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Purpose: This study uses a voice production model to estimate muscle activation 
levels and subglottal pressure (PS) in patients with phonotraumatic vocal hyper-
function (PVH), based on ambulatory measurements of sound pressure level (SPL) 
and spectral tilt (H1–H2). In addition, variations in these physiological parameters 
are evaluated with respect to different values of the Daily Phonotrauma Index (DPI). 
Method: The study obtained ambulatory voice data from patients diagnosed 
with PVH and a matched control group. To infer physiological parameters, 
ambulatory data were mapped onto synthetic data generated by a physiologi-
cally relevant voice production model. Inverse mapping strategies involved 
selecting model simulations that represented ambulatory distributions using sto-
chastic (random) sampling weighted by probability with which different vowels 
occur in English. A categorical approach assessed the relationship between dif-
ferent values of DPI and changes in estimated physiological parameters. 
Results: Results showed significant differences between the PVH and control 
groups in key parameters, including statistical moments of H1–H2, SPL, PS, and 
muscle activity of lateral cricoarytenoid (LCA) and cricothyroid (CT) muscles. 
Higher DPI values, reflecting more severe PVH, were associated with increased 
mean LCA activation and decreased LCA variability, along with decreased mean 
CT activation and increased median PS. These findings highlight the relationship 
between muscle activation patterns, PS, and the severity of vocal pathology as 
indicated by the DPI. It is hypothesized that a major driver of muscle activation 
and PS changes is the variation in maladaptive adjustments (vocal effort) when 
compensating for the presence of vocal pathology. 
Conclusions: This study demonstrated that noninvasive ambulatory voice data 
could be used to drive a voice production modeling process, providing valuable 
insights into underlying physiological parameters associated with PVH. Future 
research will focus on refining the predictive power of the modeling process 
and exploring the implications of these findings in further delineating the etiol-
ogy and pathophysiology of PVH, with the ultimate goal to develop improved 
methods for the prevention, diagnosis, and treatment of PVH. 
Supplemental Material: https://doi.org/10.23641/asha.28352720
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Voice disorders affect approximately 25%–30% of 
the adult population in the United States (Bhattacharya & 
Siegmund, 2015; Roy et al., 2005), with some of the most 
common being associated with vocal behaviors that cause 
vocal fold trauma (e.g., nodules and polyps; Hillman et al., 
1989, 2020)—referred to as phonotraumatic vocal hyper-
function (PVH). Phonation-related vocal fold trauma can 
degrade vocal function/efficiency (e.g., interfere with glottal 
closure) and require increased vocal effort during daily 
vocal use to compensate (Behrman et al., 2008; Dikkers & 
Nikkels, 1995; Perkell et al., 1994). Such circumstances 
have the potential to trigger a vicious cycle of increasing 
trauma and effort (Hillman et al., 2020). 

Because PVH is related to daily vocal behaviors, 
ambulatory monitoring is considered an ideal tool for char-
acterizing voice use in such patients (Carullo et al., 2013; 
Cheyne et al., 2003; Popolo et al., 2005; Searl & Dietsch, 
2014). Monitoring devices typically employ sensors placed 
on the neck, such as miniaturized accelerometers (ACCs), 
to detect neck skin vibration and, thus, noninvasively moni-
tor phonation (Cheyne et al., 2003; Popolo et al., 2005). 

A recently developed measure called the Daily Phono-
trauma Index (DPI) differentiated the daily voice use of 
patients with PVH from matched controls (Nudelman et al., 
2022; Van  Stan, Mehta,  Ortiz, Burns, Marks, et al., 2020;
Van Stan, Mehta, Ortiz, Burns, Toles, et al., 2020). The 
DPI is a logistic regression that combines sound pressure 
level (SPL; Van Stan, Mehta, Ortiz, Burns, Toles, et al., 
2020) or neck skin acceleration magnitude (NSAM; Van 
Stan, Mehta, Ortiz, Burns, Marks, et al., 2020) with the
amplitude differences between the first and second harmonics 
of the voice spectrum (H1–H2; Cortés et al., 2018; Van Stan, 
Mehta, Ortiz, Burns, Marks, et al., 2020). Patients with 
PVH have more negatively skewed SPL/NSAM distributions 
(hypothesized to reflect increased laryngeal forces) and less 
variable H1–H2 distributions centered toward lower values 
(hypothesized to reflect more abrupt glottal closure). 

