the control vector uk, wk is the state pro-

cess noise which is assumed to be drawn from a multivariate

Gaussian distribution with covariance Qk, zk is the measure-

ment of the state xk, Ck is the measurement model which

maps the underlying state to the observation, and vk is the

measurement noise which is assumed to be drawn from a

multivariate Gaussian distribution with covariance Rk.

It is known from the literature that KF is the optimal

state estimation method (in the least squares sense) for a sto-

chastic signal under the following assumptions:42 (a) the

underlying evolving process of successive states is linear

and known, (b) the noise of the state wk and the noise of the

measurements vk are Gaussian, and (c) the state noise covari-

ance Qk and the measurement noise covariance Rk are

known. In practice, we often assume the first two conditions

are met, but the KF may not give optimal results if the esti-

mates of the state noise covariance and the measurement

noise covariance are inaccurate.41 This requirement has led

many researchers to pursue intensively the notion of infer-

ring good covariance estimates from the data.20,42,43

Although techniques relying solely on the data to estimate

the measurement noise covariance and the state noise covari-

ance offer a convenient automated framework,42 they fail to

take into account domain knowledge which may be critical.

Therefore, methods which could incorporate this potentially

useful additional information have been investigated more

rigorously recently. Particularly promising in this regard is

the approach pioneered by Li et al.20 and more recently also

applied by Nemati et al.43 with the introduction of physio-

logically informed signal quality indices (SQIs), which

reflect the confidence in the measurements of each source.

When the SQI is low, the measurement should not be

trusted; this can be achieved by increasing the noise covari-

ance. Algorithmically, the dependence of the measurement

noise covariance on the SQIs is defined using the logistic

function where the independent variable is the SQI.20

Both Li et al.20 and Nemati et al.43 have used SQIs to

determine only the measurement noise covariance; they set

the state noise covariance to a constant scalar value which

was empirically optimized. Effectively, using a constant

state noise covariance corresponds to assuming that the con-

fidence in the state value does not change as a function of

the a priori estimate of the state, the measurements, and their

corresponding SQIs, and may well not be making full use of

the potential of SQIs. In this study, both the state noise and

the measurement noise covariance are adaptively determined

based on the SQI (whereas in Li et al.20 and Nemati et al.43

the state noise was a priori fixed). Another difference

between the current study and previous studies20,43 is that

we process a single primary signal (speech signal) from

which we obtain various measurements for the quantity of

interest (F0), whereas previously Li et al.20 and Nemati

et al.43 extracted an estimate for their quantity of interest

from each of the multiple primary signals they processed.

Hence, the nature of the SQIs defined in those studies, which

relied on the quality of each of the primary signals, will nec-

essarily be different to the SQIs that will be defined here.

Furthermore, they have used a very simplified KF setting,

processing each source independently from the other sour-

ces: this facilitates the algorithmic processing since all matri-

ces become vectors, and all vectors become scalars for a

scalar state. Then, they combined the multiple KF results

with an additional external function based on the KF resid-

uals and the computed SQIs. However, we argue that the

approach by Li et al.20 and Nemati et al.43 fails to capitalize

on the full strength of the adaptive KF as a data fusion mech-

anism where measurements from all sources are combined

within the KF framework. This is because in their approach

each estimate from each source is only compared to the a
priori state without also taking into account the estimates of

the other sources. Moreover, we will demonstrate that we

can advantageously exploit the fact that the information

from all measurements is simultaneously processed in KF to

adjust the SQIs.

1. Formulation of the adaptive KF setting in this study

We have so far described the general notation of the KF.

Here we explicitly describe the KF setting used in this study

and set values to the KF parameters. For convenience, we

will now simplify notation where appropriate, e.g., to denote

vectors or scalars for the current application instead of the

general formulation with matrices and vectors. We start by

noting that the state in this application is a single scalar xk.

We also assume that consecutive F0 estimates are expected

to remain unchanged; that is, the a priori estimate of the cur-

rent state ~xk will be the previous state: ~xk ¼ xk�1. Implicitly,

we have assumed Ak ¼ 1 and Bk ¼ 0. Similarly, we set

Ck ¼ 1, where the notation 1 denotes a vector with 10 ele-

ments equal to 1 (the length of the vector Ck is equal to the

number of F0 estimation algorithms and is constant in this

application). The aim of the adaptive KF then is to use the

measurements zk (a vector with ten elements which corre-

spond to the estimates of the ten F0 estimation algorithms at

time k) to update ~xk to the new estimated state xk. Next we

focus on how to determine the state noise covariance Qk (a

scalar since the state is scalar) and the measurement noise

covariance Rk based on the SQIs.

2. SQIs

For the purposes of the current study, the SQIs can be

thought of as algorithmic robustness metrics, and express

our confidence in the estimate of each F0 estimation algo-

rithm at a particular instant. In this study, we define novel

SQIs to continuously update both the measurement noise co-

variance and state noise covariance as functions of the SQIs
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using the logistic function. The final SQI, which will be used

to update the noise covariances, is a combination of bonuses
and penalties for each of the individual F0 estimation algo-

rithms at each discrete time step. The main underlying ideas

for setting up the bonuses and penalties are: (a) in most

cases, we expect successive F0 estimates not to vary consid-

erably, (b) all F0 estimation algorithms occasionally give

very bad F0 estimates in some instances, or for entire speech

signals, (c) NDF and SWIPE appear very robust in this applica-

tion, and in most cases their estimates are trustworthy, (d)

NDF is typically closest to the ground truth but sporadically

gives very bad F0 estimates, whereas SWIPE may be slightly

less accurate but more consistent (i.e., very rarely provides

poor F0 estimates). These ideas were drawn by first investi-

gating the behavior of the individual F0 estimation algo-

rithms and will become clear later when looking at Sec.

