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INTRODUCTION TO 
WAVELETS 



¡ It gives us the spectrum of the ‘whole time-series’ 
§ Which is OK if the time-series is stationary  
§ But what if its not? 

¡ We need a technique that can “march along” a time 
series and that is capable of: 
§ Analyzing spectral content in different places 
§ Detecting sharp changes in spectral character 

CRITICISM OF FOURIER SPECTRUM 



¡ Time/Frequency localization depends on window size. 
¡ Once you choose a particular window size, it will be 

the same for all frequencies. 
¡ Many signals require a more flexible approach - vary 

the window size to determine more accurately either 
time or frequency. 

SHORT TIME FOURIER TRANSFORM 
STFT 



¡ Overcomes the preset resolution problem of the STFT 
by using a variable length window: 

 
§ Use narrower windows at high frequencies for better 

time resolution. 

§ Use wider windows at low frequencies for better 
frequency resolution. 

THE WAVELET TRANSFORM 



The Wavelet Transform (cont’d) 

Wide windows do not provide good localization 
at high frequencies. 



The Wavelet Transform (cont’d) 

Use narrower windows at high frequencies. 



The Wavelet Transform (cont’d) 

Narrow windows do not provide good localization  
at low frequencies. 



The Wavelet Transform (cont’d) 

Use wider windows at low frequencies. 



The Wavelet Transform (cont’d) 

STFT AND DWT BREAKDOWN OF A SIGNAL 



WHAT ARE WAVELETS? 

¡ Wavelets are functions that “wave” above and below 
the x-axis, have (1) varying frequency, (2) limited 
duration, and (3) an average value of zero. 

¡ This is in contrast to sinusoids, used by FT, which 
have infinite energy. 

Sinusoid                                    Wavelet  



What are Wavelets? (cont’d) 

¡ Like sines and cosines in FT, wavelets are used as 
basis functions ψk(t) in representing other functions 
f(t): 

¡ Span of ψk(t): vector space S containing all functions 
f(t) that can be represented by ψk(t). 

( ) ( )k k
k

f t a tψ=∑



What are Wavelets? (cont’d) 

¡  There are many different wavelets: 

Morlet Haar  Daubechies 



=ψ jk (t)  

What are Wavelets? (cont’d) 



What are Wavelets? (cont’d) 

time localization 

scale/frequency  
localization 

( )/2( ) 2 2   j j
jk t t kψ ψ= −

j 



MORE ABOUT WAVELETS 

change in scale: 
big s means long 

wavelength	



normalization	



wavelet with 
scale, s and time, τ	



shift in time	



Mother wavelet	





SHANNON WAVELET 

mother wavelet 

τ=5, s=2 

time 

Y(t) = 2 sinc(2t) – sinc(t) 



CONTINUOUS WAVELET TRANSFORM 
(CWT) 

( )1( , )
t

tC s f t dt
ss
τ

τ ψ ∗ −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫

Continuous Wavelet Transform 
of signal f(t) 

translation parameter, 
measure of time 

scale parameter  
(measure of frequency) 

Mother wavelet 
(window) 

normalization  
constant 

Forward 
CWT: 

Scale = 1/j = 1/Frequency 



1.  Take a wavelet and compare it to a section at the start 
of the original signal.  

2.  Calculate a number, C, that represents how closely 
correlated the wavelet is with this section of the 
signal. The higher C is, the more the similarity. 

CWT: MAIN STEPS 



3.  Shift the wavelet to the right and repeat steps 1 
and 2 until you've covered the whole signal. 

CWT: Main Steps (cont’d) 



4.  Scale the wavelet and repeat steps 1 through 3. 
 
 
 
 
 
 
 
5.  Repeat steps 1 through 4 for all scales. 
 

CWT: Main Steps (cont’d) 



COEFFICIENTS OF CTW TRANSFORM 

( )1( , )
t

tC s f t dt
ss
τ

τ ψ ∗ −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫

•  Wavelet analysis produces a time-scale view of the input 
signal or image. 



¡ Inverse CWT: 

Continuous Wavelet Transform (cont’d) 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

τ
τ ψ τ

−
= ∫ ∫

double integral! 