Although the DPI has been shown to differentiate 
between patients with PVH and controls (Van Stan, 
Mehta, Ortiz, Burns, Toles, et al., 2020) and correlate 
with treatment-related changes in PVH (Van Stan, Mehta, 
Ortiz, Burns, Marks, et al., 2020; Van Stan, Ortiz, Marks, 
et al., 2021), differences in physiological mechanisms, such 
as laryngeal muscle activity/tension or subglottal pressure 
(PS), that underlie typical versus aberrant DPI values have 
not been identified/validated. Identifying/validating these 
mechanisms would greatly increase the interpretability and 
clinical value of the DPI. Because the DPI is based on 
measures that are extracted from noninvasive ambulatory 
voice data, it would be ideal if a voice production modeling 
process could be developed that uses these measures as a 
basis for estimating underlying physiological parameters. 
• •950 Journal of Speech, Language, and Hearing Research Vol. 68
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Several studies have shown promise in the noninva-
sive estimation of PS using various methodological strate-
gies. These include nonlinear regressions trained with 
numerical voice production models (Gomez et al., 2019; 
Ibarra et al., 2021; Zhang, 2020, 2022), empirical formulas 
correlating PS with SPL and fundamental frequency (F0; 
Titze & Hunter, 2015; Titze & Sundberg, 1992), or 
exploiting linear correlations between root-mean-square of 
the ACC signal and PS (Fryd et al., 2016; Lin et al., 2020; 
Marks et al., 2019, 2020). The use of a neck-placed ACC 
sensor in several of these efforts (Ibarra et al., 2021; 
Sepúlveda et al., 2024) has shown its value as an instru-
ment for measuring vocal function. Recent work has used 
the ACC for ambulatory recordings, thus enabling esti-
mates of PS distributions for the entire day by employing 
subject-specific linear regressions based on laboratory cali-
brations of the ACC (Cortés, Lin, et al., 2022). 

In this study, we use mathematical models of voice 
production to begin bridging the gap between noninvasive 
voice ambulatory measures that differentiate patients with 
PVH from controls and physiological parameters that 
underlie these differences. These models allow for the simula-
tion and study of interactions between anatomical, biome-
chanical (Calvache et al., 2023), and acoustic variables 
involved in phonation (Döllinger et al., 2023; Erath et al., 
2013). For this purpose, a fully interactive implementation 
of the triangular body-cover model (TBCM; Alzamendi 
et al., 2022), a reduced-order mass-spring model of the vocal 
folds with laryngeal muscle control, is utilized as a voice pro-
duction model for simulating different phonatory gestures 
that can be related to typical and hyperfunctional voice use 
(Alzamendi et al., 2022; Galindo et al., 2017; Zañartu et al., 
2014). In addition, this model has successfully estimated 
laryngeal muscle activation levels and PS, contrasted with 
clinical data (Alzamendi et al., 2020; Ibarra et al., 2021), 
thus making it an ideal model for the purpose of this study. 

This work has two aims. First, we will replicate 
patient and healthy control ambulatory distributions 
underlying the DPI (H1–H2 and SPL) with a TBCM to 
estimate differences in muscle activation levels and PS. It
is hypothesized that PS, muscle activation levels, and 
adduction/glottal closure will be higher in the patients 
than controls. Second, we will replicate five ambulatory 
distributions along the severity continuum of the DPI (as 
a probability). We expect the differences in muscle activa-
tion and PS, between patients and controls from the first 
aim, to increase or decrease along with the DPI. To vali-
date these hypotheses, we will statistically compare the 
resulting distributions and features between controls and 
patients with paired t tests and Cohen’s d values (Cohen, 
1988). This study represents a synergistic approach, inte-
grating ambulatory data from the PVH population, math-
ematical models of phonation (using the TBCM), and
•949–962 March 2025
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statistical analysis tools (using DPI) to identify the under-
lying elements of vocal hyperfunction in daily life. 
Method 

The proposed methodology for linking ambulatory 
data distributions with the voice production model is illus-
trated in Figure 1. This figure encapsulates the conver-
gence of the three pivotal elements required to generate 
PS and muscle activation distributions based on SPL and 
H1–H2 distributions. As shown, the three components 
include the ambulatory data, the simulations from the 
model, and the set of guidelines devised to mimic different 
vowels in the ambulatory environment using the model, 
that is, the inverse mapping scheme. 

Ambulatory Distributions of Subjects With 
PVH and Controls 

The acquisition and composition of the ambulatory 
database employed in this study have been previously 
described (Van Stan, Mehta, Ortiz, Burns, Toles, et al., 
Figure 1. Diagram of the inverse mapping scheme. The right track delinea
notraumatic vocal hyperfunction and controls. The left track showcases 
center, the figure emphasizes the filtering of simulated data, grounded 
PGO = posterior glottal opening; ACC = accelerometer; CT = cricothyroid
ity; SPL = sound pressure level; TA = thyroarytenoid. 
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2020). This data set included recordings from 180 adult 
women—90 of whom were patients diagnosed with PVH 
(vocal fold nodules or polyps) and another 90 who acted as 
control subjects matched to the patients in terms of age, sex, 
and occupation and endoscopically screened to ensure the 
absence of vocal pathology. The governing institutional 
review board (IRB) from the Massachusetts General Hospi-
tal approved all experimental aspects related to the use of 
human subjects for this study in IRB Protocol 2011P002376. 