IV A.

We use the standard S-shaped curved membership func-

tion (spline-based curve, very similar to the sigmoid func-

tion) to map each bonus and each penalty to a scalar in the

range 0 to 1. This function relies on two independent varia-

bles k1 and k2 (k1 < k2) to set thresholds, and is defined as

SS x; k1; k2ð Þ ¼

0; x � k1;

2 x� k1ð Þ= k2 � k1ð Þ
� �2

; k1 � x � k1 þ k2ð Þ=2;

2 x� k2ð Þ= k2 � k1ð Þ
� �2

; k1 þ k2ð Þ=2 � x � k2;

1; x � k2:

8>>>>>><
>>>>>>:

(3)

The rationale for using this function is that we want to sup-

press the values that are close to the thresholds and have a

smooth transition in the range k1 to k2. Now, we outline the

layout form of the penalties which determine the SQIs, and

in turn Qk and Rk. Overall, the confidence in the current

measurement zk is quantified via the SQIs and is given by

SQIk ¼ 1þ bk � p1k � p2k � p3k � p4k: (4)

The following paragraphs explain in detail how each of

the penalties and bonuses are determined. The first penalty

we introduce, p1k, penalizes the F0 estimation algorithms for

having large absolute differences in their successive esti-

mates: p1k ¼ 0:25SSðjzk � zk�1j; 0; 100Þ. We also penalize

the F0 estimation algorithms for exhibiting large absolute

differences from their corresponding robust mean estimates

(defined as the mean estimate of each of the F0 estimation

algorithms using only the corresponding F0 estimates which

fall within the 10th and 90th percentile, denoted with zrobust):

p2k ¼ 0:25SSðjzk � zrobustj; 0; 100Þ. We use the robust mean

because some F0 estimation algorithms occasionally exhibit

irrational behavior (i.e., very bad estimates for some instan-

ces). Similarly, we penalize the F0 estimation algorithms if

the estimate for the current F0 is considerably different from

the a priori estimate ~xk (to be mathematically formally cor-

rect, we create a vector with 10 entries with ~xk, i.e.,

~xk ¼ 1 � ~xk): p3k ¼ 0:75SS jzk � ~xkj; 0; 100ð Þ. We clarify

that we penalize considerably more the algorithms which are

far from the a priori estimate of F0 with p3k, rather than for

inconsistency (penalty p1k which penalizes large absolute

successive differences focusing individually within each F0

estimation algorithm).

Then, we determine which F0 estimation algorithm is

the “best expert at the current instant” in order to have good

prior information to determine the current F0 estimate. This

essentially reflects whether to trust more NDF or SWIPE, and is

achieved by adding up the corresponding three penalties

introduced so far for NDF and SWIPE. Then, we apply the fol-

lowing logic: (a) if the estimated F0 from NDF and SWIPE at

the current discrete step differs by less than 50 Hz, and the

sum of all penalties for both NDF and SWIPE is less than 0.2

(i.e., both NDF and SWIPE are considered trustworthy), then we

trust the F0 estimate from NDF, (b) otherwise, we trust NDF or

SWIPE, whichever has the lowest summed penalty score. The

choice of 50 Hz to quantify large deviation in the F0 esti-

mates of an F0 estimation algorithm with respect to NDF or

SWIPE was chosen empirically based on prior knowledge; we

decided not to formally optimize this value to avoid overfit-

ting the current data (also, it is possible that a relative thresh-

old might be more appropriate).

We denote the estimate from NDF or SWIPE as �xk;best

¼ zk ðNDF or SWIPEÞ. Next, we introduce another penalty for

the F0 estimation algorithms which at the current instant

have an estimate that differs considerably from �xk;best : p4k

¼ 0:75SS jzk � 1 � �xk;bestj; 0; 50
� �

. In this case, the F0 esti-

mation algorithm which is believed to be “best” is not penal-

ized. This is achieved by penalizing NDF or SWIPE (whichever

is considered “best” at the current instance) by p4k;best

¼ 1� p1k;best � p2k;best � p3k;bestð Þ:
It is possible that an F0 estimation algorithm may have

been substantially misguided in its previous F0 estimate(s),

but its estimate for the current F0 is close to the “right

region,” which is defined as being close to the best F0 expert

at the current instant (as described above, this is the estimate

by NDF or SWIPE). In this case, we want to reduce the heavy

penalty induced by the large successive difference in F0 esti-

mates. Therefore, we introduce a bonus to compensate for

the penalties pk;1 and pk;2, which takes into account how

confident we are on the estimate of the best F0 estimation

algorithm. Specifically, we define
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bk ¼ 1 � 1�p4k;bestð Þ
� ½1� SS jzk � 1 � �xk;bestj;0; 100

� �
� pk;1þpk;2ð Þ�;

(5)

where � denotes element-wise multiplication between two

vectors. We clarify that we use the multiplication dot to

denote multiplication between a scalar and a vector.

Moreover, if p4k;best < 0:2 we give extra bonus to the best

F0 estimation algorithm: bk;best ¼ 3. This effectively means

we assign greater confidence in the estimate of the F0 esti-

mation algorithm that we deem is most accurate if the penal-

ties introduced so far for this algorithm sum to a value less

than 0.2. As a final check, any negative SQIk is set to zero.

Also, if the F0 estimate from an F0 estimation algorithm dif-

fers by 50 Hz or more from both the F0 estimate of NDF and

SWIPE, the corresponding SQI is automatically set to zero.

