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Abstract
Swelling in the vocal folds is caused by the local accumulation of fluid, and has been implicated as a phase in the develop-
ment of phonotraumatic vocal hyperfunction and related structural pathologies, such as vocal fold nodules. It has been pos-
ited that small degrees of swelling may be protective, but large amounts may lead to a vicious cycle wherein the engorged 
folds lead to conditions that promote further swelling, leading to pathologies. As a first effort to explore the mechanics of 
vocal fold swelling and its potential role in the etiology of voice disorders, this study employs a finite-element model with 
swelling confined to the superficial lamina propria, which changes the volume, mass, and stiffness of the cover layer. The 
impacts of swelling on a number of vocal fold kinematic and damage measures, including von Mises stress, internal viscous 
dissipation, and collision pressure, are presented. Swelling has small but consistent effects on voice outputs, including a 
reduction in fundamental frequency with increasing swelling (10 Hz at 30 % swelling). Average von Mises stress decreases 
slightly for small degrees of swelling but increases at large magnitudes, consistent with expectations for a vicious cycle. 
Both viscous dissipation and collision pressure consistently increase with the magnitude of swelling. This first effort at 
modeling the impact of swelling on vocal fold kinematics, kinetics, and damage measures highlights the complexity with 
which phonotrauma can influence performance metrics. Further identification and exploration of salient candidate measures 
of damage and refined studies coupling swelling with local phonotrauma are expected to shed further light on the etiological 
pathways of phonotraumatic vocal hyperfunction.
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1 Introduction

Vocal hyperfunction (VH) is a condition defined by 
excessive laryngeal musculature activation during pho-
nation (Oates and Winkworth 2008). Despite the widely 

accepted definition of VH in clinical practice, its etiology 
is poorly understood (Hillman et al. 2020). Vocal hyper-
function is delineated into phonotraumatic (PVH) and non-
phonotraumatic (NPVH) subclasses, with the former being 
a hyperfunctional response due to trauma-induced swelling 
and structural pathology development (Hillman et al. 2020). 
Whether an initial hyperfunctional response develops into 
persistent PVH depends on whether normal spontaneous 
recovery of vocal function occurs or if the initial hyper-
functional response results in compensatory adjustments that 
elicit a further hyperfunctional response. The latter ‘vicious 
cycle’ eventually results in development of phonotraumatic 
lesions and persistent PVH (Hillman et al. 2020).

During swelling, fluid accumulates in the tissues resulting 
in changes in vocal fold (VF) shape and local tissue proper-
ties (Yang et al. 2017a), which alters their biomechanics. 
In addition to the role of swelling in hyperfunctional voice 
disorder development, swelling could also play a role in the 
apparent benefits of vocal warm up exercises. Vocal warm 
up exercises are thought to prevent vocal fatigue, decrease 
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phonatory effort, improve voice quality, and potentially pre-
vent injury (Elliot et al. 1995; Milbrath and Solomon 2003; 
Vintturi et al. 2001). Since minor swelling is one effect of 
voice usage, it could be a factor in the hypothesized benefits 
of vocal warm up on injury and vocal fatigue.

Swelling and fluid transport in biological tissues, includ-
ing the VFs, is governed by Starling’s equation (Starling 
1896; Gou and Pence 2016), which relates flow across the 
capillaries into the tissue interstitial space to driving hydro-
static and osmotic pressure gradients. Swelling is induced 
when flow into the interstitial region exceeds the normal 
drainage rate (Gou and Pence 2016), although the specific 
mechanism that causes this increased movement of fluid var-
ies depending on the triggering issue (Mortimer and Lev-
ick 2004). In cases of inflammation (which could be caused 
by a variety of factors from tissue mechanical damage to 
infection), for example, increased capillary permeability 
and capillary pressure contribute to increased flow from 
the capillaries (Mortimer and Levick 2004). For VFs, this 
could be caused by phonation-induced trauma, as shown 
by Verdolini et al. (2003), who found shifts in biochemical 
markers associated with inflammation in VF secretions after 
vocal loading. Czerwonka et al. (2008) proposed vibration-
induced increases in capillary pressure as a potential trigger 
of inflammation and edema.

To the best of our knowledge, VF swelling and its 
impact on VF kinematics and kinetics has not been previ-
ously considered from the modeling perspective. However, 
stress-induced fluid flux in the VFs, associated with sys-
temic hydration, has been considered. Zhang et al. (2008) 
employed a biphasic model to explore the influence of 
internal fluid flux on the viscoelastic behaviors of the VFs. 
They found that the biphasic model qualitatively captured 
stress–relaxation behavior of the VFs seen in previous exper-
iments (Zhang et al. 2008), thus demonstrating the impor-
tance of hydration on the dynamics of the VFs. Bhattacha-
rya and Siegmund (2014) used a single phase (solid) VF 
model with viscoelastic parameters derived from biphasic 
theory to predict fluid motion within the VFs. They found 
that collision-free phonation tends to cause increasing hydra-
tion because simulated flow velocities predicted an influx 
of fluid. However, fluid influx was only predicted as a post-
processing step and did not affect the VF motion; that is, no 
swelling occurred. Erath et al. (2017) developed a simplified 
one-dimensional model of viscous damping to investigate 
the impact of hydration on viscous dissipation and collision 
pressures. They found that collision pressure was influenced 
by both tissue elasticity and interstitial fluid viscosity with a 
specific combination of elasticity and fluid damping result-
ing in minimal collision pressure. Wu and Zhang (2017) 
used a one-way coupled poroelastic/biphasic model where 
the VF motion was imposed a priori to drive internal fluid 
motion (fluid motion did not affect the solid motion so no 

swelling occurred) coupled with fluid transport at the medial 
surface and lateral boundary. Using this model, they found 
that loud phonation conditions (large amplitude motions) 
could induce systemic dehydration. Recently, Wu and Zhang 
(2022) investigated the effect of hydration-induced stiffness 
changes, based on the dehydration predicted in (Wu and 
Zhang 2017), on the dynamics of a self-oscillating VF model 
interacting with a glottal flow. While dehydration influenced 
the stiffness in their model, no changes in volume were con-
sidered. They found that dehydration levels impacted VF 
dynamics, albeit for high levels of dehydration.

Whereas these prior studies have demonstrated that intra-
VF fluid flux can influence VF dynamics, they have focused 
solely on fluid redistribution or identified the conditions that 
would promote swelling as a post-processing step, and thus 
did not consider the impact of swelling itself. Swelling, on 
the other hand, results in a change in the total fluid volume 
within the VFs, which can change both soft tissue properties 
and total volume (Gou and Pence 2016), thus influencing 
structural pathology development. To study swelling in other 
soft tissues, past works have proposed models to capture 
changes in material properties and shape associated with 
the fluid accumulation. Triphasic models, comprising a solid 
extracellular matrix phase, an interstitial fluid phase, and 
a chemical species phase, have been proposed to describe 
osmotically driven swelling in cartilage (Lai et al. 1991). 
Specifically, changes in the concentration of the chemical 
species alters osmotic pressure, which can drive fluid flow 
into the interstitia (Wilson et al. 2005). Triphasic models 
are computationally expensive, however, making it difficult 
to model complex problems with large geometries (Wilson 
et al. 2005). An alternative approach suitable for modeling 
soft tissue swelling was introduced by Tsai et al. (2004), 
Pence and Tsai (2005a), and Pence and Tsai (2005b). In 
this approach, a swelling field is prescribed as a parameter 
that modifies a hyperelastic constitutive equation to produce 
swelling-induced changes in tissue properties. This strategy 
has been used to study angioedema (Gou and Pence 2016), 
cervical swelling (Gou et al. 2020), as well as the combined 
effects of tissue swelling and remodeling (Topol et al. 2018).