Each participant was recorded for an entire week 
using the Voice Health Monitor (VHM), as described in 
Mehta et al. (2012). To briefly summarize, the VHM uses 
a miniature/lightweight ACC (Model BU-27135, Knowles 
Electronics), placed on the anterior neck—just below the 
larynx and above the sternal notch—to sense the skin sur-
face vibrations that are generated during phonation. The 
ACC is connected to a smartphone that runs an app for 
data acquisition and storage. In addition, a handheld 
microphone (H1 Handy Recorder, Zoom Corporation) 
was utilized for calibration of SPL once a day. 

From the ambulatory voice data for each partici-
pant, we derived distributions and summary statistics for
tes ambulatory data and distributions from both subjects with pho-
data from triangular body-cover model (TBCM) simulations. At the 
in established distributions. MGO = membranous glottal opening; 
; LCA = lateral cricoarytenoid; PL = lung pressure; prob = probabil-
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Table 1. Input parameters for triangular body-cover model simulations. 

Input parameter Acronym Range 

Lung pressure PL 500–2,500 Pa 

Act. of cricothyroid aCT 0–1 

Act. of thyroarytenoid aTA 0–1 

Act. of lateral cricoarytenoid aLCA 0–1 

Act. of interarytenoid aIA aIA = aLCA 
Act. of posterior cricoarytenoid aPCA 0 

Vocal tract VT /I/, /i/, /e/, / 
AE/, /A/ 

Note. Act = activation.
the entire week for 50-ms frames of SPL, F0, and H1–H2. 

The summary statistics included the mean, standard devia-
tion, skewness, and kurtosis. To convert the ACC signal 
into a glottal flow signal and subsequently quantify the 
aerodynamic features, we implemented the Impedance-
Based Inverse Filtering (IBIF) algorithm as described by 
Zañartu et al. (2013) for each subject. A subject-specific lin-
ear regression was used to transform NSAM into estimated 
SPL values (Mehta et al., 2012). 

Phonation Model 

The TBCM (Alzamendi et al., 2022) is a reduced-
order biomechanical model that simulates symmetrical 
oscillatory behavior of the vocal folds during phonation. 
The model distinguishes between the body (represented by 
a single mass) and the cover layers (represented by two 
masses) of the vocal folds (Story & Titze, 1995) and accu-
rately reflects the triangular glottal configuration observed 
in natural phonation (Galindo et al., 2017). It incorpo-
rates the coordinated activation of the five intrinsic laryn-
geal muscles—thyroarytenoid (TA), cricothyroid (CT), lat-
eral cricoarytenoid (LCA), interarytenoid, and posterior 
cricoarytenoid (PCA)—each influencing vocal fold stiff-
ness, mass distribution, and posture, thereby impacting 
pitch, loudness, and phonatory quality (Titze & Hunter, 
2007; Titze & Story, 2002). These five intrinsic laryngeal 
muscles have normalized values between 0 (rest) and 1 
(tetanus, full contraction). 

The ambulatory ACC data are known to be influ-
enced by the subglottal and supraglottal systems (Zañartu 
et al., 2013). To account for these complex interactions 
between tissue, airflow, and acoustic waves above and 
below the vocal folds, we integrated a vocal tract model 
that simulates the propagation of acoustic waves in the 
time domain through both the subglottal and supraglottal 
systems using a wave reflection analog scheme (Zañartu 
et al., 2014). A schematic representation of the TBCM is 
shown in the top left corner of Figure 1. 

The model simulates sustained phonation segments of 
0.5-s duration with only one vowel (i.e., supraglottal vocal 
tract) and vocal register (i.e., TBCM) per trial. However, the 
ambulatory data consist of spontaneous speech in daily life 
(i.e., many different vowels) and multiple vocal registers. 
Thus, to achieve different vowels and multiple modal regis-
ters (variations in pitch, loudness, and phonatory quality), 
the model uses input time-varying parameters such as the 
supraglottal tract cross-sectional area for  a given vowel,  nor-
malized muscle activation levels (aCT, aTA, aLCA, aIA, and
aPCA), and lung pressure (PL). A truncated Taylor series 
approximation is implemented to simultaneously solve the 
differential equations of motion for the three masses that 
compose the body-cover structure, using a sampling 
• •952 Journal of Speech, Language, and Hearing Research Vol. 68
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frequency of 44.1 kHz. The  vocal tract area functions are 
also set according to Story (2008) to mimic several vowels. 

For each simulation, the output signals of interest 
include the PS, oral airflow, and radiated sound pressure. 
The F0 and H1–H2 features are computed from the glottal 
airflow signal, the PS is derived as the mean of PS signal, 
and the SPL is obtained from the radiated pressure. Nota-
bly, the F0, H1–H2, and SPL features are synonymous 
with those derived from the individual ACC data and the 
IBIF algorithm. 