Following Li et al.,20 we use the logistic function to estimate

the measurement noise covariance Rk. Note that Li et al.20

used a scalar Rk for each source which was processed inde-
pendently from the other sources in the KF framework, and

fused information from the sources externally to KF to pro-

vide the final state estimate. Therefore, their scheme did not

take advantage of the potential to fuse information internally

in KF, where we determine SQIs also using information con-

veyed from the remaining sources. Here we retain the matrix

formulation

Rk ¼ Rk0
� exp 1=SQIk

2 � 1
� �

; (6)

where Rk0
has some pre-defined constant values. We set the

diagonal entries of Rk0
to values that reflect our prior confi-

dence in each F0 estimation algorithm (higher value denotes

lower confidence). Here, we set the diagonal entries in Rk0

corresponding to NDF and SWIPE to 1, and all other entries to 3

(hence, a priori we believe more the estimates by NDF and

SWIPE, although this prior belief is subject to be updated with

the SQIs which in turn will update Rk). Non-diagonal entries

were set to zero. It is not straightforward to optimize the

appropriate non-diagonal entries so as to reflect possible

interactions among the F0 estimation algorithms (for exam-

ple, a setting where an F0 estimation algorithm provides

poor estimates, whereas another F0 estimation algorithm

works particularly well).

Finally, whereas the measurement noise covariance is

estimated via the logistic function and SQI, the state noise

covariance is estimated as follows:

Qk ¼

1; if SQIk;NDFð Þ < 0:8 and SQIk;SWIPEð Þ < 0:8;

3þ
���� 1

L

X
j¼1…L: SQIk;j>0:8

zk;j � ~xkð ÞSQIk;j

� �����; otherwise;

8>>><
>>>:

(7)

where L is the number of F0 estimation algorithms with cor-

responding SQIk;j larger than 0.8. The concept behind this

expression in the first clause is that the measurements of NDF

and SWIPE cannot be trusted if both NDF and SWIPE have rela-

tively low SQIs, and hence the adaptive KF will tend to trust

more the a priori estimate. Conversely (in the second

clause), if all F0 estimation algorithms weighted by their re-

spective SQI (when their SQI is larger than a threshold of

0.8) point towards a large change in successive steps in the

F0 contour, we want to increase Qk so that KF will trust con-

siderably more the new measurements. Note that if the F0

estimation algorithms for which we have large respective

SQIs point towards the same direction of change in F0 (i.e.,

a sudden increase or decrease), then the Qk will increase

considerably and hence the KF will weight only on the cur-

rent measurements and not trust the a priori F0 estimate.

The MATLAB source code for the adaptive KF and the

computation of the SQIs is available on request by contact-

ing the first author.

C. Benchmarks: Median and ensemble learning

As standard simple benchmarks of combining informa-

tion from multiple sources, we used the median from all F0

estimation algorithms for each instant, and also two ensem-

bles to weigh the estimates of the F0 estimation algorithms:

(a) the standard ordinary least squares (OLS) and (b) a statis-

tically robust form of least squares, the iteratively

reweighted least squares (IRLS), which is less sensitive to

outliers.21 The ensembles used all but one signal for training

and test on the signal left out of the training process; the pro-

cedure is repeated for all signals and the results were aver-

aged. Because the two databases in the study have widely

different ground truth F0 distributions (see Fig. 1), the

ensembles were trained separately for the two databases.

D. Ground truth and validation framework

Most F0 estimation algorithms provide estimates at spe-

cific time intervals (typically at successive instances using a

fixed time window of a few milliseconds). Here, wherever

possible, we obtained F0 estimates from the F0 estimation

algorithms every 10 ms, at the reference time instances [60,

70,…, 950] ms (thus, we have 90 F0 values for each syn-

thetic phonation signal and for each F0 estimation algorithm

or the ensemble of the F0 estimation algorithms). Given that

the synthetic speech signals exhibit inherent instabilities

because the physiological model requires some 4–5 vocal
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cycles to settle into stable oscillation (see Sec. II A), and that

many F0 estimation algorithms provide reliable estimates

only after a few milliseconds into the speech signal, we dis-

carded the F0 estimates prior to 60 ms. A few F0 estimation

algorithms do not provide F0 estimates at pre-specified time

intervals, but at intervals which are identified as part of the

algorithm (this is the case with RAPT, for example). In those

cases where the F0 estimation algorithms do not provide F0

estimates at the exact time instances described above, we

used piecewise linear interpolation between the two closest

time intervals of the F0 estimation algorithm to obtain the F0

estimate at the reference time instances. The time instances

where F0 was estimated in RAPT did not differ considerably

from the reference time instances, and thus piecewise linear

interpolation should not markedly affect its performance.

The ground truth F0 time series from the physiological

model and the SIGMA algorithm30 is given in the form of glot-

tal closure time instances, which are directly translated to F0

estimates in Hz. However, we need to obtain ground truth F0

values at the reference time instances. Hence, piecewise lin-

ear interpolation was used to obtain the ground truth at the

reference instances. Similarly, we used piecewise linear

interpolation to obtain F0 estimates from DYPSA at the refer-

ence time instances (DYPSA is the only F0 estimation algo-

rithm in this study that aims to identify glottal closure

instances, instead of using time windows).