While modeling the formation of structural pathologies 
(e.g., nodules and polyps) in PVH requires knowledge of the 
mechanics driving localized swelling, herein we consider 
generalized VF swelling and its impact on vocal perfor-
mance and damage measures. We posit that small amounts 
of swelling could trigger a hyperfunctional response that 
can lead to a vicious cycle of PVH, wherein modified VF 
dynamics from initial swelling leads to further swelling, and 
ultimately persistent PVH. We also consider the potential 
role of VF swelling in vocal warm up as a mechanism to 
prevent injury. We restrict swelling to the lamina propria as 
swelling in this region is commonly observed in the initial 
stages of voice usage (Bastian et al. 1990).
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The remainder of the paper is organized as follows: 
Sect. 2 discusses the model setup, study design, and swell-
ing model implementation; further details on the derivation 
of the swelling model are given in Appendix A. Section 3 
presents the simulation results. Section 4 discusses the sig-
nificance of the results, analyzes why swelling leads to the 
observed results, and discusses study limitations. Finally, 
Sect. 5 summarizes salient findings from this work.

2  Methodology

Herein we consider a two-dimensional (2D) representation 
of the VFs, as shown in Fig. 1, discretized with the finite-ele-
ment method (FEM), which has been shown to compare well 
with experimental silicone VF studies (Hadwin et al. 2019). 
The VF geometry is based upon the M5 model (Scherer 
et  al. 2001) (note the VF thickness is 5 mm, which is 
shorter than the physical model shown in (Scherer et al. 
2001)) and left-right symmetry is assumed, such that only 
one VF needs to be considered. The internal VF structure 
is divided into body, cover, and epithelium layers (Hirano 
1974), each with distinct nominal Young’s moduli given by 
Ebody , Ecover , and Eepi , respectively. This subscript conven-
tion is used throughout the remainder of the manuscript. 
All layers share the same nominal density �vf . The internal 
VF domain is denoted Ω with boundary �Ω . The body and 
cover domains are denoted Ωbody and Ωcover , respectively, 
such that Ω = Ωbody ∪ Ωcover . The epithelium is treated as a 
membrane and thus has zero area (Deng and Peterson 2022).

A Cartesian coordinate system for the reference configura-
tion, X ∈ R

2 , is defined with origin on the tracheal wall at the 
inferior margin of the VF as shown in Fig. 1. An additional 

surface coordinate, s ∈ R , is defined along the VF bound-
ary that is contact with the fluid, denoted as �Ωmed (note, 
this corresponds to the surface comprising the epithelium 
membrane). The fixed (Dirichlet) VF boundary region at 
the interface with the tracheal wall is denoted �Ωdir such that 
�Ω = �Ωdir ∪ �Ωmed.

Aerodynamic loading on the VF assumes the driving flow 
to be inviscid, incompressible, quasi-steady, and one-dimen-
sional (1D) such that Bernoulli’s equation can be computed 
along the centerline streamline then imposed upon the VF sur-
face. The influence of acoustic loading on the VF dynamics is 
assumed negligible, i.e., only level 1 interactions (Titze 2008) 
are considered.

Models for the glottal flow and VFs were chosen as a bal-
ance of fidelity and computational simplicity, to make para-
metric studies feasible with available resources. A 2D model, 
while it will not capture 3D effects, has been shown to com-
pare well with experimental silicone VF studies (Hadwin 
et al. 2019) and likely is applicable to situations with long 
VFs where the plane-strain assumption approximately applies. 
Similarly, 1D models of the glottal flow are computationally 
simple but compare qualitatively well with more complicated 
2D Navier–Stokes-based models (Decker and Thomson 2007). 
These simplifications were considered reasonable since the 
focus of our study is to determine if general effects of swell-
ing can trigger a vicious cycle, rather than to make accurate 
quantitative predictions.

2.1  Finite‑element formulation

Let the reference configuration (Fig. 1) with coordinates X cor-
respond to the unswollen, unstressed state of the VFs. While 
deformations of the VFs are normally small enough to justify 
the small-strain assumption, the constitutive model for swell-
ing (described in detail in Appendix A) results in prestress for 
the material constitutive response in the reference configura-
tion, which invalidates the small-strain assumption. As a result, 
we assume large deformations for the material strain energy 
(which includes the effect of swelling) and small deforma-
tions for remaining terms; the weak form of conservation of 
linear momentum for the solid domain Ω then follows from 
the principle of virtual work, see Bathe (2006, Chapter 4 and 
Chapter 6) for example. In the present case, this yields

where V(Ω) is the space of scalar piece-wise linear func-
tions over a triangular mesh (shown in Fig. 1) equal to 0 

(1)

∫Ω

𝜌(v)ü ⋅ 𝛿u + S(E, v) ∶ 𝛿E + 𝜂�̇ ∶ 𝛿� dX

+ ∫
𝜕Ωmed

�epi ∶ 𝛿�epidepi ds

= ∫
𝜕Ωmed

t ⋅ 𝛿u ds for all 𝛿u ∈ V
2(Ω),

body

cover

epithelium/

symmetry plane/1D fluid domain
contact plane

Fig. 1  Schematic of the vocal fold geometry in the reference con-
figuration with representative finite-element discretization. Two finite 
thickness layers are indicated by ‘body’ and ‘cover,’ whereas the ‘epi-
thelium’ layer is treated as a membrane (infinitesimally thin) along 
the surface �Ωmed . Material coordinates X = (X,Y) and s indicate 2D 
coordinates and medial surface/1D fluid domain coordinates, respec-
tively; i denotes nodal indices along the medial surface. The glottal 
area is denoted by A (half the glottal area is shown due to symmetry)
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on �Ωdir , u, u̇, ü ∈ V
2(Ω) are the displacement, velocity, 

and acceleration vectors, respectively, and �u ∈ V
2(Ω) is a 

virtual displacement. Strain tensors E = 1∕2(FT
F − I ) and 

� = 1∕2(F + F
T ) − I are the Green strain and the small-

strain tensor, respectively, where F = �u∕�X + I is the 
deformation gradient. Similarly, virtual strains are given by 
�E = 1∕2

(
�FT

F + F
T�F

)
 and �� = 1∕2(�F + �FT ) , where 

�F = ��u∕�X is the virtual deformation gradient. The corre-
sponding stress tensors are the second Piola–Kirchhoff stress 
tensor, S , and the Cauchy stress tensor, �.

The strain energy terms ∫
Ω
S(E, v) ∶ 𝛿E + 𝜂�̇ ∶ 𝛿� dX are 

based on an ad hoc modification of the Kelvin–Voigt model 
to account for swelling. The classical Kelvin–Voigt model 
gives the Cauchy stress as � = K� + 𝜂�̇ (Fung 1993; Zheng 
et al. 2010), where K� is the elastic stress and K is the elas-
ticity tensor, and 𝜂�̇ is the viscous stress and � is the viscos-
ity. Using the approach developed in (Tsai et al. 2004; Pence 
and Tsai 2005a; Gou and Pence 2016), swelling is modeled 
for hyperelastic materials by modifying the hyperelastic con-
stitutive equation. As a result, we replace the elastic stress 
in the Kelvin–Voigt model by a hyperelastic material stress 
with swelling effects while keeping the unmodified viscous 
term, resulting in

where S(E, v) is dependent on the swelling field, v , and 
Green strain, E , through the swelling constitutive equation 
introduced in Sect. 2.2. Note v = 1 implies no swelling (no 
volume change), while v = 1.2 represents a 20 % increase 
in the free volume (volume with no external loading). In 
the virtual work statement, the viscous stress is a Cauchy 
stress work-conjugate with the virtual small strain, while the 
hyperelastic stress is a second Piola–Kirchhoff stress work-
conjugate with the virtual Green strain (Gurtin et al. 2010).