Synthetic Data Set 

To make the model output tractable, we focused on 
the five most commonly used vowel sounds in American 
English: /I/, /i/, /e/, /AE/, and /A/. We performed 500,000 
simulations for each vocal tract configuration. These sim-
ulations varied the remaining input model parameters 
(aCT, aTA, aLCA, and PL) using a random parametric sweep 
within the ranges specified in Table 1. This approach 
ensured a dense and representative exploration of the 
model’s input space. Only simulations that produced sus-
tained oscillatory behavior were retained, resulting in a total 
synthetic data set comprising 1.5 million simulations. Each 
individual simulation was conducted with constant values 
for muscle activation and PL. After 1 s of simulation, the 
last 100 ms were used to compute the F0, H1–H2, PS, and
the SPL. To streamline the parameter space, the activation 
level of the PCA muscle (aPCA) was  consistently  set to 0.  

We constructed five vowel maps, each representing 
a distinct vocal tract configuration. These maps consist of 
comprehensive sets of unique input vectors (aCT, aTA, 

aLCA, and PL) and their corresponding output vectors 
(SPL, H1–H2, PS) for each specified vocal tract shape, as 
illustrated in Figure 1. 

Inverse Mapping Procedure 

The integration of experimental and simulated data 
forms the cornerstone for deriving parameter distributions
•949–962 March 2025
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through an inverse mapping strategy, also known as the 
sample-and-filter method. This entails sampling the SPL 
and H1–H2 distributions from ambulatory data and subse-
quently filtering the simulation outputs to isolate input– 
output vectors corresponding to the sampled values.

To perform the sampling and filtering process, four 
steps are carried out. First, we pick a point from the SPL 
and H1–H2 distributions extracted from a participant’s 
ambulatory data. Second, we use a sampling rule that 
assigns a probability to selecting each vowel, which is 
determined by the relative occurrence of each vowel in 
natural spoken English (Lammert et al., 2020; Parra 
et al., 2023). The probability of selection for each vowel 
was as follows: 44% for /A/, 21% for /I/, 14% for /i/, 12% 
for /E/ and 8% for /AE/. Third, from the selected vowel 
map, we identify the vectors that have SPL and H1–H2 

values that approximate the points taken from the ambu-
latory data distributions. The tolerance levels for identify-
ing approximate vectors were 0.3 dB for SPL and 0.2 dB 
for H1–H2 when calculating the distance to the chosen 
point. These tolerance levels were defined based on the 
1% width of the distribution of values of each feature. 
Fourth, within the subset of filtered results, the final 
input–output pair that reproduces the sampled point is 
randomly selected. We iterated this process 20,000 times 
to acquire a collection of vectors, which not only aligned 
with the subject-specific feature distributions (SPL, H1– 

H2) but also revealed the model parameter values respon-
sible for producing those features. If there was an individ-
ual veridical data point that was not approximated by any 
SPL–H1-H2 combinations, these data points were not 
included in the final simulated distribution. 

Statistical Analysis 

Similar to the approach used in previous work (Van 
Stan, Mehta, Ortiz, Burns, Toles, et al., 2020; Van Stan, 
Ortiz, Cortes, et al., 2021), we compared distributions of 
SPL, H1–H2, muscle activations, and PS between patients 
and controls (Aim 1). The analysis included central ten-
dency and dispersion metrics—mean, median, standard 
deviation—as well as measures of distribution shape, 
namely, skewness and kurtosis, for each feature within 
each subject data set (SPL, H1–H2, aCT, aTA, aLCA, and 
PS), to a total of 30 features per subject. 

To analyze the matched control–patient paradigm 
(90 pairs), paired t tests (parametric data) and Wilcoxon 
signed-ranks tests (nonparametric data) were used to eval-
uate differences in 30 resulting features. A Kolmogorov– 
Smirnov (KS) test assessed the normalcy of each distribu-
tion of paired differences (patient minus control). If the 
KS test was significant (p < .05), a Wilcoxon test was 
applied; if not, a paired t test was used. Due to the high 
Downloaded from: https://pubs.asha.org Matias Zanartu on 03/17/2025, 
number of tests, the alpha significance level was adjusted 
using the Bonferroni method. Upon finding statistical signif-
icance, the Cohen’s d effect size was calculated to character-
ize the magnitude of differences between groups (small 
when ≤ 0.19, small to medium when 0.20–0.49, medium to 
large when 0.50–0.79, and large when ≥ 0.80; Cohen, 1988). 

