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Abstract

We propose a new object classification approach for monoc-
ular video sequences, which allows to classify objects mod-
elled independently from the camera position and object ori-
entation. To achieve this independence, a simple 3D object
model that represents an object as a parallelepiped is proposed.
The approach is able to give good estimates of object dimen-
sions and proposes visual reliability measures for the object
dimensions. These measures give a representation of the visi-
bility of the estimated dimension and are principally proposed
to aid posterior phases of the video understanding process, as
object tracking and event detection. The method obtains the
3D parallelepiped model estimation using a set of 2D mov-
ing regions (obtained in a segmentation phase), the perspec-
tive matrix transform (obtained from camera calibration using
the pin-hole camera model) and predefined 3D models of ex-
pected objects in the scene. After classification, a merging step
is performed to improve the classification performance by as-
sembling 2D moving regions with better 3D model probability
when together. This approach shows promising results on ob-
ject classification, obtaining very high detection rates for com-
plex situations and performing at video frame rate.

1 Introduction

Binocular visual perception allows human beings to perceive
depth of their environment. At the same time, a person can
shut one of his/her eyes and still preserve the depth sensation,
without loosing too much of precision on depth estimation of
the focused object. This capability is a consequence of the in-
terpretation that the brain performs about the new visual in-
formation, by associating it to similar environments or objects
previously observed, and then concluding on its nature and 3D
shape. This means that the brain uses a priori knowledge to
conclude about the attributes (e.g. position, dimensions) of an

observed object.
Following this idea, we propose a new object classification
approach for monocular video sequences using a simple 3D
model of the expected objects in the scene. The proposed ap-
proach allows to classify objects of different nature in a way
that is independent from the relative position between the ob-
ject and the camera, considering a pin-hole camera model. For
this purpose, we propose a simple 3D object model that repre-
sents an object as a parallelepiped. The model is described by
the parallelepiped dimensions (width, length and height) and
orientation in the ground plane of the scene. Also, visual relia-
bility measures of the three estimated dimensions are proposed,
which represent a measure of their visibility. These measures
are intended to aid to fairly classify objects according to the
more visually significant attributes. These measures have been
principally proposed to aid posterior phases of the video under-
standing process, as dimensional estimation of tracked objects,
multi-camera object fusion, and discrimination between visu-
ally reliable data from purely estimated data on event detection
and learning.
Our approach tries to cope with several limitations imposed by
2D representations, but keeping their capability of being gen-
eral models able to describe different objects and still being
able to work in real-time. For more details, refer to section 2.
For implementing our approach a platform for image sequence
understanding called VSIP (Video Surveillance Interpretation
Platform) is used, which was developed at the research group
ORION at INRIA (Institut National de Recherche en Informa-
tique et en Automatique), Sophia Antipolis. VSIP is a generic
environment for combining algorithms for processing and anal-
ysis of videos. This platform allows to flexibly combine and
exchange various techniques at the different stages of the video
understanding process. Moreover, VSIP is oriented to help de-
velopers describing their own scenarios and building systems
capable of monitoring behaviours, dedicated to specific appli-
cations.
The platform corresponds to a two-level architecture. At the
first level, VSIP extracts primitive geometric features like areas
of motion. Based on them, objects are recognised and tracked.



At the second level those events in which the detected objects
participate, are recognised. Examples of this two-level archi-
tecture can be found in the works of [7] and [9].
We have used this platform at its first level (see figure 1), ap-
plying a background subtraction method for segmentation to
obtain a set of 2D moving regions. Then, the classification
phase uses the obtained moving regions, the perspective matrix
of the scene, and predefined 3D parallelepiped models of ex-
pected objects on the scene, to find the most likely 3D model
of the objects. Finally, a merging step is performed to improve
the classification performance by assembling 2D moving re-
gions showing a better 3D object likelihood when they are put
together. The perspective matrix of the scene is previously ob-
tained from an off-line camera calibration phase, considering
the pin-hole camera model. Classification and merging pro-
cesses will be described in detail on section 3.
This paper is organised as follows. Section 2 presents state-of-
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Figure 1: Proposed architecture of object classification ap-
proach. The steps depicted in the figure describe the data flow
and processing modules during an object classification process.
Dashed lines emphasise the main contributions of this work.

the-art on object classification in video. In section 3, we present
a detailed description of the proposed 3D model and classifier.
Section 4 presents and discusses the obtained results from 20
short sequences, extracted from two long duration videos.