The material density � in Eq. (1) requires special consid-
eration in the case of swelling. Since swelling introduces 
additional mass into the system, � is given by

where �0 is again the nominal density in the absence of 
swelling (that is, at v = 1 ) and �v is the density of the incom-
ing material causing the swelling, which is assumed to be 
water. Per unit volume in the reference configuration, the 
first term of Eq. (2) represents the original mass of material 
and the second term represents the additional mass due to 
the influx of fluid with swelling. Note that Eq. (2) consid-
ers density in the reference configuration; the density in the 
deformed configuration will be approximately �0 as the VF 
volume will increase with swelling.

The first three terms in the first integral of Eq. (1) repre-
sent the virtual work due to inertial forces, material strain 
energy, and viscous effects. The second integral term in 

𝜎 = (detF)−1FS(E, v)F⊤ + 𝜂�̇,

(2)� = �0 + (v − 1)�v,

Eq. (1) represents the strain energy contribution due to an 
epithelium over the medial surface, where �epi and �epi are 
the membrane stress and strain tensors, respectively (Hansbo 
and Larson 2014; Deng and Peterson 2022). A separate epi-
thelium was included because past studies found the epi-
thelium to significantly influence VF dynamics (Murray 
and Thomson 2012; Xuan and Zhang 2014; Tse et al. 2015; 
Hadwin et al. 2021; Deng and Peterson 2022); furthermore, 
the epithelium herein acts as an outer barrier that constrains 
internal swelling, thus affecting the shape of the swollen 
material. The third term in Eq. (1) represents the surface 
traction on �Ωmed due to aerodynamic loading and VF colli-
sion. In this term, t represents the surface traction, which is 
discussed in further detail in Sect. 2.3.

2.2  Swelling‑generalized constitutive equation

Following the approach laid out in Tsai et al. (2004), Pence 
and Tsai (2005a), Gou and Pence (2016), the constitutive 
equation employed herein is based on a generalized form 
for a hyperelastic material. Briefly, the generalized form for 
swelling of a hyperelastic material with strain energy func-
tion �(F) is given by �̄�(F, v) = m(v)𝜓(v−1∕3F) , where �̄� is 
the swelling-generalized strain energy, and m is a monotonic 
scalar function satisfying m(1) = 1 (Tsai et al. 2004, Equa-
tion 3). In the modified strain energy, m̄(v) = m∕v controls 
the change in stiffness of the swollen material (see Appen-
dix A), where its slope governs whether the material stiff-
ness increases or decreases with swelling; if, for example, 
m̄� = dm̄∕dv < 0 , modulus softening of the swollen material 
occurs (Pence and Tsai 2005a; Gou et al. 2020). For a Saint 
Venant–Kirchhoff material, this results in

where E and � are Young’s modulus and Poisson’s ratio, 
respectively. The term 

(
m̄�(v − 1) + 1

)
 represents the lin-

earized effect of m̄(v) about v = 1 . The swelling-modified 
Green strain tensor, Ē , contains an additional strain term 
1∕2(v−2∕3 − 1)I that creates a hydrostatic pressure that 
results in the swelling (see Appendix A).

2.3  Fluid and contact models

The surface traction t results from fluid pressures based 
on the Bernoulli equation and contact (Deng and Peterson 
2022). Contact was modeled by a penalty method (Wriggers 
2006) and the collision pressure is given by

(3)

S =
(
m̄�(v − 1) + 1

)
v1∕3

(
E𝜈

(1 + 𝜈)(1 − 2𝜈)
(Tr Ē)I +

E

1 + 𝜈
Ē

)
,

Ē =
1

2
(F̄

⊤
F̄ − I) = v−2∕3E +

1

2
(v−2∕3 − 1)I,



1877The effect of swelling on vocal fold kinematics and dynamics  

1 3

where kc is the contact spring stiffness and g is the contact 
gap. Note that the term max{g(X), 0} ensures that the contact 
gap is positive when the VFs are contacting and 0 otherwise. 
A cubic contact spring is employed to ensure continuity of 
first and second derivatives of pc at contact.

The Bernoulli equation is given by

where p is pressure, q is flow rate, �air is the air density, rsep 
is the separation area ratio, and A is the cross-sectional area 
of the glottis (see Fig. 1). Subscripts ‘sep’ and ‘sub’ denote 
quantities at the separation point and subglottal region, 
respectively. Areas Amin and Alb represent the minimum 
glottal area and a lower bound on the glottal area function. 
Specifically, Alb is used to define a ‘safe’ area (Anderson 
et al. 2013), which is employed in practice to prevent nega-
tive areas that can occur from the penalty contact method. 
As a result, instead of A(s) in Eq. (6), the safe area

is used.
The final surface traction term is then due to both con-

tact and fluid pressures and is given by

where nc is the contact normal. Due to left-right symme-
try of the VFs, the contact normal is constant and given by 
nc = (0, 1).

2.4  Numerical solution

To integrate Eq. (1) in time, we used the Newmark-beta 
method (Newmark 1962) to approximate u̇, ü at time step 
n + 1 using

(4)pc = kc

(
max{g(X), 0}

2

)3

,

(5)g(X) = Y − Yc,

(6)

p(si) =

{
psub +

𝜌air

2
q2
(

1

A2
sub

−
1

A(si)
2

)
s < ssep

psep s ≥ ssep

q2 =
2

𝜌air

(
1

A2
sep

−
1

A2
sub

)−1

(psub − psep)

Asep = rsepAmin

Amin = min
si

A(si)

A(si) = max{2(yi − Yc),Alb},

(7)Asafe(s) =

{
A(s) A(s) > Alb

Alb A(s) ≤ Alb

,

(8)t = −p detFF−⊤
n − pcnc,

where superscripts n denote time indices (for example, 
ü
n = ü(X, tn) ), � = 1∕2 and � = 1∕4 were chosen for stabil-

ity, and Δt = 1.25 × 10−5s . The choice of Δt and mesh size 
were based on an independence study described in Appen-
dix B. Substituting Eqs. (9) and (10) into Eq. (1) yields a 
set of recursive relations for the state un+1, u̇n+1, ün+1 from 
known conditions at n. The initial state n = 0 is set as the 
static equilibrium state from Eq. (1) without external loads 
(no Bernoulli pressure) but with swelling. External loads are 
applied for all remaining time steps. The system of equations 
was solved using the FEniCS library (Logg and Wells 2010; 
Logg et al. 2012).