For Aim 2, we examined parameters that were sig-
nificantly different between the control–patient pairings 
across five DPI severity ranges. A DPI value was deter-
mined for each participant using H1–H2 standard devia-
tion and SPL skewness in the calculation first described 
by Van Stan, Mehta, Ortiz, Burns, Marks, et al. (2020). 
For the analysis, five DPI groups were defined, each rep-
resenting a probability range of .2 within the overall DPI 
scale (0 < DPI < 1). This ensured that each group had the 
same probability range and a similar number of subjects 
(approximately 36 ± 2 per group). The average distribu-
tions for each parameter were plotted across the incremen-
tal levels of DPI using box plots, thus allowing the visuali-
zation of any relationships between a parameter and dif-
ferent DPI values. 
Results 

Inverse Mapping Procedure 

The inverse mapping procedure was successfully 
applied for all study subjects, resulting in model-produced 
SPL and H1–H2 distributions that closely matched the dis-
tributions based on the ambulatory SPL and H1–H2 data. 
Success in this context was defined as matching a signifi-
cant proportion of the data points, with a threshold of 
approximately 60% considered reasonable for successful 
alignment. Notably, the actual success rate of the inverse 
mapping, measured by the proportion of matched points 
between ambulatory and model-derived SPL and H1–H2 

pairs, was 77.8% (±6.1%), exceeding our threshold for suc-
cess. This achievement is particularly noteworthy consider-
ing that the numerical model approximates the complex 
phonatory process, yet it replicated data across multiple 
individuals over three quarters of the time on average. 
This high success rate highlights a substantial congruence 
between the model outputs and the real-world voice data 
regarding these key voice features. 

Figure 2 shows an example with feature distribu-
tions for one selected subject, both ambulatory and model 
derived. The upper panels display the SPL and H1–H2 dis-
tributions from both ambulatory data and the inverse 
mapping, illustrating a robust alignment between the 
observed and modeled data. The lower panels delineate 
the distributions of PS and muscle activation inferred from 
the model. The mode of PS, shown in Figure 2(C), is
Parra et al.: Ambulatory Modeling of Vocal Hyperfunction 953
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Figure 2. Example of a subject-specific distribution of model parameters and features, after applying inverse mapping. Acoustic features: (A) 
sound pressure level (SPL): ambulatory (blue) and inverse mapping (orange) distribution. (B) H1–H2: ambulatory (blue) and inverse mapping 
(orange) distribution. Muscle activation (Act.) model parameters: (C) subglottal pressure (PS) distribution. (D) Muscle activation: aTA (red), aCT 
(green), and aLCA (gray) distribution. aCT = activation of the cricothyroid muscle; aTA = activation of the thyroarytenoid muscle; aLCA = activa-
tion of the lateral cricoarytenoid muscle. 
observed at approximately 0.7 kPa, with a mean around 
0.9 kPa, corroborating with previously reported “comfort-
able loudness” measurements in controlled environments 
(Espinoza et al., 2017, 2020). 

Regarding muscle activations, the distribution of the 
LCA muscle in Figure 2(D) shows a low or nearly zero 
occurrence of activity below 0.2. This is consistent with 
the essential role of LCA activation in producing phona-
tion, given its adductor function (Chhetri et al., 2014). 
Conversely, the CT muscle distribution exhibits a higher 
prevalence of activation around 0.3, a range typically 
associated with a “speech” type of voice (Vahabzadeh-
Hagh et al., 2018). The CT muscle also maintains activa-
tion across its entire range, reflecting the variability in 
• •954 Journal of Speech, Language, and Hearing Research Vol. 68
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vocal frequency. Finally, the TA muscle distribution 
shows activity throughout its range, with a preference for 
high activation levels. This trend should be interpreted in 
light of the inverse mapping and filtering scheme applied 
in this study. Previous experiments and regression analyses 
(Chhetri et al., 2014; Ibarra et al., 2021) have not demon-
strated a strong correlation between TA activation and 
commonly used acoustic or aerodynamic parameters, 
resulting in a high degree of uncertainty in its estimation. 
Additionally, high TA activation is known to produce 
midfrequency phonation, while low activation can inhibit 
vocal fold oscillation in certain configurations (Chhetri 
et al., 2014). These dynamics influence the inverse map-
ping process, leading to a tendency to select more simula-
tions with high TA activation. These observed trends are
•949–962 March 2025
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consistent across other subjects. Moving forward, we tran-
sition to a more population-based analysis to further 
explore these findings. 

Statistical Comparison of the PVH and 
Control Groups 

As outlined in the methodology, measures of central 
tendency and statistical moments (mean, median, standard 
deviation, skewness, and kurtosis) were calculated for each 
subject’s distributions (SPL, H1–H2, aCT, aTA, aLCA, and 
PS), resulting in a total of 30 parameters. Table 2 lists the 
parameters’ means and standard deviations that statistical 
testing (KS test, Wilcoxon sum statistic, and Cohen’s d) 
showed were significantly different between the PVH and 
control groups. Significant differences were found for the 
two parameters that comprise the DPI (H1–H2 standard 
deviation and SLP skewness), several distributional parame-
ters for LCA muscle activation (mean, median, standard 
deviation), the mean for CT muscle activation, and the 
median for PS. Not surprisingly, the two DPI components 
had the largest values of Cohen’s d, with H1–H2 standard 
deviation having a large effect size (d = 1.12)  and SLP
skewness having a medium-to-large effect size (d = 0.63).
The distributional features of LCA muscle activation 
showed medium effect sizes (∣d∣ = 0.53–0.58), and both CT 
muscle activation (∣d∣ = 0.58–0.43) and PS had small-to-
medium (d = 0.4) effective sizes. There were no significant 
parameters for TA muscle activation. Conversely, the signif-
icant parameters associated with the CT and LCA muscles 
underscore their correlation with elements of harmonic rich-
ness (H1–H2). The LCA muscle, as the primary adductor 
muscle, is crucial for vocal fold closure and posture, 
whereas the CT muscle, as the vocal fold tensor, plays a 
key role in pitch coordination. Additionally, the close rela-
tionship between PS and SPL is further confirmed. The 
table containing each subject’s central tendency and statisti-
cal moment values is provided in Supplemental Material S1 
for controls and Supplemental Material S2 for patients. 
Table 2. Features that showed significant differences between controls 
values and effect sizes. 

