

Viscous Flow Features in Normal and Pathological Voiced Speech

Byron D. Erath

Department of Mechanical and Aeronautical Engineering Clarkson University Potsdam, NY

8/20/13

Clarkson, and How I Got There

Clarkson University

- ~3,300 students
- ~25% Mechanical Engineering majors (> 60% engineering majors – Civil, Chemical, Electrical)
- Ranked #1 in USA for students with most internship experience
 - 86% of graduates have internship experience
- Clarkson is 1 of 12 Universities in the USA whose graduates earn more than Harvard graduates

- A few statistics:
 - Voice disorders affect ~ 15 20 million US residents
 - 7% of employed individuals miss at least one day of work annually
 - Prevalence of voice disorders as high as 60% among professional voice users (e.g. educators)
 - Estimated cost of voice disorders in teachers ~ \$2 billion annually

Unilateral vocal fold paralysis

Spasmodic dysphonia

(www.entusa.com)

Physiology of Speech

VF Structure

- 5 Layered structure
 - Thyroarytenoid muscle. Deep, Intermediate, and Superficial layers of lamina propria. Epithelium
 - Body-Cover
 - Oscillations occur in the cover

Disruption of the Speech Process

Paralysis

- Damaged vocal fold on right unable to adduct towards midline
- Vocal fold on left must overcompensate when adducted

 Insufficient glottal closure

7

Laryngectomy

(www.med.nyu.edu)

- Laryngectomy completely removes larynx
- Creates a stoma with the trachea, and seals off the esophagus
- Conventional speech completely lost

UTFSM: August 20, 2013

Clarkson

defy convention

Remediations

• Electrolarynx

(www.griffinlab.com)

Tracheoesophageal puncture

(www.inhealth.com)

- Identify predominant intraglottal flow features of voiced speech
- Quantify impact of fluid loading on structural vocal fold response and acoustic output
- Evaluate interactions for both normal and pathological speech

Speech: A Multi-Disciplinary Problem

Laryngeal Aerodynamics

• Historically based on assumption of 1-D, inviscid flow

Solved by Bernoulli's equation

- Particle Image Velocimetry (PIV) for static divergent models
- Pulsatile flow field
- Asymmetric flow attachment
- Bimodal distribution of jet trajectory

Intraglottal Flow Features

X Flow directi Variable	on Linea Angul Life-size		Free Stream Flow Direction
	0.011	0.20	
VF gap [cm]	0.044	0.30	
$f_{\rm o}$ [Hz]	80 - 250	1.78	
<i>U</i> _c [m/s]	0-45	7.40	
Re	0-4,000	0 - 1,470	
St	0.0001 - 0.01	0.0007	

Intraglottal Flow Features

Normal Vocal Fold Motion Q = 253.0 [mL/s]

Paralyzed Vocal Fold Motion

- Viscous flow phenomena during divergent portion of cycle
- Varying flow separation points at glottal exit
- Vortex formation within the glottis
- Intraglottal flow stability determined by divergence angle
- What is the impact on fluid-structure interactions?
 - Basic theory needs updated!

Speech: A Multi-Disciplinary Problem

Quantifying Fluid-Structure Interactions

- Reduced order model of speech (Ishizaka and Flanagan, 1972)
- Couple spring-mass-damper model of VF's with fluid solver
 - Fluid loading, G, drives VF motion

UTFSM: August 20, 2013

Clarkson

- Can a similarity solution for glottal flows be found?
 - Find a transformation that reduces a set of partial differential equations (Navier-Stokes) to a system of ordinary differential equations.

- For a similarity solution, BC's must also transform accordingly
 - Not possible with finite, non-zero BC's (e.g. from wall motion)
 - To circumvent this complexity, solve in a non-inertial reference frame

defv conventio

Boundary Layer Analysis

Laboratory

UTFSM: August 20, 2013

Clarkson

defy convention

20

• Relate jet core velocity with wall pressure via Euler's equation

• Falkner-Skan like similarity solution exists if jet core velocity (U) varies with power-law relation in x

UTFSM: August 20, 2013

defv conventior

Boundary layer estimation of asymmetric pressure (BLEAP)

$$p(x) = p_i + \frac{1}{2} \rho [U_i^2 - U(x)^2]$$

- Simple algebraic relation for aerodynamic pressure loading
- Easily assimilated into existing reduced-order models of speech
- Generates physically-realistic flow solution

Regime Plot

UTFSM: August 20, 2013

- Linear methods (open quotient, jitter, shimmer, etc.)
 - Work well for "normal" voice
 - Insufficient for investigating dynamics of pathological voice
- Nonlinear methods
 - Reveal more complicated dynamics
 - Show promise as a diagnostic tool for various pathologies
- Techniques employed with reduced-order models
 - Phase-space reconstruction of temporal vocal fold displacement using time-delay and embedding dimensions
 - Compute Information Criteria from Volterra-Weiner-Korenberg series
 - Predicts nonlinear dynamics