A  pa ramet r i c  s tudy  over  va r y ing  swe l l -
i n g  v a l u e s  v = 1.0, 1.05,… , 1.25, 1.3  a n d 
m̄� = 0.0,−0.4,−0.8,−1.2,−1.6 was performed. The range 
of swelling parameter, v , was chosen based on an extreme 
level of systemic dehydration for children of 10 % (Friedman 
et al. 2004; King et al. 2018); since local hydration changes 
are likely larger than systemic levels, a maximum swelling 
level of 30 % was employed. Swelling was restricted to the 
cover layer based upon clinical observations which found 
fluid retention primarily occurred in the superficial lamina 
propria (Bastian et al. 1990). Swelling-induced stiffness 
change, m̄′ , was chosen based on the study by Yang et al. 
(2017b) where they measured force–displacement curves as 
a function of dehydration. Equation (3) implies a 1D modu-
lus for a uniaxial stress test of k(v) = (m̄�(v − 1) + 1)E so 
that k(v)∕k(1) = m̄�(v − 1) + 1 , where k(v) denotes the 1D 
modulus for swelling level v . Rearranging yields

Using 1D modulus values from  Yang et al. (2017b, Tables 2 
and 3), we computed m̄′ according to different values of 
k(v) formed from the average of reported loading/unload-
ing modulus values. Dehydration levels were converted to 
swelling levels assuming an initial water content by vol-
ume of 80 %. Over the varying dehydration/swelling levels, 
we found swelling-induced stiffness change varied from 
m̄� ≈ −0.4 to − 1.6 (with more negative values at higher 
dehydration), so values from 0.0 to−1.6 centered around a 
nominal value of −0.8 were chosen.

All remaining model parameters were fixed and chosen 
based on past studies and experimental values, as summa-
rized in Table 1. Elastic moduli were chosen based on values 
used in Alipour-Haghighi et al. (2000), Chhetri et al. (2011), 

(9)

u̇
n+1 =

�

�Δt
(un+1 − u

n) −

(
�

�
− 1

)
u̇
n − Δtün

(
�

2�
− 1

)

(10)ü
n+1 =

1

�Δt2
(un+1 − u

n − Δtu̇n) −

(
1

2�
− 1

)
ü
n

(11)m̄� ≈

(
k(v)

k(1)
− 1

)
(v − 1)−1.
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Miri (2014) and Poisson’s ratio � was chosen to model near 
incompressibility while avoiding numerical instability due 
to volumetric locking (Bathe 2006, Section 4.4.3). Epithe-
lium properties were chosen based on previous experimen-
tal studies (Hirano and Kakita 1985; Tse et al. 2015). The 
contact spring value was chosen to balance minimizing the 
contact overlap while preventing ill-conditioning of the 
stiffness matrix (Wriggers 2006). Subglottal and separation 
pressures were chosen based on physiological ranges during 
speech (Zhang 2016), and rsep = 1.2 was chosen based on 
usage in past studies (Decker and Thomson 2007; Hadwin 
et al. 2021).

3  Results

In this section, we present results for static parameters (vol-
ume and VF geometry changes induced by swelling), acous-
tic and kinematic outputs (fundamental frequency, SPL , and 
glottal width amplitude), and measures of VF damage (von 
Mises stress, viscous dissipation rate, and collision pres-
sure) for varying levels of swelling and swelling-induced 
stiffness change. We also present results showing the impact 
of separate swelling-induced effects, specifically, swelling-
induced mass, stiffness, and prephonatory gap changes, on 
the measures of VF damage.

3.1  Static parameters

We first consider the influence of swelling on the shape and 
mass of the VF without external fluid loading (expansion 
under swelling only). Generalized swelling throughout the 
cover was considered to represent phonotraumatic damage 

distributed throughout the cover after normal voice usage as 
seen in experimental studies (Bastian et al. 1990). Figure 2 
compares the nominal VF geometry with that of a VF with 
30% swelling in the cover layer ( v = 1.30 ) and swelling-
induced relaxation ( m̄� = −0.8 ). Swelling leads to an out-
wards expansion of the medial surface due to the increase in 
volume of the cover layer. The remainder of the cover layer 
also experiences swelling, though to a lesser degree due to 
the fixed constraint at the intersection with �Ωdir . The body 
layer remains nearly fixed when swelling occurs except for 
a slight expansion adjacent to the medial surface that arises 
because of the expansion of the cover.

The increase in VF volume with swelling is shown quan-
titatively in Fig. 3. The actual volume increase is smaller 
than the prescribed swelling (close to 20 % for 30 % swell-
ing) due to the action of external forces on the cover layer 
and the slight compressibility of the cover. The correspond-
ing mass increase is linearly related to the prescribed swell-
ing based on the linear relationship given in Eq. (2).

Table 1  Summary of fixed model parameter values

Parameter Value

�0, �v 1 g∕cm3

Ecover 2.5 kPa
Ebody 5.0 kPa
Eepi 50 kPa
�, �epi 0.4
� 5 P
depi 50 µm
Ymid 0.53 cm (see Fig. 1)
Yc 0.525 cm (see Fig. 1)
kc 1 × 1015 Pa∕cm3

psub 300 Pa
psep 0 Pa
rsep 1.2
�air 1.2 × 10−3 g∕cm3

Alb 2(Ymid − Yc)
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Fig. 2  Vocal fold geometry for the swollen ( v = 1.3 , dash-dotted 
lines) and original ( v = 1.0 , solid lines) states for intermediate swell-
ing-induced softening ( m̄� = −0.8 ). Displacements due to swelling 
are exaggerated by two times for clarity
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Fig. 3  Vocal fold cover volume as a function of swelling level, v , 
for intermediate swelling-induced softening ( m̄� = −0.8 ). The left 
abscissa shows the absolute cover volume (solid line). The right 
abscissa shows the change in cover volume relative to the initial cover 
volume (dotted line) and the cover volume relative to the total vocal 
fold volume (dash-dotted line)
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3.2  Acoustic and kinematic outputs

Figure 4 presents the effect of swelling on kinematic and 
acoustic outputs. To compute the effect of swelling on 
fundamental frequency ( fo ), we detect peaks of the glottal 
width waveform ( Amin(t) ) and measure the average period 
between peaks. To compute SPL , we use the flow rate [ q(t) 
from Eq. (6)] and the piston-in-baffle approximation (Kinsler 
et al. 2000, Section 7.4) at 1 m; this model gives the radiated 
pressure from an idealized piston sound source. The drop in 
frequency is about 10 Hz while the reduction in SPL is about 
0.5 dB over the range v = 1.0 to 1.3 . A small increase in SPL 
is present for small amounts of swelling despite consistently 
decreasing amplitudes of motion (Fig. 4) likely due to slight 
changes in the frequency content of harmonics. Both SPL 
and fo also vary with swelling-induced stiffness change ( m̄′ ). 
Greater swelling-induced softening corresponds to larger fo 
and SPL decreases for the same level of swelling.

3.3  Vocal fold damage measures

We consider three candidate metrics to assess potential VF 
damage (phonotrauma), namely von Mises stress, viscous 
dissipation, and collision pressure, defined as follows. The 
von Mises stress is given by �vm =

√
3∕2�dev ∶ �dev , where 

�dev = � − 1∕3(Tr�)I is the deviatoric part of the Cauchy 
stress. Spatial fields of viscous dissipation are defined by 

wvisc = 𝜂�̇ ∶ �̇ and spatial fields of collision pressure, pc , 
are given in Eq. (4).

To quantitatively compare these spatially and temporally 
varying variables, we compute the spatial and temporal 
averages as follows. For a function f (X, t) (representing von 
Mises stress or viscous dissipation), the spatiotemporal aver-
age and temporal average, denoted by f̂  and f̃  , respectively, 
are defined as

where the time integration limits of (0.25, 0.5) represent the 
last half of the time series.