2 Related Work

The objective of this section is to expose the principal advan-
tages e inconveniences of using 2D object representations, but
also the drawbacks of using very precise and detailed object
representations to perform object detection in video.
2D representations have been used in several applications, with
acceptable detection and classification performance. This rep-
resentation has several advantages which justify its use. For
certain applications, two dimensions are enough to describe the
objects involved in the analysed scene, because: (a) The rela-
tive position between the camera and the observed object hides
one dimension (e.g. tracking groups of people in a metro scene
[6]), meaning that can be enough to model a 3D object with a

2D model. (b) The estimation of the other dimension is per-
formed by merging information from different cameras (e.g.
human posture detection [5], apron monitoring application on
an airport [2]). (c) Object detection can be more interesting
than classification for certain applications (e.g. detection of
stopped vehicles in a highway [4]). Certainly, the processing
time spent in calculating the attributes associated to 2D repre-
sentations is inexpensive, allowing to cope with real-time con-
straint. These 2D models are sufficient to find the 3D position
of an object, which is enough for certain applications.
Nevertheless, 2D representations present also several draw-
backs, that make them useless for many applications. In situa-
tions where there are no multiple cameras or it does not exist an
overlap between views on the zone of interest, the third dimen-
sion cannot be estimated by merging cameras information. If
the 2D moving region considerably changes its appearance de-
pending on its position relative to camera (see figure 2), dimen-
sional estimation becomes unreliable. If the 2D representation
considerably changes when the object rotates (see figure 3), di-
mensional estimation becomes also unreliable. For deformable
objects (e.g. persons changing their posture), it would become
a very hard task to define a 2D representation for each possible
deformation of an object of this nature, considering that it can
also change according to different positions relative to camera
and different object orientations.

On the other extreme, different models have been proposed

(a) (b)

Figure 2: 2D moving region deformation by different positions
of an object relative to the camera. Here, the same person (with
same posture) is represented by very dissimilar 2D regions in
the same video sequence. In figure (a) the person is far from
the camera and it is possible to see his height, while in figure
(b) the person is seen almost from top and almost nothing can
be said about his height.

for specific objects (e.g. persons, vehicles), which are applica-
tion and object dependent. Some authors use precise models
of a specific object to perform detection. These models allow
generally to obtain quite good detection rates and attribute esti-
mations, but the computational cost associated to its utilisation
is often too expensive to be real-time. [1] uses a 2D model of
each body part of a human constrained by image motion pa-
rameters to perform tracking of walking persons and human
gestures. [3] uses a very precise 3D model of human to detect
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Figure 3: 2D moving region deformation caused by change of
orientation of the object. Here, the same car is represented
by very dissimilar 2D regions in the same video sequence. In
figure (a) a car is seen from its back part. Later, the car rotates
to park and it is seen from its right part, as seen in figure (b).

postures. In this work, a human posture is described by a set of
23 parameters, subject to biomechanical constraints. This hu-
man model is used to generate silhouettes to be compared with
the one detected for a person in the scene.
Other authors train classifiers with examples they expect to
find in their applications. One of the precursors of this type
of approach are [8]. The authors propose to train a system in
the detection of basic features from an object, and to combine
these basic features to construct a strong classifier, based on
Adaboost algorithm. They present their method with an appli-
cation to frontal view face detection, with high detection rates.
A considerable number of works have taken this kind of ap-
proach. The problem of these methods is their dependence to a
determined object rotation and camera position relative to the
object position (e.g. in [8], the face of a person seen from one
side would not be detected). Another problem is that the detec-
tion is restricted to objects similar to the training samples.
Our approach tries to cope with the majority of the limitations
imposed by 2D models, but being general enough to be capable
of modelling a large variety of objects and still preserving the
capability to perform in real-time. Also, the utilisation of 2D
moving regions as input allows our method to inexpensively
cope with the problem of object translation, giving a good ini-
tial estimate of the position of detected objects. Next section
explains how the method has been developed.

3 The 3D Object Classification

In this section we first describe the proposed 3D model and
its attributes (section 3.1) and the proposed visual reliability
measures. Then, in section 3.2, we present the classification
approach and explain how the merging process works.
The proposed method applies a background subtraction method
to perform segmentation. This method consists on a set of tests
in different colour spaces applied to each pixel for discrimina-
tion between foreground and background pixels. Then, moving
regions are detected and represented as a set of 2D bounding

boxes (i.e. 2D blobs). Next, the classification phase uses the
obtained 2D blobs, the perspective matrix of the scene and pre-
defined 3D parallelepiped models of the expected objects on
the scene, to find the most likely 3D model of each object. Fi-
nally a merging phase is performed to improve the classifica-
tion performance by assembling 2D blobs showing a better 3D
object likelihood when they are put together. The perspective
matrix of the scene is previously obtained from an off-line cam-
era calibration phase, considering the pin-hole camera model.
In the following section we present the mentioned 3D paral-
lelepiped model.