Feature 
Control 
(M ± SD) 

Patient 
(M ± SD) 

H1–H2 SD 3.77 ± 0.33 dB 3.37 ± 0.38 dB

SPL skew 0.01 ± 0.24 −0.15 ± 0.22
aLCA mean 0.57 ± 0.01 0.58 ± 0.02

aLCA median 0.56 ± 0.02 0.58 ± 0.02

aLCA SD 0.24 ± 0.01 0.23 ± 0.01

aCT mean 0.50 ± 0.02 0.49 ± 0.02

PS median 1.11 ± 0.15 kPa 1.17 ± 0.16 kPa

Note. KS = Kolmogorov–Smirnov; H1–H2 = difference between the first 
ness; aLCA = activation of the lateral cricoarytenoid muscle; aCT = activati
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Relationships Between Significant 
Parameters and DPI 

Figures 3–5 display box plots of the statistically sig-
nificant parameters (see Table 2) shown across increasing 
values for DPI. Higher DPI values are generally viewed as 
reflecting more severe PVH. The solid (99%) and dashed 
(95%) lines in the head of the box plots represent statisti-
cal difference between groups. All of the displayed param-
eters showed significant changes when comparing their 
distributions at a DPI value of 0.2 with those at both 0.8 
and 1.0, demonstrating the ability to discriminate between 
higher control–patient contrasts. 

Not surprisingly, the box plots in Figure 3 for H1– 

H2 standard deviation and SPL skewness display signifi-
cant changes in these two components of the DPI across 
the entire range of DPI values, with the decrease in H1– 

H2 standard deviation being even more consistent than 
the increase in negative skewness of SPL. These results 
serve as a simple sanity check. 

Box plots for the model-derived mean and standard 
deviation of LCA muscle activation are shown in Figure 
4. In general, the mean LCA activation level increases sig-
nificantly and the standard deviation of the LCA activa-
tion level decreases significantly with increases in DPI. 
This can be interpreted as more vocal fold closure on 
average and reduced variation toward less vocal fold clo-
sure (respectively) as the DPI increases. 

Figure 5 displays the model-derived values for mean 
CT muscle activation and the median PS. Overall, there is 
a significant but inconsistent decrease in the mean CT 
muscle activation level and a significant but inconsistent 
increase in median PS with increases in DPI, indicating 
higher aerodynamic forces when the DPI increases. 

Figure 6 illustrates the average distribution for both 
ambulatory and model-based parameters across the two 
DPI groups: DPI > 0.5 (classified as patients) and DPI <
and patients with phonotraumatic vocal hyperfunction, with their p 

KS test 
(p value) 

Wilcoxon 
(p value) Cohen’s d 

< .01 < .01 1.12 

< .01 < .01 0.63 

< .01 < .01 −0.58 
< .01 < .01 −0.54 
< .01 < .01 0.53 

< .01 < .01 0.43 

.02 < .01 −0.40 

and second harmonics; SPL = sound pressure level; skew = skew-
on of the cricothyroid muscle; PS = subglottal pressure. 
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Figure 3. (Left) Standard deviation of H1–H2. (Right) Skewness of SPL. Solid (99%) and dashed (95%) lines represent statistical difference 
between groups. DPI = Daily Phonotrauma Index; SD = standard deviation; skew = skewness; SPL = sound pressure level; H1–H2 = differ-
ence between the first and second harmonics. 

Figure 4. (Left) Mean of aLCA. (Right) Standard deviation of aLCA. Solid (99%) and dashed lines (95%) represent statistical difference between 
groups. DPI = Daily Phonotrauma Index; SD = standard deviation; aLCA = activation of the lateral cricoarytenoid muscle.
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Figure 5. (Left) Mean of aCT. (Right) Median of PS. Solid (99%) and dashed (95%) lines represent statistical difference between groups. 
DPI = Daily Phonotrauma Index; aCT = activation of the cricothyroid muscle; PS = subglottal pressure. 