In the case of contact quantities, we compute similar aver-
ages but only count instances where contact occurs. These 
averages are given by

where H is the Heaviside step function and g(s, t) is the 
contact gap from Eq. (4); note H(g(s, t)) is 1 when contact 
occurs and is 0 otherwise.

Figure 5 shows time-averaged von Mises stress fields 
( ̃𝜎vm ) for the no-swelling condition (first column) and as 
differences relative to the no-swelling condition as swelling 
increases (subsequent columns). In the inferior portion of 
the cover layer, increasing swelling causes a slight decrease 
in the von Mises stress (for example, v = 1.10, m̄� = −0.8 ) 
although this decrease is less severe at higher swelling lev-
els. In the medial and superior portions of the cover layer, 
increasing swelling consistently increases the von Mises 
stress. Within the body, increasing swelling causes minimal 
changes. Greater swelling-induced softening (negative m̄′ ) 
tends to mitigate increases in von Mises stress at higher lev-
els of swelling (see, for example, v = 1.30 for the different 
m̄′ values).

Figure 6 summarizes the spatiotemporally averaged 
trends of von Mises stress ( ̂𝜎vm ). Mean von Mises stress 
initially drops with increase in swelling ( v ) due to the 
decrease in von Mises stress in the inferior part of the 
cover. This is followed by a more substantial rise with fur-
ther increases in swelling due to the effects of increasing 

(12)f̂ = avg
X,t

f (X, t) =
∫ 0.5

0.25
∫
Ωcover

f (X, t) dXdt

∫ 0.5

0.25
∫
Ωcover

dXdt
,

(13)f̃ = avg
t

f (X, t) =
∫ 0.5

0.25
f (X, t) dt

∫ 0.5

0.25
dt

,

(14)f̂ = avg
s,t

f (s, t) =
∫ 0.5

0.25
∫
𝜕Ωmed

H(g(s, t))f (s, t) dsdt

∫ 0.5

0.25
∫
𝜕Ωmed

H(g(s, t)) dsdt
,

(15)f̃ = avg
t

f (s, t) =
∫ 0.5

0.25
H(g(s, t))f (s, t) dt

∫ 0.5

0.25
H(g(s, t)) dt

,

Fig. 4  Fundamental frequency ( fo ), SPL at 1  m, and glottal width 
waveform amplitude as a function of swelling level ( v ) and swelling-
induced stiffness change ( m̄′ ). The right abscissa shows the percent 
change from the initial value
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von Mises stress in the superior and medial parts of the 
cover. As seen in Fig. 5, greater swelling-induced soften-
ing tends to mitigate the rise in von Mises stress induced 
by swelling; for the greatest swelling-induced soften-
ing ( m̄� = −1.6 ), this effect is strong enough to slightly 
decrease von Mises stress for all swelling conditions.

Figure 7 presents time-averaged viscous dissipation 
fields ( w̃visc ) for the no-swelling condition (first column) 
and as differences compared to the no-swelling condi-
tion (subsequent columns). Greater degrees of swelling 
increases viscous dissipation in the cover, which tends 
to be concentrated within the medial region of the cover 
where contact occurs. Greater swelling-induced softening 
(negative m̄′ ) also results in increased viscous dissipation 
for the same level of swelling.

Analogous to Figs. 6,  8 shows the spatiotemporally 
averaged viscous dissipation rate in the cover ( ŵvisc ). 
Clearly, viscous dissipation is affected by both swelling 
magnitude ( v ) and swelling-induced stiffness change ( m̄′ ). 
Greater swelling and/or swelling-induced softening both 
result in increased viscous dissipation.

Fig. 5  Time-averaged (over the last 0.25  s) von Mises stress fields 
( ̃𝜎vm ) as a function of swelling level ( v ) and swelling-induced stiff-
ness change ( m̄′ ). The first column shows the absolute von Mises 

stress while the remaining columns show changes in von Mises stress 
relative to the no-swelling condition (first column v = 1 ). Regions 
with Δ�̃�vm = 0 are indicated by a solid dark contour for clarity

Fig. 6  Spatiotemporally averaged von Mises stress in the cover ( ̂𝜎vm ) 
as a function of swelling level ( v ) and swelling-induced stiffness 
change ( m̄′ ). The right abscissa shows the percent change from the 
initial value
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Figure 9 shows the time averaged collision pressure dur-
ing VF collision ( p̃c ). As swelling increases, so does col-
lision pressure and contact area. Greater swelling-induced 
softening (negative m̄′ ) reduces the magnitude of collision 
pressure and slightly reduces the contact area.

Figure  10 illustrates the temporal and spatial statis-
tics of contact quantities over the contacting duration and 
areas. For the spatiotemporally averaged collision pressure 
( p̂c ), Fig. 10 shows that increasing swelling ( v ) generally 
increases collision pressure (both average and maximum), 
except for a small dip in spatiotemporally averaged contact 
pressure for slight swelling ( v = 1.1 ), which is exacerbated 
with increase in swelling-induced softening ( m̄′ ). In gen-
eral, greater swelling-induced softening ( m̄′ ) reduces the 
increase in collision pressure with swelling. Contact area 
( Ãc ) is similarly affected with more swelling, leading to 
larger contact areas. Swelling-induced stiffness change has 
a small mediating effect where greater softening results in a 
slightly smaller contact areas.

3.4  Isolating the impact of swelling‑induced effects 
on damage measures

In this section, we aim to isolate the influence of various 
swelling-induced effects on VF damage measures. Specifi-
cally, we decompose swelling into four constituent effects; 
namely, swelling-induced changes in: 

Fig. 7  Time-averaged viscous dissipation rate fields ( ̃wvisc ) as a func-
tion of swelling level ( v ) and swelling-induced stiffness change ( m̄′ ). 
The first column shows absolute values of viscous dissipation rate; 

subsequent columns to the right show changes relative to the first col-
umn. Solid line contours indicate zero viscous dissipation change for 
clarity

Fig. 8  Spatiotemporally averaged viscous dissipation rate in the cover 
( ̂wvisc ) as a function of swelling level ( v ) and swelling-induced stiff-
ness change ( m̄′ ). The right abscissa shows the percent change from 
the initial value



1882 J. J. Deng et al.

1 3

1. mass, arising from Eq. (2),
2. stiffness, arising from the term 

(
m̄�(v − 1) + 1

)
 in Eq. (3)

3. VF geometry from the hydrostatic pressure generated by 
the swelling-modified Green strain ( Ē ) in Eq. (3), and

4. prephonatory gap (the minimum distance between the 
symmetry plane and VF surface in Fig. 1); the gap 

change is related to the static deformation from swell-
ing and a fixed symmetry plane.

To explore the isolated effects of swelling-induced changes 
in mass, stiffness, and prephonatory gap, we conducted sim-
ulations wherein the chosen parameters was held constant. 
For mass, this was accomplished by leaving the density 
constant; for stiffness this coincides with setting m̄� = 0 ; for 
the gap change this involves shifting the symmetry plane 
( Ymid in Table 1) to ensure the prephonatory gap remains 
fixed. To examine the effect of VF geometry change, we 
removed the other effects (mass, stiffness, and prephonatory 
gap change) and observed how the damage quantity changed 
with increase in swelling (which induced a VF geometry 
change). This was made possible because when these three 
effects are removed, only the swelling-induced VF geometry 
change effect remains. By then comparing against results 
with all influences included, the impact of the selected com-
ponent could be assessed.