3.1 The 3D Parallelepiped Model

A large variety of objects can be modelled (or, at least, en-
closed) by a parallelepiped. The proposed model is de-
fined as a parallelepiped perpendicular to the ground plane
of the analysed scene. Starting from the basis that a mov-
ing object will be detected as a 2D blob b with 2D lim-
its (Xle f t ,Ybottom,Xright ,Ytop), 3D dimensions can be estimated
based on the information given by predefined 3D parallelepiped
models of the expected objects on the scene.
An attribute model q̃, for an attribute q can be defined as:

q̃ = (Prq(µq,σq),qmin,qmax) (1)

where Prq is a probability distribution described by mean µq

and standard deviation σq, where q ∼ Prq(µq,σq). qmin and
qmax represent the minimal and maximal values for the attribute
q, respectively.
Then, a predefined 3D parallelepiped model QC for an object
class C can be defined as:

QC = (w̃, l̃, h̃) (2)

where w̃, l̃, and h̃ represent the attribute models for the 3D
attributes width, length and height, respectively.
For the applications presented in this work, attributes w, l and h
have been modelled as Gaussian probability distributions with
parameters (µw,σw), (µl ,σl) , and (µh,σh), respectively.
A 3D parallelepiped model SO for an object O detected in the

scene (see figure 4) is described by:

SO = (α,(w,Rw),(l,Rl),(h,Rh)) (3)

where α represents the parallelepiped orientation angle (figure
4(b)), defined as the angle between the direction of length 3D
dimension and x axis of the world referential of the scene. w,
l and h represent the 3D values for width, length and height of
the parallelepiped, respectively. l is defined as the 3D dimen-
sion which direction is parallel to the orientation of the object.
w is the 3D dimension which direction is perpendicular to the
orientation. h is the 3D dimension parallel to the z axis of the
world referential of the scene. Rw, Rl and Rh are 3D visual reli-
ability measures for each dimension. These measures represent
the confidence on the visibility of each dimension of the paral-
lelepiped and are described below.
For obtaining the dimensions of the 3D model we need to cal-
culate the 3D position of the vertexes of the parallelepiped in
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Figure 4: 3D parallelepiped model for detected objects. (a) 3D
view of the scene. (b) Top view of the scene. (c) Point of view
from the camera explaining image 2D referential variables. (d)
Point of view from the camera explaining world 3D referential
variables.

the world referential of the scene. We define Pz
i (xi,yi), with

i ∈ {0,1,2,3} and z ∈ {0,h}, as the eight 3D points (xi,yi,z)

that define the parallelepiped vertexes, with P(0)
i corresponding

to the i-th base point and P(h)
i corresponding to the i-th vertex

on height h, as shown in figure 4(d). We also define Pi, with
i ∈ {0,1,2,3}, as the coordinates for each vertical edge of the
parallelepiped on plane xy of the world referential of the scene,
as depicted in figure 4(b). Then, w and l are defined below.

w = d(P0,P1) = d(P2,P3)
l = d(P1,P2) = d(P3,P0)

(4)

where d(· , ·) is the euclidean distance function.
We want to find a parallelepiped bounded by the limits of the
2D blob b. For this purpose four line segments are defined, as
depicted in figure 4(c):
SegLeft: Defined by points [(Xle f t ,Ytop);(Xle f t ,Ybottom)].
SegBottom: Defined by points [(Xle f t ,Ybottom);
(Xright ,Ybottom)].
SegRight: Defined by points [(Xright ,Ytop);(Xright ,Ybottom)].
SegTop: Defined by points [(Xle f t ,Ytop);(Xright ,Ytop)].
Then, we define points (Tle f t ,Tright ,Ttop,Tbottom) ∈ {Pz

i |i ∈
{0,1,2,3},z ∈ {0,h}} as the vertexes that comply with
equations (5).