Summarizing, each F0 estimation algorithm or ensemble

of F0 estimation algorithms provides 90 F0 estimates for ev-

ery speech signal. These estimates for every speech signal

are compared against the 90 ground truth F0 scores at the

reference instances. In total, we processed (a) 117 synthetic

speech signals generated using the physiological model

which provide N ¼ 117	 90 ¼ 10 530 values, and (b) 65

actual speech signals which provide N ¼ 65	 90 ¼ 5850

values over which we compare the performance of the F0

estimation algorithms and ensembles. In a few cases, the

algorithms PRAAT2 and TEMPO failed to provide outputs

(towards the beginning or end of the signal). Those instances

were substituted with the estimates from NDF for computing

the PRAAT2 and TEMPO overall errors (for the KF fusion we

simply assumed no measurement was available by the corre-

sponding F0 estimation algorithm which had no estimate at

those instances). Overall, the F0 outputs from the ten F0 esti-

mation algorithms were concatenated into two matrices: X1

with 10 530	 10 elements for the speech signals generated

from the physiological model, and X2 with 5850	 10 ele-

ments for the actual speech signals. The ensembles of the F0

estimation algorithms are directly computed using these mat-

rices. The ground truth was stored in two vectors: y1which

comprised N ¼ 10 530 elements for the generated speech

signals, and y2 which comprised N ¼ 5850 elements for the

actual speech signals.

The deviation from the ground truth for each signal and

each F0 estimation algorithm is computed as ei ¼ ŷi � yi,

where ŷi is the ith F0 estimate (i 2 1;…; 90), and yi is the

ith ground truth F0 value. We report three performance

measures: (a) mean absolute error (MAE), (b) the mean rela-

tive error (MRE), and (c) the root mean squared error

(RMSE) (endorsed by Christensen and Jakobsson1 in

evaluating F0 estimation algorithms). The MRE is similar to

one of the performance measures used in Parsa and

Jamieson,5 but without squaring the error and the ground

truth values (thus placing less emphasis on large errors). The

RMSE is always equal to or greater than the MAE, and is

particularly sensitive to the presence of large errors. The

larger the variability of the errors, the larger the difference

between MAE and RMSE. Therefore, these metrics are com-

plementary when assessing the performance of the F0 esti-

mation algorithms. In this study we focus on approaches

combining F0 estimates with the aim to minimize the mean

squared error (implicitly in KF). Therefore, RMSE is the pri-

mary error metric of interest to compare our findings. The

metrics are defined as follows:

MAE ¼ 1

N

X
i2S

jŷi � yij; (8)

MRE ¼ 100
1

N

X
i2S

jŷi � yij=yi

� �
; (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i2S

ŷi � yið Þ2
s

; (10)

FIG. 2. (Color online) Probability density estimates of the errors for all F0

estimation algorithms.
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where N is the number of F0 instances to be evaluated for

each speech signal (here 90), and S contains the 90 indices

of each speech signal in the estimate of each F0 estimation

algorithm and in y. Error metrics from all speech signals are

averaged, and are presented in the form mean 6 standard

deviation.

IV. RESULTS

This section follows the same structure as in Sec. III:

first we compare the performance of the ten individual F0

estimation algorithms, and then we study the performance of

the information fusion approach with the adaptive KF.

A. Performance of the ten individual F0 estimation
algorithms

Figure 2 presents the probability density estimates of the

errors ŷi � yið ÞNi¼1 for the ten F0 estimation algorithms. The

probability densities were computed using kernel density

estimation with Gaussian kernels. These results provide a

succinct overview of the comparative accuracy of each F0

estimation algorithm, as well as indicating whether it is sym-

metric (with respect to overestimating and underestimating

the true F0). The error distributions of most F0 estimation

algorithms are closely symmetric, suggesting that there is no

large positive or negative bias in most of the algorithms.

This is also quantitatively reflected in the median errors

reported in Tables I and II, where all F0 estimation algo-

rithms exhibit a bias which is lower than 1 Hz. Two notable

exceptions are YIN and RAPT which appear to underestimate

considerably F0 for the database with the synthetic signals.

Figure 3 presents the number of times that each of the F0

estimation algorithms was closer to the ground truth F0

(reflecting the success of each of the F0 estimation

algorithms). Interestingly, there is no clear winner among

the F0 estimation algorithms in terms of accurately estimat-

ing F0 for individual samples in the F0 contour for the two

databases [Figs. 3(a) and 3(c)]. On the other hand, NDF is

clearly the most successful F0 estimation algorithm in terms

of being closer to the ground truth when studying the entire

signal [Figs. 3(b) and 3(d)]. Table I summarizes the average

results in terms of estimating F0 for the database with the

generated speech signals, and Table II summarizes the

results for the database with the actual speech signals.

Overall, all F0 estimation algorithms have reasonably accu-

rate performance.

The best individual F0 estimation algorithms, on aver-

age, are NDF for the database with the synthetic signals and

SWIPE for the database with the actual speech recordings.

Some algorithms temporarily deviate considerably from the

ground truth, but overall there was good agreement on the

actual and estimated F0 contour. Nevertheless, for some sig-

nals most of the F0 estimation algorithms had consistently

underestimated or overestimated F0 for the entire duration of

the signal. This was particularly evident for the database

with the actual speech signals: the only F0 estimation algo-

rithm which did not exhibit such erratic behavior was SWIPE.

The findings in Tables I and II might at first appear contra-

dictory with the findings in Fig. 3 where we might have

expected NDF and TEMPO to dominate. In fact, they highlight

the fact that overall NDF and TEMPO may occasionally deviate

considerably from the ground truth (this is reflected in the

large standard deviation of the errors reported in Table II).

B. Performance of F0 estimation combinations

The last four rows in Tables I and II summarize the per-

formance of approaches which combine the outputs of the

individual F0 estimation algorithms to obtain the final F0

TABLE I. Performance of the F0 estimation algorithms (synthetic speech

signals). The evaluation of the F0 estimation algorithms uses all 117 syn-

thetic speech signals, where for each signal we use 90 F0 estimates (thus

N ¼ 117	 90 ¼ 10 530). The results are in the form mean 6 standard devi-

ation. The last four rows are the approaches to combine the outputs of the

F0 estimation algorithms using the median from all algorithms, OLS, IRLS,

and adaptive KF. The best individual F0 estimation algorithm and the best

combination approach are highlighted in bold. The median error (ME) in the

second column is used to illustrate the bias of each algorithm.