Figure 11 shows that each damage measure is affected by 
different swelling-induced changes. Spatiotemporally aver-
aged von Mises stress ( ̂𝜎vm ) is primarily affected by swell-
ing-induced VF geometry changes and stiffness changes 
( m̄′ ), as seen in Fig. 11 since the ‘no stiffness change’ trend 
differs significantly from the ‘all swelling effects’ trend. 
When only the VF geometry change effect is present (‘no 
stiffness, mass, or gap change’) von Mises stress increases 
with swelling ( v ), thus showing the effect of swelling-
induced VF geometry change on von Mises stress. Swell-
ing-induced mass, stiffness, and prephonatory gap all tend 
to increase spatiotemporally averaged viscous dissipation 
( ̂wvisc ). Removing these three effects (‘no stiffness, mass, or 
gap change’) results in little variation of viscous dissipation 
with swelling, indicating that swelling-induced VF geom-
etry changes have little impact. Swelling-induced softening 
(the ‘no stiffness change’ trend is above the ‘all swelling 
effects’ trend) tends to decrease spatiotemporally averaged 
collision pressure ( p̂c ), whereas swelling-induced mass and 

Fig. 9  Time-averaged (over the contacting duration) collision pressure distributions ( p̃c ) as a function of swelling level ( v ) and swelling-induced 
stiffness change ( m̄′)

Fig. 10  Statistics of contact quantities over the contacting duration 
and area consisting of a) spatiotemporally averaged collision pres-
sure ( p̂c ), b) maximum collision pressure, and c) time-averaged con-
tact area ( Ãc ) as a function of swelling level ( v ) and swelling-induced 
stiffness change ( m̄′ ). In each case, the right abscissa shows the per-
cent change from the initial value
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gap changes tend to increase collision pressure (the ‘no mass 
change’ and ‘no gap change’ trends are below the ‘all swell-
ing effects’ trends). When these three effects are removed 
collision pressures vary only slightly with swelling, again 
indicating that swelling-induced VF geometry change has 
little effect.

4  Discussion

As expected, swelling clearly alters the shape and mass of 
the VFs. Mass change follows the linear relationship pre-
scribed in Eq. (2). For the volume change, the medial surface 
predictably bulges outwards (Fig. 2); furthermore, because 
the body layer does not swell, the expansion of the cover 
layer also slightly expands the body by pulling it outwards. 
The slight expansion of the body layer is a result of the small 
but nonzero compressibility of the system.

As seen in Fig. 4, fundamental frequency ( fo ) decreases 
with increase in swelling ( v ) and swelling-induced softening 

( m̄′ ). Considering a spring–mass–damper analogy for the 
VF, swelling increases mass and decreases stiffness, both of 
which reduce frequency. Swelling-induced softening results 
in a larger stiffness reduction for the same degree of swell-
ing, leading to a drop in fundamental frequency. Swelling 
has a small effect on SPL , where increasing swelling and/or 
swelling-induced softening tends to reduce SPL . We hypoth-
esize this is due in part to the reduced prephonatory gap 
with swelling due to the bulging cover. Reduced prephona-
tory gap is associated with diminished vibration amplitudes 
(Fig. 4), leading to smaller flow rate waveform amplitudes 
and thus SPL . The changes in SPL were on the order of 
0.5 dB, however, which is likely insignificant considering 
variations in SPL for a speaker between utterances have been 
measured at over 1 dB (Holmberg et al. 1994). The observed 
changes in SPL and fo herein are qualitatively similar to 
changes in these quantities found in a recent study explor-
ing the effect of dehydration-induced stiffness changes (Wu 
and Zhang 2022) (the reverse of swelling-induced softening 
studied herein) of 8.6 Hz and −0.4 dB , respectively, at 10 % 
systemic dehydration.

4.1  Damage measures

Swelling has differing effects on the various damage meas-
ures explored herein, with some showing propitious effects 
of swelling and others exhibiting detrimental trends, depend-
ing on the degree of swelling. As swelling increases, von 
Mises stress in the cover ( ̃𝜎vm ) is affected differently depend-
ing on the region. In the medial and superior parts of the 
cover, increased swelling consistently increased von Mises 
stress (Fig. 5), while in the inferior portion of the cover it 
experienced a slight decrease. The spatiotemporal average 
of von Mises stress over the cover ( ̂𝜎vm shown in Fig. 6) 
exhibits a slight decrease with low degrees of swelling fol-
lowed by a rapid rise as swelling increases further. Simi-
larly, average contact pressure ( p̂c seen in Fig. 10a), though 
increasing initially with swelling, exhibits a plateau over 
a range of modest swelling. That is modest swelling may 
be beneficial, at least in terms of these particular damage 
measures, which is aligned with the clinical impression of 
the protective benefits of vocal warm up exercises in miti-
gating vocal fatigue and potentially vocal injury (Milbrath 
and Solomon 2003). In contrast, spatiotemporally averaged 
viscous dissipation ( ̂wvisc ) and maximum collision pressure 
(Figs. 8 and 10b, respectively) both exhibited detrimental 
effects with swelling.

The selected damage measures are primarily affected 
by different aspects of swelling (see Fig. 11) likely due to 
differing physical mechanisms that drive them. The von 
Mises stress, for example, is primarily affected by VF geom-
etry changes and swelling-induced stiffness change (Fig. 11) 
likely due to the mechanism of cover deformation induced by 

Fig. 11  Comparison of spatiotemporally averaged a von Mises stress 
( ̂𝜎vm ), b viscous dissipation ( ̂wvisc ), and c collision pressure ( ̂pc ) 
trends versus swelling ( v ) with different swelling-induced effects 
removed and/or present for the intermediate swelling-induced soften-
ing ( m̄� = −0.8 ). In the case ‘no stiffness, mass, or gap change’, only 
swelling-induced geometry change remains. The right abscissa shows 
the percent change from the initial value
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swelling ( v ). This is supported by differences in the von Mises 
stress distribution between the inferior part of the cover and 
the remainder. In the inferior portion of the cover, swelling 
acts to expand the cover while air pressure in the glottis tends 
to compress it, thus leading to less distortion and lower von 
Mises stress. Over the medial and superior surfaces, however, 
fluid pressures are negligible due to flow separation so the 
swelling-induced VF geometry change leads to distortions 
that purely increase von Mises stress. Under greater swell-
ing-induced softening, distortions induced by VF geometry 
change will likewise directly result in smaller stresses.

Swelling-induced mass, stiffness, and prephonatory 
gap changes were all found to increase viscous dissipation 
(Fig. 11) due to its dependence on tissue strain rates. Lower-
ing stiffness, for example, tends to increase tissue deforma-
tions which would increase strain rates and thus increase 
viscous dissipation. Increasing mass tends to increase VF 
momentum which would also lead to higher viscous dis-
sipation, particularly during contact, when the additional 
momentum is dissipated. Similarly, as swelling reduces 
the prephonatory gap, the VFs tend to collide with greater 
momentum, as evidenced by collision pressure (Tao et al. 
2006; Titze 1994), which would lead to higher internal strain 
rate and greater viscous dissipation.