ImageProjection(Tle f t) ∈ SegLe f t
ImageProjection(Tright) ∈ SegRight
ImageProjection(Ttop) ∈ SegTop

ImageProjection(Tbottom) ∈ SegBottom

(5)

where ImageProjection(·) is a function that projects a point
from the world referential of the scene onto the image plane.
Considering h as a parameter, the points Pi, with i ∈ {0,1,2,3}
define eight variables to be solved. Therefore, at least eight
equations are required to find the solutions for these variables.
Using the pin-hole camera model equation (6), with M the cal-
ibrated perspective matrix, and the four relations of equation
(5), four linear equations can be defined between each pair of
variables (xi,yi) from each point Pi, with i ∈ {0,1,2,3}, as de-
picted in figures (4(c)) and (4(d)).
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Considering α also as parameter, the following equations must
also be solved in order to obtain the values for all vertexes:

(y2− y1)/(x2− x1) = tan(α)
(y3− y2)/(x3− x2) = tan(α+π/2)
(y0− y3)/(x0− x3) = tan(α+π)

(y1− y0)/(x1− x0) = tan(α+3π/2)

(7)

These equations are derived from the equation of the angle that
must be formed between each parallelepiped base line and the x
axis of the world referential of the scene, given the orientation
α. It is also considered that, for each line formed by the base
points, the next line must be rotated on π/2 degrees to form the



rectangular base of the parallelepiped.
It is now possible to calculate the values for all vertexes Pz

i ,
with i ∈ {0,1,2,3} and z ∈ {0,h}. Then, w and l can be de-
termined by calculating the distance between the obtained 3D
points (see equation (4)). Then, considering perspective matrix
M and 2D blob b = (Xle f t ,Ybottom,Xright ,Ytop), a parallelepiped
model SO for a detected object O can be completely defined as
a function f :

SO = f (α,h,M,b) (8)

Equation (8) defines how to obtain the three dimensions of a
parallelepiped starting from its height h, orientation α, 2D blob
b limits and calibration matrix M.
The visual reliability measures remain to be determined and are
described below.

Visual Reliability Measures

A reliability measure Rq for a dimension q ∈ {w, l,h} is in-
tended to quantify the visual evidence for the estimated dimen-
sion, by visually analysing how much of the dimension can be
seen from the camera point of view. The objective is to find a
measure that give a minimal value (e.g. 0) when attribute is not
visible, and a maximal value (e.g. 1) when the dimension is to-
tally visible. We have chosen to find a function Rq(SO)→ [0,1],
where visual reliability of the attribute is 0 if the attribute is not
visible and 1 if is completely visible.
Considering Pj ∈ {Pi, i ∈ {0,1,2,3}} as the nearest point to
(xc,yc), where (xc,yc,zc) is the 3D position of the focal point
of the camera, then point (x j,y j) is considered as the point
having the best visibility for height 3D dimension. Defining
X2D(P(zk)

k ) as the X coordinate and Y2D(P(zk)
k ) as the Y coordi-

nate of the image projection of a 3D point P(zk)
k of height zk

onto the image plane, we can define Rh as shown in equation
(9).

Rh = max
(

dYh

||SegLe f t||
; dXh

||SegBottom||

)

(9)

where dYh = |Y2D(P(0)
j ) − Y2D(P(h)

j )| and dXh =

|X2D(P(0)
j ) − X2D(P(h)

j )|, and operator ||· || determines the
magnitude of its argument.
In the same way, we can define reliability measures for Rl

and Rw as shown in equations (10) and (11), respectively.
These measures represent visual reliability as the maximal
magnitude of projection of a 3D dimension onto the image
plane, in proportion with the magnitude of each 2D blob
limiting segment. Thus, the maximal value 1 is achieved if the
image projection of a 3D dimension has the same magnitude
compared with one of the 2D blob segments.

Rl = max
(

dYl

||SegLe f t||
; dXl

||SegBottom||

)

(10)

where dYl = |Y2D(P(h)
1 )−Y2D(P(h)

2 )| and dXl = |X2D(P(h)
1 )−

X2D(P(h)
2 )|.

Rw = max
(

dYw

||SegLe f t||
; dXw

||SegBottom||

)

(11)

where dYw = |Y2D(P(h)
0 )−Y2D(P(h)

1 )| and dXw = |X2D(P(h)
0 )−

X2D(P(h)
1 )|.

The following section describes how the method performs clas-
sification.

3.2 The 3D Object Classifier

The method searches the optimal fit for each predefined par-
allelepiped model, scanning different values of h and α. After
finding optima for each class based in the probabilistic measure
PM (defined in equation (12)), the method decides the class of
the analysed blob by using the reliability measure RM, defined
in equation (13). This operation is performed for each blob on
the current frame.