FT VS WT 

weighted by F(u) 

weighted by C(τ,s) 



•  Simultaneous localization in time and scale 
-  The location of the  wavelet allows to explicitly 

represent the location of  events in time. 
-  The shape of the wavelet  allows to represent 

different detail or resolution. 

PROPERTIES OF WAVELETS 



¡ Sparsity: for functions typically found in practice, many 
of the coefficients in a wavelet representation are either 
zero or very small. 

¡ Linear-time complexity: many wavelet transformations 
can be accomplished in O(N) time. 

Properties of Wavelets  (cont’d) 

1( ) ( , ) ( )
s

tf t C s d ds
ss τ

τ
τ ψ τ

−
= ∫ ∫



¡ Adaptability: wavelets can be adapted to represent a 
wide variety of functions (e.g., functions with 
discontinuities, functions defined on bounded domains 
etc.). 

§ Well suited to problems involving images, open or closed 
curves, and surfaces of just about any variety. 

§ Can represent functions with discontinuities or corners 
more efficiently (i.e., some have sharp corners 
themselves). 

Properties of Wavelets  (cont’d) 



Properties of Wavelets  (cont’d) 

•  Admissibility condition: 

Implies that Ψ(ω)→0 both as ω→0 
and ω→∞, so Ψ(ω) must be band-
limited 



Fourier spectrum of Shannon Wavelet 

frequency, ω	



Spectrum of higher scale wavelets 

ω	





¡ CWT computes all scales and positions in a given range 

¡ DWT scales and positions are only computed in powers 
of 2 (dyadic scales) 

¡ This subset can be shown to have the same accuracy as 
DWT 

¡ Dyadic scales allow for tree decompositions 

DISCRETE WAVELET TRANSFORM 
(DWT) 



DISCRETE WAVELET TRANSFORM (DWT) 

( ) ( )jk jk
k j

f t a tψ=∑∑

( )/2( ) 2 2   j j
jk t t kψ ψ= −

(inverse DWT) 

(forward DWT) 

where 

*( ) ( )jkjk
t

a f t tψ=∑



DFT VS DWT 

¡ DFT expansion: 

¡ DWT expansion 

or 

one parameter basis 

( ) ( )l l
l

f t a tψ=∑

( ) ( )jk jk
k j

f t a tψ=∑∑

two parameter basis 



MULTIRESOLUTION 
REPRESENTATION USING  

( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

( )jk tψ

j 

fine 
details 

coarse 
details 

wider, large translations 



MULTIRESOLUTION 
REPRESENTATION USING  

( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

( )jk tψ

j 

fine 
details 

coarse 
details 



( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

j 

fine 
details 

coarse 
details 

narrower, small translations 

MULTIRESOLUTION 
REPRESENTATION USING  

( )jk tψ



 high resolution 
      (more details) 

low resolution 
      (less details) 

… 

( ) ( )jk jk
k j

f t a tψ=∑ ∑

( )f t

1̂( )f t

2̂ ( )f t

ˆ ( )sf t

j 

MULTIRESOLUTION 
REPRESENTATION USING  

( )jk tψ



Mallat* Filter Scheme 

n Mallat was the first to implement this 
scheme, using a well known filter design 
called “two channel sub band coder”, 
yielding a ‘Fast Wavelet Transform’ 



Approximations and Details: 

n Approximations: High-scale, low-frequency 
components of the signal 

n Details: low-scale, high-frequency 
components 

Input Signal 

LPF 

HPF 



Decimation 

n The former process produces twice the data it 
began with: N input samples produce N 
approximations coefficients and N detail 
coefficients. 

n To correct this, we Down sample (or: Decimate) 
the filter output by two, by simply throwing 
away every second coefficient. 



Decimation (cont’d) 

Input 
Signal 

LPF 

HPF 

A* 

D* 

So, a complete one stage block looks like: 



Multi-level Decomposition 

n  Iterating the decomposition process, breaks 
the input signal into many lower-resolution 
components: Wavelet decomposition tree: 



Wavelet reconstruction 

n Reconstruction (or synthesis) is the process 
in which we assemble all components back  

Up sampling  
(or interpolation) is 
done by zero 
inserting  between 
every two 
coefficients 



- Choosing the correct filter is most important. 
- The choice of the filter determines the shape  
of the wavelet we use to perform the analysis. 

