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CRITICISM OF FOURIER SPECTRUM

= [t gives us the spectrum of the ‘whole time-series’
Which 1s OK if the time-series 1s stationary
But what 1f 1ts not?

= We need a technique that can “march along” a time
series and that 1s capable of:

Analyzing spectral content in different places
Detecting sharp changes in spectral character



SHORT TIME FOURIER TRANSFORM

STEFT

" Time/Frequency localization depends on window size.
" Once you choose a particular window size, 1t will be
the same for all frequencies.

" Many signals require a more flexible approach -
to determine more accurately either

time or frequency.

A window A
g N \ 9
= | o)
/ N e
—— -
-

Time .
Time



THE WAVELET TRANSFORM

= Overcomes the preset resolution problem of the STFT
by using a variable length window:

Use windows at for better
time resolution.

Use windows at for better
frequency resolution.



The Wavelet Transform (cont’d)

A signal with three frequency components at varying times
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Wide windows do not provide good localization
at high frequencies.



The Wavelet Transform (cont’d)

A signal with three frequency components at varying times
N I I

T
'
___________________

____________________

0.3 0.4 0.6 0.7 0.8 0.9 1

Time. s

narrower



The Wavelet Transform (cont’d)

A signal with three frequency components at varying times
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The Wavelet Transform (cont’d)

A signal with three frequency components at varying times
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The Wavelet Transform (cont’d)

Scale




WHAT ARE WAVELETS?




What are Wavelets? (cont’d)

f(2)= Zakwk(t)




What are Wavelets? (cont’d)

Daubechies




What are Wavelets? (cont’d)

* Once the wavelet 1s fixed, one can form a
basis from 1t by applying translations and scalings (i.e.,
stretch/compress):

Y(s, T t) =

1 t—t
\/Elll( .

* [t 1s convenient to take special values for s and 1 in
defining the wavelet basis: s =27 and t=k . 27

) = 222t k) |




What are Wavelets? (cont’d)

Y, (0)=2"p(2't-k)

time localization




MORE ABOUT WAVELETS

normalization -
s shift in time

I—7T

1
W, (1) = ﬁW[T
::h\ange in scale:

big s means long

wavelength
wavelet with

scale, s and time, T

Mother wavelet



SHANNON WAVELET

. |mother wavelet




CONTINUOUS WAVELET TRANSFORM




CWT: MAIN STEPS

Take a wavelet and compare it to a section at the start
of the original signal.

Calculate a number, C, that represents how closely
correlated the wavelet 1s with this section of the
signal. The higher C is, the more the similarity.

Signal WM
Wavelet E—’\) \‘k"i

C =0.0102



CWT: Main Steps (cont’d)

3. Shift the wavelet to the right and repeat steps 1
and 2 until you've covered the whole signal.

wavst [ 4\“_



CWT: Main Steps (cont’d)

4. Scale the wavelet and repeat steps 1 through 3.

Wavelet =

C =0.2247

5. Repeat steps 1 through 4 for all scales.



COEFFICIENTS OF CTW TRANSFORM

time-scale

C(z, s) = \/_ff (f t)dt




Continuous Wavelet Transform (cont’d)

®[nverse CWT:

£(6) = % ffee s (" ydrds

i



FT VS WT
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PROPERTIES OF WAVELETS

e Simultaneous localization in time and scale

- The location of the wavelet allows to explicitly
represent the location of events in

- The shape of the wavelet allows to represent
different detail or




Properties of Wavelets (cont’d)

m for functions typically found in practice, many
of the coefficients in a wavelet representation are either
zero or very small.

1) = % ffcwmsw (=Fydrds

8 many wavelet transformations
can be accomplished in O(N) time.



Properties of Wavelets (cont’d)

wavelets can be adapted to represent a
wide variety of functions (e.g., functions with
discontinuities, functions defined on bounded domains
etc.).

= Well suited to problems involving images, open or closed
curves, and surfaces of just about any variety.

= Can represent functions with or
more efficiently (1.e., some have sharp corners

themselves).



Properties of Wavelets (cont’d)

* Admissibility condition:

II‘P(CO)I

dw < 400

Implies that W(w)—0 both as w—0
and w—, so W(w) must be band-
limited



Fourier spectrum of Shannon Wavelet
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frequency, w




DISCRETE WAVELET TRANSFORM

(DWT)

=" CWT computes all scales and positions in a given range

" DWT scales and positions are only computed in powers
of 2 (dyadic scales)

" This subset can be shown to have the same accuracy as
DWT

® Dyadic scales allow for tree decompositions



DISCRETE WAVELET TRANSFORM (DWT)

A = Ef(t)l//jk (?)

fO =33 a,w,

Y, (0)=2"y(2t-k)
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f(t) = Z Eajkz/jjk(t)




MULTIRESOLUTION
REPRESENTATION USING 7

Reconstruction so f=ar

details
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MULTIRESOLUTION
REPRESENTATION USING 7

Reconstruction so f=ar

details
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MULTIRESOLUTION
REPRESENTATION USING 7

Reconstruction so f=ar

details

M coarse
details




MULTIRESOLUTION
REPRESENTATION USING

(more details)

low resolutio
(less details)
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Input Signal




Decimation

The former process produces twice the data 1t
began with: N mput samples produce N
approximations coefficients and N detail
coefficients.