Algorithm ME (Hz) MAE (Hz) MRE (%) RMSE (Hz)

DYPSA 0.02 3.79 6 5.57 3.30 6 5.41 7.20 6 13.44

PRAAT1 0.00 10.73 6 22.09 7.42 6 14.64 12.46 6 22.33

PRAAT2 0.02 6.56 6 15.46 4.68 6 10.26 8.81 6 17.43

RAPT �3.98 9.20 6 8.91 6.64 6 6.17 19.95 6 14.85

SHRP �0.23 3.67 6 7.06 2.83 6 5.08 7.17 6 10.34

SWIPE 0.18 2.88 6 7.10 2.37 6 5.57 3.59 6 7.59

YIN �10.71 17.41 6 16.87 11.90 6 10.76 29.90 6 22.95

NDF 0.00 2.38 6 6.71 1.90 6 4.92 3.16 6 7.74

TEMPO 0.00 2.53 6 6.64 2.01 6 4.87 3.34 6 7.53

XSX 0.01 3.00 6 7.10 2.38 6 5.55 3.73 6 7.58

Median �0.39 3.00 6 7.28 2.31 6 5.23 4.27 6 8.91

OLS 0.02 3.49 6 5.63 2.72 6 4.14 4.60 6 6.49

IRLS 0.00 2.34 6 7.06 1.89 6 5.21 3.34 6 9.43

KF 0.02 2.19 6 6.54 1.73 6 4.70 2.72 6 6.84

TABLE II. Performance of the F0 estimation algorithms (actual speech sig-

nals). The evaluation of the F0 estimation algorithms uses all the 65 actual

speech signals, where for each signal we use 90 F0 estimates (thus

N ¼ 65	 90 ¼ 5850). The results are in the form mean 6 standard devia-

tion. The last four rows are the approaches to combine the outputs of the F0

estimation algorithms using the median from all algorithms, OLS, IRLS,

and adaptive KF. The best individual F0 estimation algorithm and the best

combination approach are highlighted in bold. The ME in the second col-

umn is used to illustrate the bias of each algorithm.

Algorithm ME (Hz) MAE (Hz) MRE (%) RMSE (Hz)

DYPSA �0.78 14.42 6 26.32 5.54 6 8.44 25.86 6 32.89

PRAAT1 �0.03 29.22 6 57.23 13.28 6 24.08 31.67 6 57.10

PRAAT2 �0.03 29.05 6 56.86 13.21 6 24.00 31.47 6 56.71

RAPT �0.04 28.30 6 63.47 8.63 6 17.98 34.21 6 65.89

SHRP �0.01 18.78 6 47.77 6.85 6 16.86 26.91 6 55.21

SWIPE 0.10 3.06 6 7.01 1.18 6 2.48 6.22 6 13.46

YIN �0.03 16.36 6 47.34 6.16 6 16.32 23.35 6 51.77

NDF �0.01 15.12 6 60.66 4.16 6 15.24 17.66 6 60.87

TEMPO �0.03 50.67 6 99.23 17.69 6 31.08 53.21 6 100.92

XSX �0.08 33.43 6 52.11 16.85 6 25.90 39.57 6 56.81

Median �0.17 18.90 6 46.27 7.71 6 18.11 24.71 6 49.15

OLS �0.78 4.08 6 7.76 1.55 6 2.62 7.58 6 13.82

IRLS �0.03 3.17 6 7.03 1.23 6 2.49 6.53 6 13.57

KF �0.03 2.49 6 5.04 0.97 6 1.82 4.95 6 9.19
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estimates. We remark that KF leads to considerable improve-

ment for both the database with the generated speech signals

(Table I), and the database with the actual speech signals

(Table II). The relative RMSE improvement of the adaptive

KF over the single best F0 estimation algorithm

jRMSEKF � RMSENDF or SWIPEj=RMSEKFð Þ is 16.2% com-

pared to NDF for the database with the generated signals, and

25.6% compared to SWIPE for the database with the actual

speech signals. Figure 4 presents the performance of the best

individual F0 estimation algorithm versus the best combina-

tion scheme for all signals: in the vast majority of speech

signals the adaptive KF scheme is more accurate than the

single best F0 estimation algorithm, and when not, the drop

in performance is negligible.

We can investigate the contribution of each F0 estima-

tion algorithm in the KF scheme by studying their corre-

sponding SQIs, which are summarized in Table III. In both

databases, the greatest contribution comes from NDF (and to a

lesser degree from SWIPE). The results in Table III suggest

that the KF scheme mostly considers NDF to be closest to the

ground truth compared to the competing F0 estimation algo-

rithms (particularly for the synthetic data). The F0 estimation

algorithms were generally more accurate in predicting F0 in

the database with the synthetic signals compared to the data-

base with the actual speech signals, which is reflected in the

SQIs for the two databases. In the database with the syn-

thetic signals, the F0 estimation algorithms are typically not

heavily penalized (the SQI values are fairly close to the

default value 1); whereas in the database with the actual

speech signals the SQI values for each F0 estimation algo-

rithm were considerably more variable.

C. Algorithmic robustness

Finally, we investigated the robustness of the F0 estima-

tion algorithms when (a) the sampling frequency is reduced

from 44.1 to 8 kHz for each of the 65 actual speech signals

and (b) contaminating each actual speech signal with 10 dB

FIG. 3. (Color online) Histogram depicting the number of times each of the F0 estimation algorithms was the most successful algorithm in estimating F0 for

each of the assessments in (a) the database with the synthetic speech signals for each of the 10 530 samples, (b) the database with the synthetic speech signals

for each of the 65 signals, (c) the database with the actual speech signals for each of the 5850 samples, and (d) the database with the actual speech signals for

each of the 117 signals.
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additive white Gaussian noise (AWGN) prior to the compu-

tation of the F0. A robust algorithm should produce similar

outputs in the reduced quality signals. Figure 5 illustrates the

density estimates of the differences in the F0 values computed with respect to the original actual speech signals.