WAVELETS LIKE FILTERS 
 

Relationship of  Filters to Wavelet Shape 



FILTER BANK REPRESENTATION OF THE DWT DILATIONS 



WAVELET PACKET ANALYSIS (DWPA)  
TREE DECOMPOSITION 



Prediction Residual Pyramid 

•  In the absence of quantization errors, the approximation  
     pyramid can be reconstructed from the prediction residual 
     pyramid. 
 
•  Prediction residual pyramid can be represented more  
     efficiently. 

(with sub-sampling) 



   Efficient Representation Using “Details” 

details D2 

L0 

 details D3 

details D1 

(no sub-sampling) 



 Efficient Representation Using Details 
(cont’d) 

representation:   L0 D1 D2 D3 

A wavelet representation of a function consists of  
(1)   a coarse overall approximation  
(2)   detail coefficients that  influence the function at various scales. 

(decomposition 
or analysis) in general: L0 D1 D2 D3…DJ 



   RECONSTRUCTION (SYNTHESIS) 
H3=L2+D3 

details D2 

L0 

 details D3 

H2=L1+D2 

H1=L0+D1 

details D1 

(no sub-sampling) 



EXAMPLE - HAAR WAVELETS 

¡ Suppose we are given a 1D "image" with a 
resolution of 4 pixels: 

       [9 7 3 5] 

¡ The Haar wavelet transform is the following: 
 

L0 D1 D2 D3 (with sub-sampling) 



Example - Haar Wavelets (cont’d) 

¡  Start by averaging the pixels together (pairwise) to get a 
new lower resolution image: 

 
¡  To recover the original four pixels from the two averaged 

pixels, store some detail coefficients. 

1 



Example - Haar Wavelets (cont’d) 

¡  Repeating this process on the averages gives the full 
decomposition: 

 
 
 
 
 1 



Example - Haar Wavelets (cont’d) 

¡  The Harr decomposition of the original four-pixel image is: 
 
 
¡ We can reconstruct the original image to a resolution by 

adding or subtracting the detail coefficients from the lower-
resolution versions. 

 

2 1 -1 



Example - Haar Wavelets (cont’d) 

Note small magnitude 
detail coefficients! 

Dj 

Dj-1 

D1 L0 

How to 
compute Di ? 



¡  If a set of functions can be represented by a weighted sum of 
ψ(2jt - k), then a larger set, including the original, can be 

represented by a weighted sum of ψ(2j+1t - k): 

MULTIRESOLUTION CONDITIONS 

time localization 

scale/frequency  
localization 

low  
resolution 

high  
resolution 

j 



¡  If a set of functions can be represented by a weighted sum of 
ψ(2jt - k), then a larger set, including the original, can be 

represented by a weighted sum of ψ(2j+1t - k): 

Multiresolution Conditions (cont’d) 

                 Vj: span of ψ(2jt - k):  ( ) ( )j k jk
k

f t a tψ=∑

                 Vj+1: span of ψ(2j+1t - k):  1 ( 1)( ) ( )j k j k
k

f t b tψ+ +=∑

1j jV V +⊆



The factor of two scaling means that the spectra 
of the wavelets divide up the frequency scale into 
octaves (frequency doubling intervals) 

ωny 

ω 

½ωny ¼ωny 
1/8ωny 



Ψ1 is the wavelet, now viewed as a bandpass filter. 

 

This suggests a recursion.  Replace: 

 

ωny 

ω 

½ωny ¼ωny 
1/8ωny 

ωny 

ω 

½ωny 

with 

 low-pass filter 



And then repeat the processes, recursively … 



CHOOSING THE LOW-PASS FILTER 

The low-pass filter, flp(w) must match wavelet filter, Ψ(ω).  
A reasonable requirement is: 

 
    |flp(ω)|2 + |Ψ(ω)|2 = 1 

 
That is, the spectra of the two filters add up to unity.   
A pair of such filters are called Quadature Mirror Filters. 
They are known to have filter coefficients that satisfy the 

relationship: 
 