To correct this, we Down sample (or: Decimate)
the filter output by two, by simply throwing
away every second coefficient.















FILTER BANK REPRESENTATION OF THE DWT DILATIONS




WAVELET PACKET ANALYSIS (DWPA)
TREE DECOMPOSITION




* In the absence of quantization errors, the approximation
pyramid can be reconstructed from the prediction residual
pyramid.

* Prediction residual pyramid can be represented more
efficiently.

(with sub-sampling)




Efficient Representation Using

details D;

details D,

details D,
L0

no sub-sampling




Efficient Representation Using
(cont’d)

representation: (decompositio

in general: or analysis)

A wavelet representation of a function consists of
(1) a coarse overall approximation
(2) detail coefficients that influence the function at various scales.




RECONSTRUCTION (SYNTHESIS)

details D,

details D,

details D,
Lo




EXAMPLE - HAAR WAVELETS

(with sub-sampling)



Example - Haar Wavelets (cont’d)

|8 4] (averaged and subsampled)

Resolution Averages Detail Coefficients
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Example - Haar Wavelets (cont’d)

Resolution Averages Detail Coefficients
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Example - Haar Wavelets (cont’d)

1 -1

= (973 5]




Example - Haar Wavelets (cont’d)

Resolution Approximation

Note small magnitude
detail coefficients!

How to
compute D, ?




MULTIRESOLUTION CONDITIONS

= [f a set of functions can be represented by a weighted sum of
V(2 then a larger set, including the original, can be

represented by a weighted sum of /(2




Multiresolution Conditions (cont’d)

= [f a set of functions can be represented by a weighted sum of
then a larger set, including the original, can be

represented by a weighted sum of

/@)= Z ayp, (O o
fj+1 (t) = Z bkz/j(jﬂ)k (t) WWf

; V.SV,




The factor of two scaling means that the spectra
of the wavelets divide up the frequency scale into
octaves (frequency doubling intervals)




W, 1s the wavelet, now viewed as a bandpass filter.

This suggests a recursion. Replace:




And then repeat the processes, recursively ...




The low-pass filter, f'°(w) must match wavelet filter, ¥(w).
A reasonable requirement 1s:

fP(w)]> + W(w)|* =1

That 1s, the spectra of the two filters add up to unity.
A pair of such filters are called Quadature Mirror Filters.

They are known to have filter coefficients that satisfy the
relationship:

Wik = ('1)k flpk

Furthermore, it’s known that these filters allows perfect
reconstruction of a time-series by summing i1ts low-pass
and high-pass versions



‘ time-series of length N ‘

Recursion for
wavelet
coetficients

Y(s,,t): N/2 coefficients
Y(s,,t): N/4 coefficients
Y(s,,t): N/8 coefficients

Total: N coefficients




Coiﬂet low pass filter

Coiflet high-pass filter




Spectrum of low pass filter

Spectrum of wavelet freduencil, Q)

frequency, ®




SUMMARY: WAVELET EXPANSION

= Wavelet decompositions involve a pair of waveforms (mother
wavelets):

" The two shapes are translated and scaled to produce wavelets
(wavelet basis) at different and on different



Summary: wavelet expansion (cont’d)

= {(t) 1s written as a linear combination
of o¢(t-k) and wy(2/t-k) :

/ /

scaling function wavelet function



1D HAAR WAVELETS

= Haar scaling and wavelet functions:

(o} Wit



1D Haar Wavelets (cont’d)

=}, represents all the images

" Functions having constant pieces over 2/ equal-sized
intervals on [0,1).

L

1
® Note that .
[




1D Haar Wavelets (cont’d)

V,CV,

i.e., j+1

V3D V2D W1 D\_)o

V, fine details
V, l

V, coarse details




1D Haar Wavelets (cont’d)
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EXAMPLE
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Example (cont’d)
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2D HAAR BASIS FOR
DECOMPOSITION

To construct the standard 2D Haar wavelet basis, consider
all possible outer products of 1D basis functions.

i E— ()

Example:
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2D HAAR BASIS FOR
DECOMPOSITION

To construct the standard 2D Haar wavelet basis, consider
all possible outer products of 1D basis functions.

o
SRS
=
S

ﬁ;//f/

Vo1(X), Pgo(X)

%j (x) = ©ii (x) l/ff (x) = Y, (%)




2D HAAR BASIS OF
DECOMPOSITION

R
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WAVELETS APPLICATIONS

= Noise filtering

" [mage compression

" Fingerprint compression
" [mage fusion

= Recognition

" Image matching and retrieval
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Synthesized Image
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Manual threzhelding HAetained encrgy 99.96 % — Zeroe 31,71 %
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