Down-sampling the actual speech recordings from the original

sampling frequency of 44.1 to 8 kHz affects mainly DYPSA,

and SHRP. PRAAT1 and PRAAT2 appear to be the least affected F0

estimation algorithms in terms of their F0 estimates.

Interestingly, although the performance of the best individual

F0 estimation algorithm (SWIPE) had degraded considerably

(the RMSE when using the 44.1 kHz-sampled signals was

6.22 6 13.46 Hz and increased to 7.32 6 15.37 Hz when using

the 8 kHz-sampled signals), the RMSE in the KF approach

remained virtually unchanged (originally the RMSE when

using the 44.1 kHz-sampled signals was 4.95 6 9.19 Hz and

increased to 4.98 6 9.25 when using the 8 kHz-sampled sig-

nals). That is, the KF approach is very robust in terms of accu-

rately determining the F0 when the sampling frequency is

reduced to 8 kHz. Similar findings were observed when con-

taminating the actual speech signals with 10 dB AWGN: the

RMSE of the best individual algorithm (SWIPE) increased to

FIG. 4. (Color online) Performance comparison in terms of RMSE of the

adaptive KF scheme against the best individual F0 estimation algorithm

(NDF for synthetic signals and SWIPE for actual signals). All error units are in

Hz. For the majority of signals used in this study, the adaptive KF scheme is

superior to the single best F0 estimation algorithm, in some cases consider-

ably so. In two cases for the synthetic signals and two cases for the actual

signals the RMSE difference is larger than �15 Hz.

TABLE III. Signal quality indices in the adaptive KF. The results are in the

form mean 6 standard deviation. The F0 estimation algorithm with the

greatest contribution towards the adaptive KF fusion scheme is highlighted

in bold.

Algorithm Synthetic signals Actual signals

DYPSA 0.97 6 0.11 0.89 6 0.16

PRAAT1 0.87 6 0.31 0.78 6 0.41

PRAAT2 0.94 6 0.20 0.78 6 0.41

RAPT 0.91 6 0.09 0.85 6 0.32

SHRP 0.98 6 0.03 0.92 6 0.22

SWIPE 1.00 6 0.06 1.12 6 0.59

YIN 0.81 6 0.18 0.92 6 0.23

NDF 3.99 6 0.08 3.80 6 0.85

TEMPO 1.00 6 0.01 0.77 6 0.42

XSX 0.99 6 0.06 0.75 6 0.40

FIG. 5. (Color online) Density estimates for the difference when (a) the F0

values were estimated using a sampling frequency of 44.1 kHz versus 8 kHz

and (b) the F0 values were estimated for the actual speech signals at

44.1 kHz versus the case when 10 dB AWGN was introduced to the signals

prior to computing the F0. In both cases we used the database with the actual

speech recordings.
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6.80 6 15.25 Hz, but the RMSE of the KF approach had only

slightly changed (5.07 6 9.30 Hz). We highlight the robust-

ness of the KF fusion approach in both lower sampling fre-

quency signals and in the presence of AWGN, whereas SWIPE

and NDF both degraded considerably. Moreover, we stress that

not only is the average performance of the KF better (reflected

in the mean value), but it is also considerably more reliable

(significantly lower standard deviation in both settings). DYPSA

and to a lesser degree XSX appear to be the most susceptible

F0 estimation algorithms to noise, whereas PRAAT1, PRAAT2,

NDF, and SWIPE are again very robust.

V. DISCUSSION AND SUMMARY

This study compared ten widely used F0 estimation

algorithms, and investigated the potential of combining F0

estimation algorithms in providing F0 estimates for the sus-

tained vowel /a/. We focused on F0 estimation algorithms

which are widely used in clinical speech science, and some

recently proposed F0 estimation algorithms. We used two

databases for our investigation: (a) a database with 117 syn-

thetic speech signals generated with a sophisticated physio-

logical model of speech production and (b) a database with

65 actual speech signals where simultaneous EGG record-

ings were available. Particular care was exercised to gener-

ate sustained vowel /a/ signals which may closely resemble

pathological cases using the physiological model, and also

signals with low F0 because these signals are particularly

difficult for most of the commonly used F0 estimation algo-

rithms.29 The ground truth F0 in the synthetic signals was

inferred from the computation of the vocal fold cycles in

the model, i.e., the computation of successive instances

where the glottal area was minimized. The ground truth F0

in the actual speech signals was deduced using the SIGMA

algorithm30 from EGG recordings, and was also verified by

visual inspection of the signals and the EGG plots.

Therefore, in both cases the ground truth F0 is objective,

and the aim of this study is to replicate it as accurately as

possible using the speech signal alone. We remark that for

the actual speech recordings the microphone and amplifier

combination had a high pass cut-off frequency compared to

the F0 in sustained vowel /a/ phonations. Reducing the high

pass cut-off frequency may be beneficial for some F0 esti-

mation algorithms but detrimental for others;33 moreover in

practice it is often desirable to use the higher frequencies of

the spectrum for general voice assessment analysis (in addi-

tion to determining accurately F0).10 Therefore, we have

not imposed a high pass cut-off frequency which would

have been closer to the upper limit of the expected F0 in the

current application.