    ΨN-1-k = (-1)k flp

k 
 
Furthermore, it’s known that these filters allows perfect 

reconstruction of a time-series by summing its low-pass 
and high-pass versions 



Recursion for 
wavelet 
coefficients 

γ(s1,t): N/2 coefficients 

γ(s2,t): N/4 coefficients 

γ(s2,t): N/8 coefficients 

Total: N coefficients 

time-series of length N 

HP LP 

↓2 ↓2 

HP LP 

↓2 ↓2 

HP LP 

↓2 ↓2 

…

γ(s1,t) 

γ(s2,t) 

γ(s3,t) 



Coiflet low pass filter 

Coiflet high-pass filter 
time, t 

time, t 



Spectrum of low pass filter 

frequency, ω	

Spectrum of wavelet 

frequency, ω	





¡ Wavelet decompositions involve  a pair of waveforms (mother 
wavelets):   

 

¡  The two shapes are translated and  scaled to produce wavelets 
(wavelet basis) at different locations and on different  scales. 

SUMMARY: WAVELET EXPANSION 

φ(t)    ψ(t) 

φ(t-k)    ψ(2jt-k) 

encode low 
resolution info 

encode details or 
high  resolution info 



¡ f(t)  is written as a linear combination  
of  φ(t-k)  and  ψ(2jt-k) : 

Summary: wavelet expansion (cont’d)  

No se puede mostrar la imagen. Puede que su equipo no tenga suficiente memoria para abrir la imagen o que ésta esté dañada. Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si sigue apareciendo la x roja, puede que tenga que borrar la imagen e 
insertarla de nuevo.

scaling function          wavelet function 



¡ Haar  scaling and wavelet functions: 

1D HAAR WAVELETS  

computes average computes details 

φ(t)                     ψ(t) 



¡  V j   represents all the 2j-pixel images 
¡  Functions having constant pieces over 2 j  equal-sized 

intervals on [0,1). 

¡ Note that  

1D Haar Wavelets (cont’d) 

Examples: 

No se puede mostrar la imagen. Puede que su equipo no tenga 
suficiente memoria para abrir la imagen o que ésta esté dañada. 
Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si 
sigue apareciendo la x roja, puede que tenga que borrar la imagen 
e insertarla de nuevo.

width: 1/2j 

ϵ Vj ϵ Vj 

No se puede mostrar la imagen. Puede 
que su equipo no tenga suficiente 
memoria para abrir la imagen o que 
ésta esté dañada. Reinicie el equipo y, 
a continuación, abra el archivo de 
nuevo. Si sigue apareciendo la x roja, 
puede que tenga que borrar la imagen 
e insertarla de nuevo.



1D Haar Wavelets (cont’d) 

V0, V1, ..., V j are nested 

i.e.,  

VJ 
… 
 
V2 
V1 coarse details 

fine details 

1j jV V +⊂



1D Haar Wavelets (cont’d) 



EXAMPLE 



Example (cont’d) 



2D HAAR BASIS FOR STANDARD 
DECOMPOSITION 

To construct the standard 2D Haar wavelet basis, consider 
all possible outer products of 1D basis functions. 

φ0,0(x) 

ψ0,0(x) 

ψ0,1(x) 

ψ1,1(x) 

V2=V0+W0+W1 

Example: 



2D HAAR BASIS FOR STANDARD 
DECOMPOSITION 

To construct the standard 2D Haar wavelet basis, consider 
all possible outer products of 1D basis functions. 

φ00(x), φ00(x)  
ψ00(x), φ00(x) ψ01(x), φ00(x) 

( ) ( )j
i jix xϕ ϕ≡ ( ) ( )j

i jix xψ ψ≡



2D HAAR BASIS OF STANDARD 
DECOMPOSITION 

( ) ( )j
i jix xϕ ϕ≡

( ) ( )j
i jix xψ ψ≡

V2 



¡ Noise filtering 
¡ Image compression 
¡ Fingerprint compression 
¡ Image fusion 
¡ Recognition 
¡ Image matching and retrieval 

WAVELETS APPLICATIONS 





Original Image   Compressed Image 

Threshold: 3.5 
Zeros: 42% 
Retained energy: 
99.95% 