Figure 6. Mean distributions of parameters of interest. Acoustic features: (A) SPL and (B) H1–H2 distribution. Model parameters: (C) aTA, (D) 
aLCA, (E) aCT, and (F) PS distribution. Colors represent clustering by DPI value (groups of 0.2). The shaded area represents the 95% confi-
dence interval. Gray arrows indicate the direction of DPI increase. DPI = Daily Phonotrauma Index; SPL = sound pressure level; H1–H2 = dif-
ference between the first and second harmonics; aCT = activation of the cricothyroid muscle; aTA = activation of the thyroarytenoid muscle; 
aLCA = activation of the lateral cricoarytenoid muscle; PS = subglottal pressure.
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0.5 (classified as controls), summarizing the results from 
previous figures. The shaded areas represent the 95% con-
fidence interval, and the gray arrows highlight the direc-
tion of increasing DPI scores.

For ambulatory parameters, the H1–H2 distribution, 
shown in Figure 6(A), becomes more concentrated, main-
taining its tails while the central density heightens, thus 
diminishing the standard deviation when the DPI value 
increases. Concurrently, SPL distribution, shown in Figure 
6(B), shifts toward elevated SPL values, indicating a skew-
ness alteration. These elements represent what is observed 
in Figure 3 in terms of global parameters and not just 
their statistical moments. For model-derived parameters, 
PS follows a similar trend to SPL, reflecting their correla-
tion, whereas LCA activation increases with higher DPI 
scores, as seen in Figure 4. CT activation decreases as 
DPI increases, and TA activation shows no significant 
variation across DPI categories. 
Discussion 

Our study had two hypotheses: (a) PS and muscle 
activation levels related to adduction/glottal closure will 
be higher in the patients than controls, and (b) the differ-
ences in muscle activation and PS between patients and 
controls, from the first hypothesis, will increase or 
decrease along with the DPI. To evaluate any muscle acti-
vation or PS values, the TBCM with subglottal and supra-
glottal tracts needed to replicate distributions of SPL and 
H1–H2. Notably, there was high agreement between the 
vocal production model predictions and actual ambulatory 
measurements of SPL and H1–H2. The strong consistency 
between ambulatory data and model predictions lends some 
validation to using the TBCM and associated lookup tables 
for estimating physiological parameters from the neck skin 
acceleration signal. To match real-life SPL and H1–H2 dis-
tributions, the TBCM and lookup tables must accurately 
reflect the physical processes of vocal production to a non-
trivial degree. Regarding muscle activation, the distribu-
tions reflect a prevalence of lower activations (below 0.5) 
for the CT muscle and a predominance of higher activa-
tions (above 0.4) for the TA and LCA muscles, replicating 
the modal phonation pattern described in our previous 
TBCM article (Alzamendi et al., 2022). 

The largest differences in estimated physiological 
measures were patients showing increased average LCA 
values (d = 0.54–0.58) and decreased LCA variability (d = 
0.53) compared to controls. Excess average LCA activa-
tion would adduct the vocal folds more closely during 
voicing, increasing the vocal folds’ tissue-to-tissue contact. 
It is thought that normal voicing occurs with the vocal 
folds barely touching (Verdolini et al., 1998). Patients with 
• •958 Journal of Speech, Language, and Hearing Research Vol. 68
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PVH increase their risk of phonotrauma by overadducting 
their vocal folds and/or voicing in ways that increase 
tissue-to-tissue contact (Erath et al., 2017; Mehta et al., 
2021). Additionally, these patients have lesions in the 
midmembranous vocal fold, which would prevent full vocal 
fold closure during voicing and further necessitate increased 
LCA muscle activation/vocal fold adduction to produce 
clear voicing (Hillman et al., 2020). Reduced LCA variabil-
ity corresponds to previous work with the DPI, showing 
that patients voiced with decreased variation to higher 
values of H1–H2 in daily life (Van Stan, Mehta, Ortiz, 
Burns, Marks, et al., 2020; Van Stan, Mehta, Ortiz, Burns, 
Toles, et al., 2020; Van Stan, Ortiz, Marks, et al., 2021), 
reflecting a tendency to maintain more abrupt/complete 
glottal closure. Finally, average LCA increased and LCA 
variability decreased as the SPL and H1–H2 distributions 
underlying the DPI were classified as more severe, further 
supporting our interpretation of how LCA muscle activa-
tion relates to PVH pathophysiology. 

The patients exhibited diminished average CT muscle 
activation compared to controls, pointing to lower pitches 
on average. Patients with PVH often voice with reduced 
pitch variation toward higher pitches, and multiple voice 
therapy approaches incorporate pitch glides and exagger-
ated prosody to address this observation (Gartner-Schmidt 
& Gillespie, 2021; Roy et al., 1997; Verdolini, 2008). 
Empirically, previous studies identified significantly reduced 
F0 standard deviation in patients’ daily life compared to 
matched controls (Mehta et al., 2015; Van Stan, Mehta, 
Ortiz, Burns, Marks, et al., 2020; Van Stan, Mehta, Ortiz, 
Burns, Toles, et al., 2020; Van Stan, Ortiz, Marks, et al., 
2021). This difference normalized after voice therapy, not 
after surgical removal of the lesions, insinuating that it may 
be primarily behavioral. The relationship between mean 
CT activation and the DPI showed that decreased CT 
activation related to increased potential for phonotrauma 
(Van Stan, Mehta, Ortiz, Burns, Marks, et al., 2020; Van 
Stan, Ortiz, Marks,  et al., 2021). This  relationship  is  coun-
terintuitive because traditional vocal dose measures often 
rely on the opposite relationship: higher cumulative collision 
forces as F0 (i.e., CT activation levels) increases (Rantala & 
Vilkman, 1999; Titze & Hunter, 2015). However, vocal fre-
quency is known to be motorically redundant as multiple 
muscles combine to produce different pitches (Titze & 
Story, 2002). Perhaps voicing at a specific frequency with 
less CT muscle activation requires laryngeal configurations 
with higher potential for phonotrauma, that is, increased 
LCA muscle activation. 