PM(SO,C) = ∏
q∈{w,l,h}

Prq(q|µq,σq) (12)

RM(SO,C) =

∑
q∈{w,l,h}

Rq×Prq(q|µq,σq)

∑
q∈{w,l,h}

Rq×Prq(µq|µq,σq)
(13)

Given a perspective matrix M, object classification is per-
formed for each blob b from the current frame in the following
way:

For each class C of predefined models
For all valid pairs (h,α)

SO← F(α,h,M,b);
if PM(SO,C) improves best current fit S(C)

O for C,
then update optimal S(C)

O for C;
Class(b) = argmaxC(RM(S(C)

O ,C));

Equation (12) presents the PM criteria for comparing between
different configurations for a same class. The idea is to first
find the most probable configuration, regardless the visual re-
liability of its attributes. Equation 13 presents the criteria of
comparison between classes. The justification of this measure
is that dimensional attributes that are not visually reliable will
not be considered (or will be less considered) for comparison
between classes. This measure makes more fair comparisons
between classes in the sense that classes with very good di-
mensional estimates (very likely) of not visible attributes will
not be rewarded on their evaluation, because there is no visual
evidence of those attributes. We search the most probable class
in terms of the high visibility of the attributes.
Finally, after classification, a merging module is applied. This
module searches for blob pairs that are near in distance and
where the resulting blob obtained from merging them gives
a higher likelihood for a class, compared with the results ob-
tained in the classification phase.
Next section presents the obtained results from 20 short se-
quences, extracted from two long duration videos of different
nature.
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Figure 5: Results for different frames of the parking video. Figures (a), (b) and (c) correspond to zoomed versions of captured
frames. Figure (d) shows the real view from the camera.

Name Description TP FP FN CM[fr/s] Total[fr/s] CM[bl/s] Total[bl/s] Precision Sensitivity
Borel 1 1 car parking right 20 0 0 156.27 44.85 164.08 47.09 1.0 1.0
Borel 2 1 person to bottom 20 0 0 161.32 52.36 161.32 52.36 1.0 1.0
Borel 3 1 car going far 20 0 0 49.15 30.82 93.38 58.56 1.0 1.0
Borel 4 1 car parking left 20 3 0 5.55 5.07 34.7 31.67 0.8596 1.0
Borel 5 1 car and 1 person 39 3 1 5.22 4.84 40.2 37.28 0.9286 0.9750
Borel 6 2 cars 40 0 0 17.42 8.83 94.96 48.11 1.0 1.0
Borel 7 2 persons bottom 40 0 0 47.97 26.01 100.74 54.63 1.0 1.0
Borel 8 1 person very far 20 0 0 224.76 39.89 224.76 39.89 1.0 1.0
Borel 9 2 persons walking 40 0 0 16.29 10.22 38.28 24.01 1.0 1.0
Borel 10 2 cars very near 40 0 0 18.69 12.91 83.19 57.47 1.0 1.0

Mean Values 29.9 0.6 0.1 70.26 23.58 103.56 45.11 0.9798 0.9975

Table 1: Obtained results for parking video.

4 Results

Two videos have been tested for validating this approach. The
first video corresponds to a parking sequence where cars and
persons interact. Two object models are used for this sequence.
The evaluation objective of this video is to validate the capa-
bility of the approach for coping with the problem of object
rotation and relative position to camera. The second video cor-
responds to a lock chamber from a bank camera, with high de-
formation of the detected blobs because of the proximity of
persons to the camera. For this video, three models represent-
ing one person and groups of two and three persons are defined
(the space of the chamber allows a maximum of three persons
at the same moment). The lock chamber video is used to vali-
date the approach capability to detect highly deformed objects
and to differentiate between very similar classes. Ten short
sequences of 20 frames have been selected from each video,
giving a total of 400 analysed frames. The selected sequences
avoid occlusion situations (because it is not the scope of this
work and this feature is not yet considered on the approach),
but consider situations of different distances between objects
and the camera focal point, and different object orientations. A
computer Intel Pentium IV, Xeon 3000 Mhz, have been used
for performing the tests. For each sequence, we have counted
True Positive (TP) as the objects which class corresponds with
the ground truth, False Positive (FP) as the classification of