Effects of swelling-induced changes on collision pressure 
( p̂c ) are explained by the momentum of the VFs at contact. 
The effect of swelling-induced softening on lowering colli-
sion pressure arises because the softer cover layer increases 
the time and area over which contact force is distributed. 
Swelling-induced mass variation tends to increase collision 
pressure (Fig. 11) likely due to the increase in momentum of 
the VFs, which was found to increase with increase in swell-
ing. Similarly, swelling-induced prephonatory gap tends to 
cause increased collision pressure, as seen for smaller pre-
phonatory gaps in past studies (Tao et al. 2006; Titze 1994), 
likely due to an increase in the pre-collision momentum.

All damage measures appear concentrated in the medial 
and superior portions of the cover (Figs. 5, 7, and 9). If von 
Mises stress ( ̃𝜎vm ) plays a dominant role in damage then 
swelling would be broadly distributed throughout the medial 
and superior portions of the cover (Fig. 5). In contrast, if 
collision pressure ( ̃pc ) and viscous dissipation ( ̃wvisc ) drive 
damage, then swelling would likely concentrate at local 
regions on the medial surface, (Figs. 9 and 7).

Our results also suggest how swelling could play a role in 
initiating a vicious cycle that leads to PVH. The first aspect 
of the vicious cycle is a hyperfunctional response induced 
by changes in acoustic outputs from swelling. Our study 
shows that moderate amounts of swelling ( 30% ) induce 
relatively small changes in SPL (about 0.5 dB) and moder-
ate changes in fundamental frequency (about 10 Hz) which 
suggests that hyperfunctional adjustments for voice changes 
induced by swelling would likely compensate for fundamental 

frequency rather than loudness. Increases in fundamental fre-
quency could be facilitated by compensatory hyperfunctional 
increases in muscle tension and subglottal pressure. Higher 
subglottal pressures would likely then trigger further swelling 
due to the damage induced by swelling as discussed previ-
ously. This could potentially lead to a vicious cycle and the 
development of PVH. We note that the simulations presented 
herein were performed at very low subglottal pressures, which 
was necessary to ensure self-sustained oscillations over the 
entire range of swelling parameters considered. We suspect 
that the impact of swelling on SPL and fo would be more 
significant at higher subglottal pressures, but confirming this 
will require significant modifications to the methodology that 
are beyond the scope of this preliminary effort.

4.2  Study limitations

There are several important limitations in our study. First, 
three-dimensional (3D) effects are inherently omitted by vir-
tue of the 2D model. Given the aspect ratio of fully adducted 
VFs, we expect that 3D simulation findings would be similar 
to the present results in a mid-coronal plane. That said, pro-
tuberances in the mid-membranous region evident in struc-
tural pathologies and their influence on VF dynamics cannot 
be accurately explored with a 2D model. Similarly, swelling 
localized to this region would require a full 3D simulation.

The third term in the first integral of Equation 1 rep-
resents viscous effects through a simple Kelvin–Voigt 
model, which is assumed herein to be unaffected by swell-
ing. Hydration of the VFs is known to affect VF viscosity, 
with experiments finding that dehydration increases viscos-
ity (Chan and Tayama 2002). This suggests that swelling, 
which increases water content, should lower viscosity. We 
expect that incorporating this effect will not significantly 
influence our results except for the viscous dissipation rate, 
since this measure is directly affected by viscous stresses. 
We hypothesize that modeling this effect will increase the 
viscous dissipation with swelling, w̃visc , since the reduced 
viscosity will facilitate larger strain rates for the same exter-
nal forcing. In addition, the Kelvin–Voigt model is a simple 
viscoelastic model that does not capture some viscoelastic 
behavior of VFs, such as shear thinning (Chan and Titze 
1999, Figure 6). We opted to omit more complicated vis-
coelastic models and swelling effects on viscosity in order to 
focus our study on the change in shape and stiffness induced 
by swelling. More sophisticated viscoelastic models, like 
biphasic models, are more suited to investigate hydration-
induced changes in viscosity and potentially capture viscoe-
lastic phenomena like shear thinning. Coupling stress-driven 
fluid flux and swelling is left for future work.

Importantly, the present model does not incorporate physical 
mechanisms that cause swelling, such as chemical concentration 
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differences leading to osmotic pressure gradients. Our model 
considers swelling that is purely related to mechanical trauma; 
however, swelling is mediated and caused by numerous factors, 
such as presence of disease, changes in lymph drainage, and 
increases in capillary pressure (Mortimer and Levick 2004). 
While the current approach allows us to prescribe the level of 
swelling a priori, modeling the physical mechanisms that cause 
swelling is necessary for future studies examining the progres-
sion of phonotrauma. For example, in swelling induced by 
damage, the swelling profile would likely be concentrated near 
regions of local damage in contrast to the uniformly distributed 
swelling considered here. Consideration of physical mechanisms 
that cause swelling will be the subject of future work.

The subglottal pressure used in our model (300 Pa, Table 1) 
is lower than the typical value of about 1000 Pa used in many 
computational studies (see, for example, (Story and Titze 
1995; Luo et al. 2008; Zheng et al. 2011)). In our simula-
tions, we observed the hyperelastic material model predicted 
the VFs would adopt a static ‘blown apart’ configuration at 
subglottal pressures above about 500 Pa while the VFs would 
self-oscillate for intermediate pressures above the onset pres-
sure but below this value. While this subglottal pressure is 
lower than the typical value employed in previous studies, 
it is within the lower end of the physiological range (Zhang 
2016). Another study employing a different hyperelastic mate-
rial model (Mooney–Rivlin) for the VFs (Movahhedi et al. 
2021) coupled with a Bernoulli-based glottal flow used a sub-
glottal pressure value of 2000 Pa but also modeled the VFs 
as three-dimensional and employed a different VF geometry. 
Extending the current model to three-dimensions along with 
modifications to VF geometry and constitutive models might 
allow for similarly high subglottal pressures to be employed 
while maintaining self-oscillation of the VFs. These higher 
subglottal pressures could also increase the effects of swelling 
on SPL and frequency seen here.

Our model does not include acoustic feedback effects 
(level 2 interactions (Titze 2008)) which could influence 
the VF dynamics with swelling. Given that the effects of 
swelling without acoustics induced relatively small changes, 
we suspect that acoustic coupling effects would likewise be 
minor. In special cases where the fundamental frequency 
is near a formant frequency, however, the changes in fre-
quency induced by swelling could lead to dramatic changes 
in behavior due to resonance effects. Such acoustic feedback 
requires further investigation.

Finally, in the broader context of quantifying phonotrauma, 
there remains debate as to the most appropriate damage meas-
ure, with several having been proposed in the literature, includ-
ing dissipation dose, contact pressures, and internal stresses 
(Titze 1994; Gunter 2004; Tao and Jiang 2007; Titze et al. 
2003; Titze and Hunter 2015; Motie-Shirazi et al. 2021), which 
inspired the viscous dissipation metric employed herein (Titze 
et al. 2003; Motie-Shirazi et al. 2021). Furthermore, it remains 

unclear whether localized damage or more distributed meas-
ures are most important and how these translate to swelling. 
The process leading from mechanical trauma to swelling 
involves a complex biochemical response at the cellular level 
which ultimately disturbs the normal fluid exchange through 
tissue Gou and Pence (2016). Whether localized or distributed 
measures of damage are more important then, would require 
detailed knowledge of how tissue damage affects these cellular 
mechanisms that control the fluid balance, which is incom-
pletely understood Gou and Pence (2016). The measures 
explored herein were selected to canvas some of the parameters 
considered in prior literature for quantifying phonotrauma, but 
we make no claim that these are the best, nor even necessar-
ily the most appropriate, measures to consider. As additional 
clinically validated measures are identified the influence of 
swelling should be reconsidered through their lens.