There was no notable difference in TA muscle acti-
vation between patients and controls, as well as minimal 
changes in TA activation at high DPI levels. While multi-
ple theories underlying PVH hypothesize general increases 
in intrinsic laryngeal muscle activation levels, the results
•949–962 March 2025
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suggest that PVH is an imbalance among these muscles. 
Specifically, the imbalance may manifest as a “typical” 
level of TA activation, “higher-than-typical” level of LCA 
activation, and “lower-than-typical” level of CT activa-
tion. Similar imbalances have been found in patients with 
PVH using superficial electromyography intermuscular 
coherence between the left and right anterior neck muscles 
(Stepp et al., 2010, 2011). Future research should explore 
the imbalances between the left and right activation levels 
of the same muscle. The results show that the proposed 
methodology, estimate using just SPL and H1–H2 distribu-
tions, fails to constrain the behavior of the TA muscle, 
beyond the uniform distribution of the synthetic data and 
the prevalence of more simulations with high activation. 
Therefore, further studies will focus on developing new 
features that more accurately correlate with its activity. 
This will lead to more reliable estimates and a deeper 
understanding of its role in hyperfunction. 

Patients exhibited increased average PS compared to 
the controls, likely reflecting the increased effort/forces 
necessary to voice with excessive phonotrauma and/or in 
the presence of phonotraumatic lesions. Previous work has 
shown that, compared to controls, patients spend more time 
at higher amplitudes—that is, increased negative skewness 
of the neck skin acceleration amplitude. Perhaps higher 
overall average PSs are physiologically necessary to main-
tain a negatively skewed vocal intensity behavior in daily 
life. Supporting this interpretation, there was a direct rela-
tion between increases in DPI values and increases in PS. 

There are multiple limitations of this study. We 
acknowledge that the model simulations are bound by a 
certain level of granularity, as evidenced by a 77% predic-
tion accuracy for SPL and H1–H2 values. One potential 
way to increase the prediction accuracy in future studies 
includes skipping the transformation of the ambulatory 
ACC signal into the model glottal airflow signal using the 
IBIF. While the IBIF transformation allows the ACC to 
be included in the model, it can introduce noise into the 
feature calculation (Cortés, Alzamendi, et al., 2022; 
Morales et al., 2023). However, the ACC has been shown 
to exhibit a strong relationship with airflow features in 
previous research (Espinoza et al., 2020; Mehta et al., 
2019), justifying its inclusion, even with the use of IBIF. 
Future improvements could explore alternative methods 
for incorporating the ACC signal into the model, poten-
tially by developing a dedicated model for ACC within 
the overall phonation model framework. Refining the 
model resolution could potentially improve its predictive 
fidelity. Despite this shortcoming, our model shows prom-
ising generalizability, simulating vocal features across a 
varied population with a fair degree of success. The com-
plexity of inverse mapping—deriving muscle activations 
and pressures from SPL and H1–H2 readings—remains a 
Downloaded from: https://pubs.asha.org Matias Zanartu on 03/17/2025, 
challenging endeavor due to the nonuniqueness of the 
solution. Our model currently mitigates this challenge 
through a stochastic process in sample selection. In this 
study, we aim to delineate the scope of the DPI space esti-
mation and demonstrate how it characterizes PVH. Look-
ing forward, we aim to enhance our methodology by inte-
grating more measured variables to tighten the range of 
potential solutions and by expanding our simulation 
library. Future research efforts will be directed toward 
adopting more sophisticated approaches, including inter-
polation methods, and leveraging machine learning tech-
niques such as neural networks, to refine parameter esti-
mation and tackle the issue of nonuniqueness with greater 
precision. 
Conclusions 

This study contributes to voice assessment by incor-
porating numerical modeling techniques and an inverse 
mapping technique that noninvasively estimate difficult-
to-measure physiological parameters such as PS and intrin-
sic muscle activation levels. This approach has been fur-
ther validated by correlating it to measures underlying the 
DPI, as well as changes in DPI severity. Shifts in PS, LCA 
muscle activity, and CT muscle activity during voiced 
speech in daily life can provide novel insights into the bio-
mechanical responses associated with PVH. 
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