A ubiquitous problem in accurate F0 estimation is the

presence of strong sub-harmonics.2,3 These sub-harmonics

manifest as integer fractions of F0 in the spectrum, and in

practice it is often difficult to determine whether the pitch

period can be considered to be, for example, doubled as a

result of the amplitude of the 1/2 sub-harmonic. Some of the

F0 estimation algorithms use sophisticated methods to tackle

the difficult task of overcoming sub-harmonics problems.

For example, SWIPE imposes weight-decaying kernels on the

first and prime harmonics of the signal to reduce the proba-

bility of mistakenly using the sub-harmonics as its

F0 estimates.36
SHRP explicitly identifies sub-harmonics and

harmonics; the F0 is then determined depending on the value

of the ratio of their sums.35
YIN is effectively relying on the

autocorrelation function with two additional corrective terms

to make it more robust to amplitude perturbations.37 It uses a

free parameter for thresholding a normalized version of the

autocorrelation function with the two corrective terms, in

order to overcome the effect of strong sub-harmonics. TEMPO,

NDF, and XSX use parabolic time-warping using information

in the harmonic structure to obtain the F0 estimates. PRAAT

and RAPT do not use any explicit mechanism for mitigating

the effect of sub-harmonics.

The results reported in Table I and Table II strongly

support the use of NDF and SWIPE as the most accurate individ-

ual F0 estimation algorithms. All F0 estimation algorithms

occasionally deviated considerably from the ground truth, in

particular YIN and RAPT. TEMPO was very inconsistent: overall

its F0 contour estimates may have been accurate or largely

inaccurate for the entire duration of the signal. The use of

Gaussian windows in PRAAT (PRAAT2 in this study) is benefi-

cial compared to Hamming windows (PRAAT1 in this study),

which is in agreement with Boersma’s observation. SWIPE

was the most consistent in terms of almost never deviating

considerably from the ground truth. In Table I we have seen

that, on average, F0 can be estimated to within less than

2.4 Hz deviation from the ground truth using NDF (SWIPE was

slightly worse). Similarly, in Table II we reported that, on

average, F0 can be estimated to within about 3 Hz deviation

from the ground truth using SWIPE. In most cases the standard

deviations of the errors (presented as the second term in the

form mean 6 standard deviation) is larger than the mean

error value. In general, high standard deviation indicates that

the magnitude of the deviation between the F0 estimates of

an algorithm and the ground truth F0 fluctuates substantially

across samples. On the contrary, low standard deviation sug-

gests that the deviation of the F0 estimates of an algorithm

compared to the ground truth F0 does not fluctuate consider-

ably around the quoted mean value (hence, we can be more

confident that the mean error is a good representation of the

algorithm’s F0 estimates compared to the ground truth F0).

Therefore, low standard deviation of an F0 estimation algo-

rithm suggests that the quoted mean error can be trusted

more (in that sense, the algorithm can be considered more

reliable). For example, SWIPE is not only noticeably more

accurate in the database with the actual speech signals (lower

mean error compared to the competing individual F0 estima-

tion algorithms), but also more reliable (lower standard

deviation). It could be argued that the good performance of

SWIPE might merely reflect agreement with the SIGMA algo-

rithm. However, the fact that SWIPE demonstrated overall

excellent performance in both databases (one of which used

data from synthetic speech signals generated by a sophisti-

cated model where the ground truth F0 is known), and also

that the “true” F0 in the database with actual speech signals

was visually verified, strongly suggest that SWIPE appears to

be very successful in accurately estimating F0 in sustained

vowel /a/ phonations.
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Figure 3 presents graphically the number of times each

of the F0 estimation algorithms was closest to the ground

truth F0 (for samples and also for signals in each of the two

databases). However, these plots should be interpreted cau-

tiously: first, the histograms do not quantify how much better

an F0 estimation algorithm is compared to competing

approaches for a particular sample (or signal); second, in

those samples (signals) that an F0 estimation algorithm is

not best, its estimates might deviate considerably from the

ground truth and this is not reflected in the histogram.

Therefore, although the plots in Fig. 3 illustrate nicely which

F0 estimation algorithm was better than the competing algo-

rithms for samples (signals), for the purposes of assessing

the overall performance of the F0 estimation algorithms one

should be primarily interested in the results reported in

Tables I and II.

Overall, the time-domain correlation based approaches

investigated here (YIN, PRAAT, RAPT) perform considerably

worse than alternative F0 estimation algorithms such as NDF

and SWIPE. In their current implementations, YIN, PRAAT, and

RAPT are prone to producing large deviations from the ground

truth. This finding may reflect the inherent limitations of the

tools based on linear systems theory (autocorrelation and

cross-correlation) used in YIN, PRAAT, and RAPT. For example,

autocorrelation is sensitive to amplitude changes.37

Moreover, autocorrelation and cross-correlation inherently

assume that the contained information in the signal can be

expressed using the first two central moments and are there-

fore suitable for Gaussian signals which may be embedded

in noise; however, they fail to take into account nonlinear

aspects of non-Gaussian signals. There is strong physiologi-

cal and empirical evidence suggesting that speech signals

(including research on sustained vowels) are stochastic or

even chaotic, particularly for pathological cases.2,44,45

Therefore, nonlinear speech signal processing tools may be

necessary to quantify some properties of speech signals.