5  Conclusions

In this manuscript, we presented a first investigation into the 
impact of swelling distributed throughout the VF cover layer 
on VF kinematics and selected damage measures. At modest 
levels of swelling, the impacts were marginal, but grew as the 
degree of fluid accumulation increased. For example in terms 
of voice outputs, swelling consistently reduced fundamental 
frequency and SPL (a swelling value of 30 % induced around 
a 0.5 dB drop and 10 Hz drop in SPL and frequency, respec-
tively). Such changes in voice outputs would lead to compensa-
tory adjustments that could trigger the development of PVH.

Damage measures (von Mises stress, viscous dissipation, 
and collision pressure) were affected by swelling in different 
ways. In the case of von Mises stress, small values of swell-
ing reduced average stresses in the cover due to a protective 
effect in the inferior portion of the cover while larger values 
of swelling increased von Mises stress depending on the 
amount of swelling-induced stiffness change (by about 40% 
at swelling of v = 1.3 and swelling-induced softening of 
m̄� = −0.8 ). Viscous dissipation consistently increased with 
increasing swelling and with greater swelling-induced stiff-
ness change exacerbating the effect (by about 50% at v = 1.3 
and m̄� = −0.8 ). Similarly, swelling tended to increase colli-
sion pressure (by about 75% at v = 1.3 and m̄� = −0.8 ) with 
increase in swelling, whereas greater swelling-induced stiff-
ness change ameliorated the effect.

Swelling was decomposed into constituent effects to 
examine the factor that most contributed to observed trends 
in damage measures. Von Mises stress in the VFs was pri-
marily affected by the swelling-induced shape and stiffness 
changes. In the inferior part of the cover, swelling-induced 
volume increases balanced with the compressive effects of 
the fluid loading resulting in decreases in von Mises stress. 
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In the medial and superior portions of the cover, however, 
the flow accelerates or separates resulting in little fluid load-
ing and therefore von Mises stress increased under the effect 
of swelling. In contrast to the von Mises stress, viscous dis-
sipation and collision pressures were affected primarily by 
swelling-induced mass, stiffness, and prephonatory gap, and 
not the VF geometry change (Fig. 11). In the case of swelling-
induced stiffness, for example, we hypothesized the reduced 
stiffness tended to increase the magnitude of deformations 
which increased viscous dissipation; for collision pressure, 
the reduced stiffness would tend to distribute contact forces 
over longer times and areas, thus reducing average collision 
pressures.

Future work will aim to connect the distribution and mag-
nitude of swelling with measures of damage. This will then be 
used to model the progressive effects of swelling with repeated 
voice usage due to the feedback of swelling-induced voice out-
put changes leading to compensatory changes in the VFs that 
further increase swelling. To capture the important effects of 
swelling on viscoelastic parameters, coupling of swelling with 
biphasic models will also be pursued. Incorporating these two 
mechanisms will allow investigation of the etiology of PVH 
from phonotrauma.

Appendix A Swelling constitutive equation

Let the deformation from a reference configuration, X , 
to spatial coordinates, x , be given by x = X + u(X) . 
Then, F = �u∕�X  is the deformation gradient and 
E = 1∕2(F⊤

F − I) is the Green strain tensor. To incorporate 
the effects of swelling, Gou and Pence (Tsai et al. 2004; Pence 
and Tsai 2005a) proposed an extension of a hyperelastic strain 
energy � to the form (the strain energy is formulated here with 
dependence on E instead of F where the relation between the 
two strain energies is 𝜓(E) = 𝜓(1∕2(F⊤

F − I)) = 𝜓(F))

where �̄� is the swelling-generalized strain energy, � is the 
original strain energy, v is the swelling, and m(v) is a sca-
lar valued monotonic function that satisfies m(1) = 1 . The 
swelling-modified deformation gradient is given by

and the swelling-modified Green strain by

The second Piola–Kirchhoff stress for the swelling-modified 
strain energy is

(A1)�̄�(E;v) = m(v)𝜓(Ē(E;v))

F̄(F;v) = v−1∕3F;

Ē(E;v) =
1

2
(F̄

T
F̄ − I) = v−2∕3E +

1

2
(v−2∕3 − 1)I.

F o r  a  S a i n t  Ve n a n t – K i r c h h o f f  m a t e r i a l 
�(E) = �(TrE)2 + � TrE2 so that the second Piola–Kirch-
hoff stress is

where � and � are Lame’s parameters. Substituting the above 
[Eq. (A4)] into S̄ [Eq. (A2)] results in

where K is the constant elasticity tensor for a Saint 
Venant–Kirchhoff material.

To determine how m(v) changes the modulus with swell-
ing, consider the reference configuration coordinate, X⋆ , cor-
responding to equiaxial expansion by the prescribed swelling 
such that 𝜕X⋆∕𝜕X = v1∕3I . The deformation gradient and 
Green strain measured with respect to the unswollen reference 
configuration, X , and with respect to the swollen reference 
configuration, X⋆ , are then related by

identical to the relation between Ē and E described above. 
The strain energy of the material with respect to the swollen 
reference configuration is

where the factor 1∕v is due to the volume increase. The tan-
gent modulus with respect to the swollen configuration is 
then given by

where K is the elasticity tensor of the swollen material. This 
shows that the change in modulus is controlled by m(v)∕v,

To simplify investigating different functional forms of 
m(v) , we approximate the effect of m(v)∕v with a linear 
approximation

(A2)

S̄ =
𝜕�̄�(E;v)

𝜕E

= m(v)
𝜕𝜓(Ē)

𝜕Ē

𝜕Ē

𝜕E

= m(v)v−2∕3
𝜕𝜓(Ē)

𝜕Ē

= m(v)v−2∕3S|
Ē(E;v)

(A3)Kijkl = ��ij�kl + �(�ik�jl + �il�jk),

(A4)S = KE = �TrEI + 2�E,

(A5)S̄ =
m(v)

v
v1∕3

(
𝜆Tr ĒI + 2𝜇Ē,

)
,

F
⋆ =v−1∕3F

E
⋆ =

1

2
(F⋆⊤

F
⋆ − I) = v−2∕3E +

1

2
(v−2∕3 − 1)I,

𝜓⋆(E⋆;v) = m(v)
𝜓(Ē(E, v))

v
= m(v)

𝜓(E⋆)

v

𝜕2𝜓⋆(E⋆;v)

𝜕(E⋆)
2

=
m(v)

v

𝜕2𝜓(E⋆)

𝜕(E⋆)
2

=
m(v)

v
K,
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where m̄ = m(v)∕v.

Appendix B Independence study

The mesh density in Fig. 1 and time step Δt were chosen 
based on a mesh and time step independence study shown 
in Fig. 12. The mean (over time and the cover region) for 
von Mises stress and viscous dissipation rate both converge 
to within 1 % of the finest discretization case (mesh size 
scale of 0.5 and Δt refinement factor of 16) by a Δt factor 
of 8 for the mesh refinement factor of 1. Errors in mean 
(over time) for contact force and area similarly converge 
by the same refinement condition. Therefore, a time step 

(A6)S̄ ≈ (m̄�|v=1(v − 1) + 1)v−1∕3
(
𝜆Tr ĒI + 2𝜇Ē,

)
of Δt = 1.25 × 10−5 s and the mesh refinement factor of 1 
(corresponding to the mesh shown in Fig. 1) were chosen.
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