- Assume a purely deterministic system
 - If the present state is fixed, all future states are known
- Establish a vector space (state/phase space) for the system
 - Specifying a point in the vector/state space specifies the state of the system, and vice versa
- Can now study the dynamics of the system by studying the dynamics of the state/phase space points

Phase Space Reconstruction

aboratory

- How is the appropriate state/phase space chosen?
- Reveal nature of a signal by plotting each data point versus its predecessor
 - Creates a "phase portrait" using "time delay embedding"
 - A plot of the trajectories in state/phase space
 - · Identifies attractors, etc.

UTFSM: August 20, 2013

28

- Various methods:
 - Inspection
 - First minimum of mutual information plot
 - Stabilization of the slope of the correlation integral with increasing dimension, κ
 - The fundamental period, $T = \tau \kappa$

- Express the time series as a Volterra-Weiner-Korenberg series in terms of the phase space, with degree δ and dimension, κ
 - $-\delta = 1$: Linear terms
 - $\delta \ge 2$: Nonlinear terms

$$\begin{split} \widetilde{S}_{n} &= e_{o} + e_{1}S_{n-1} + e_{2}S_{n-2} + \ldots + e_{\kappa}S_{n-\kappa} + e_{\kappa+1}S_{n-1}^{2} \\ &+ e_{\kappa+2}S_{n-1}S_{n-2} + \ldots + e_{\Lambda-1}S_{n-\kappa}^{\delta} = \sum_{\lambda=0}^{\Lambda-1} e_{\lambda}q_{\lambda}(n) \\ & \text{where,} \quad \Lambda = \frac{(\kappa+\delta)!}{(\kappa!\delta!)} \end{split}$$

• Coefficients e_{λ} are found using Gram-Schmidt reorthonormalization

Clarkson

lefv convention

30

Information Criterion

• The one-step-ahead prediction error is computed by:

$$\varepsilon(\kappa,\delta)^{2} \equiv \frac{\sum\limits_{n=1}^{N} (\widetilde{s}(\kappa,\delta) - s_{n})^{2}}{\sum\limits_{n=1}^{N} (s_{n} - \overline{s})^{2}}$$

with
$$\overline{s} = \frac{1}{N} \sum_{n=1}^{N} s_n$$

• The information criterion can then be computed according to:

 $C(r) = \log \varepsilon(r) + r/N$, where $r \in [1, \Lambda]$ for any combination of (κ, δ)

– And ε is the one-step-ahead error

- C_{lin} is computed for $\delta = 1$
- $C_{\rm nl}$ computed for $\delta > 1$
- If C_{nl} is more predictive than C_{lin} (i.e. $C_{lin} > C_{nl}$ for $r > \kappa$) - Chaotic dynamics are revealed!

Nonlinear Predictor

defy convention

- Normal speech conditions
 - Asymmetric flow loading has minimal effect
- Tension imbalanced speech (unilateral paralysis)
 - BLEAP flow solver provides more physiologically-realistic dynamics
 - Asymmetric flow is devastating in irregularly-tensioned speech
 - Nonlinear behavior manifest
 - From a clinical perspective, both geometry **and** tension are important
- Influence of vortex shedding, turbulence, higher order viscous flow effects undetermined

Speech: A Multi-Disciplinary Problem

- "Normal Speech"
 - Subglottal pressure ~ 0.3 0.8 kPa
- At glottis, sound pressure levels can reach ~ 120 130 dB
 - Acoustic pressures on order of subglottal pressures $\sim O(0.3 \text{ kPa})$
 - Great enough to modulate driving pressure gradient
- Solve using Wave Reflection Analog (WRA)
 - Unsteady volume velocity acts as acoustic source
 - Vocal tract area acts as acoustic filter

Wave Reflection Analog (WRA) Method

Clarkson UNIVERSITY defy convention #

Acoustic Pressures

Laboratory

coustic • Structure

UTFSM: August 20, 2013

40

- Acoustic loading has significant impact!
 - Radiated sound
 - Pressures
 - Aerodynamic loading
 - Transglottal pressure that drives flow
 - Vocal fold dynamics
- Speech is truly a fluid-structure-acoustic interaction!
- Validation of acoustic theory?

- Asymmetric fluid loading
 - Small influence on tissue forces for symmetrically tensioned speech
 - Has significant impact on tension imbalanced speech
 - Effects are magnified when acoustics are considered
- Outstanding questions
 - Fidelity of reduced-order models
 - How to model higher order flow effects
 - Vortex shedding
 - Turbulence
 - Changing flow separation points
 - More realistic acoustic modeling
 - Additional sound sources
 - Running speech

Questions/Comments