Interestingly, the two most successful F0 estimation algo-

rithms in this study, NDF and SWIPE, rely on nonlinear proper-

ties of the speech signals to determine the F0 values. SWIPE

identifies the harmonics in the square root of the spectrum

and imposes kernels with harmonically decaying weights.36

Conceptually, the approach in SWIPE can be compared to ker-

nel density estimation, which is widely considered one of the

best non-parametric methods to estimate the unknown den-

sity of a continuous random variable, or the extension of lin-

ear concepts to nonlinear cases (for example, principal

component analysis and kernel principal component analy-

sis, or standard linear support vector machines and kernel

based support vector machines).19 Therefore, introducing

kernels at harmonic locations and weighting the entire har-

monic spectrum to determine F0 may explain the success of

SWIPE over competing F0 estimation algorithms which rely

on standard harmonic analysis of the spectrum (for example,

SHRP). NDF is a combination of an interval based extractor

(based on autocorrelations at pre-specified Gaussian filter-

banks) and an instantaneous frequency based extractor, rely-

ing on a Gabor filterbank and the Hilbert transform (which

promotes the local properties of the signal). The final F0 esti-

mate for a particular signal segment is decided following

weighting of the F0 estimates with a signal to noise ratio

(SNR) estimation procedure (which is conceptually compa-

rable to the SQIs introduced in this study). Effectively, NDF

is trying to combine two different approaches in one algo-

rithm: the standard linear autocorrelation approach with

some modifications for incorporating SNR for each of the

studied frequency bands, and a more complicated Hilbert-

transform based weighting of Gabor filters (which is the

TEMPO algorithm).39 The success of NDF may be attributed to

incorporating information from both a modified weighted

autocorrelation approach of the frequency band, and the

Gabor filter Hilbert transform promoted estimates.

PRAAT and RAPT use dynamic programming, a potentially

powerful optimization tool to determine the best F0 value

among a pool of F0 candidate values for a particular signal

segment (e.g., 10 ms as in this study), so one might expect

these algorithms would provide accurate F0 estimates.

However, dynamic programming in the context of F0 estima-

tion is a post-processing technique which heavily relies on

the determination of good candidate F0 values, and requires

the careful optimization of a number of free parameters. In

addition to the limitations of autocorrelation (PRAAT) and

cross-correlation (RAPT), a further possible reason for the rel-

ative failure of PRAAT and RAPT is that the dynamic program-

ming parameters have probably been optimized by the

developers of the F0 estimation algorithms for running

speech rather than for sustained vowels.

The results in Tables I and II demonstrate the adaptive

KF approach consistently outperforms both the best individ-

ual F0 estimation algorithm and the simple linear ensembles.

We stress that the adaptive KF improved the accuracy in cor-

rectly determining F0 estimates by 16% in the database with

the synthetic signals, and 25.6% in the database with the

actual speech signals. Notably, this improvement is not only

significant, but also consistent in the vast majority of speech

signals across both databases (see Fig. 4). Moreover, the

adaptive KF is more reliable than the individual F0 estima-

tion algorithms: in addition to exhibiting lower average devi-

ation from the ground truth (reflected in the mean value of

the error), the standard deviation around the mean value of

the quoted error (e.g., RMSE) was consistently lower than

competing approaches in all experiments. Furthermore, the

KF approach was shown to be very robust (Sec. IV C):

whereas the best individual F0 estimation algorithms (NDF

and SWIPE) degraded considerably with increasing noise and

lower sampling frequency, the KF approach was only mar-

ginally affected. Additional tests not shown in this study

demonstrate that simple naive benchmarks such as the mean

or median from the best subset of the F0 estimation algo-

rithms is also considerably worse than KF.

We have investigated the robustness of the algorithms in

two settings: (a) reducing the sampling frequency of the

actual speech signals from 44.1 to 8 kHz and (b) introducing

AWGN to the actual speech signals. Although the speech

scientists’ recommendation for voice quality assessment is

that the sampling frequency should be at least 20 KHz,2 in

practice we might not have adequate resources to record

such high-quality signals (for example, when recording sig-

nals over the telephone). Overall, in both cases we found
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that there is small performance degradation in terms of accu-

rate F0 estimation using most of the investigated F0 estima-

tion algorithms; moreover we verified the robustness of the

proposed adaptive KF approach, where the performance deg-

radation in terms of estimating the true F0 values was practi-

cally negligible.

The current findings are confined to the sustained vowel

/a/, and therefore cannot be generalized to all speech signals

solely on the evidence presented here. It would be interesting

to compare the F0 estimation algorithms studied here,

including the approaches for combining the individual F0

estimation algorithms, for other sustained vowels (most rele-

vant would be the other corner vowels, which are also some-

times used in voice quality assessment4). Future work could

also investigate more sophisticated combinations of F0 esti-

mation algorithms to build on the promising results of this

study.

The adaptive KF approach described in this study is an

extension of the approach proposed by Li et al.20 We devel-

oped a new methodology using SQIs (which can be thought

of as algorithmic robustness metrics) where the confidence

in the successive estimates of the F0 estimation algorithms is

directly used to update both the measurement noise covari-

ance and the state noise covariance. This was achieved using

prior confidence in the individual F0 estimation algorithms

and taking into account their interaction in terms of differ-

ence of their estimates, and the difference with the a priori
estimate which is assumed to be constant over successive

time frames. We remark that our approach, where all sources

are collectively used to feed the adaptive KF, is essentially

different from the methodology by Li et al.20 where each

source was introduced independently to the KF and the

fusion of the different estimators was achieved in a subse-

quent step. The advantage of the new adaptive KF scheme is

that we can jointly determine our confidence in the estimates

of each F0 estimation algorithm by adjusting the SQIs, seam-

lessly integrating the entire process within the KF frame-

work. The proposed methodology may find use in diverse

applications relying on the adaptive KF, assuming the signal

quality indices are suitably defined. For example, the pre-

sented methodology could be used in the applications stud-

ied by Li et al.20 (heart rate assessment) and Nemati et al.43

(respiration rate assessment). The adaptive KF is computa-

tionally inexpensive, and hence the proposed methodology

may be useful also in real-time processing applications.
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