an object that is not in the ground truth, and False Negative
(FN) as the misclassification of an object that is in the ground
truth. This means that classifying an object with a class differ-
ent from ground truth is considered as two errors at the same
time (one FP and one FN), while not classifying it at all meant
just a FN. We have also calculated precision = T P/(T P+FP)
and sensitivity = T P/(T P + FN). For real-time capability
measurement we have calculated [ f rames/second] ([fr/s]) and
[blobs/second] ([bl/s]) rates for Total procedure time (Seg-
mentation, Classification and Merging) and for the time spent
just in Classification and Merging (referred as CM in tables 1
and 2). In figures 5 and 6, each detected object is enclosed by a
2D bounding box and by the corresponding 3D parallelepiped.
The base of parallelepiped is represented by blue lines, while
projected lines in height h are represented by green lines. 2D
bounding boxes take different colours according to the classi-
fied object (person: red, 2 persons: green, 3 persons: blue, car:
brown). Cars in parking sequence that seem not detected are
considered as part of the background of the scene.
For the parking sequence, 3D models for persons and cars were
predefined. The results for this sequence are shown in table
1 and images of these results are shown in figure 5. Parking
results show a very good performance, obtaining a global pre-
cision of 0.98. The encountered errors have been principally
caused by poor segmentation in some frames because of illu-
mination changes. The method have been able to discriminate
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Figure 6: Results for different frames of the bank locked chamber video. Four frames for the selected sequences are shown.

Name Description TP FP FN CM[fr/s] Total[fr/s] CM[bl/s] Total[bl/s] Precision Sensitivity
Sas 1 1 p. with folder 20 0 0 78.75 21.01 129.94 34.67 1.0 1.0
Sas 2 1 mean height p. 20 0 0 50.64 20.54 101.28 41.07 1.0 1.0
Sas 3 1 tall p. 17 3 3 37.46 15.20 69.30 28.12 0.8500 0.8500
Sas 4 2 p. semi-ext. arms 20 0 0 45.36 13.33 77.11 22.65 1.0 1.0
Sas 5 2 p. not aligned 18 2 2 37.11 15.36 81.65 33.80 0.9000 0.9000
Sas 6 2 p. aligned 20 0 0 109.90 26.89 109.90 26.89 1.0 1.0
Sas 7 2 p. extended arms 15 5 5 77.53 23.45 93.04 28.14 0.7500 0.7500
Sas 8 3 p. 1 20 0 0 81.65 19.53 126.55 30.28 1.0 1.0
Sas 9 3 p. 2 19 1 1 26.92 13.77 63.27 32.35 0.9500 0.9500
Sas 10 3 p. 3 20 0 0 74.36 21.23 96.67 27.60 1.0 1.0

Mean Values 18.9 1.1 1.1 61.97 19.03 94.87 30.56 0.9450 0.9450

Table 2: Obtained results for bank locked chamber video.

objects at different orientations and positions relative to the
camera. For instance, figure 5(a) shows the same person in two
different frames detected as a person, showing the method ca-
pability for coping with different positions relative to the cam-
era. In figure 5(b) a very difficult to detect person, because of
its distance to the camera (left image), is successfully detected
in the classification phase (right image). Figures 5(c) and 5(d)
show the capability of the method for coping with different po-
sitions and orientations of cars and for coping with more than
one object class at the same frame.
For the bank locked chamber sequence, models for one, two
and three persons have been defined, where the model of one
person is identical to the person model used in the parking
video. The results for the bank locked chamber sequence are
shown in table 2 and images of these results are shown in fig-
ure 6. Locked chamber results show a very good performance,
obtaining a global precision of 0.95. The encountered errors
have been principally caused by the proximity between pre-
defined models. The obtained results for some sequences are
sometimes very similar with the next class (one person sim-
ilar with two persons, or two persons similar with three) be-
cause of some postures and configurations of persons, that lead
to some misclassification. However, in terms of results, the
method shows the different configurations with similar likeli-
hood that could occur, which could be a beneficial situation for
other purposes. Figures 6(a), 6(c), and 6(d) show examples of
classification for the three different classes. Figure 6(b) shows

the case of a tall person, who has been sometimes misclassified
as two persons.
An application for the bank locked chamber sequence consists
in generating alarms if more than one person is at the same time
in the locked chamber. In this case, a TP corresponds to the de-
tection of more than one person when more than one person
is present on the scene, a True Negative (TN) corresponds to
the detection of one or zero persons when one or zero persons
are in the scene, a FP corresponds to the detection of more
than one person when one or zero persons are present in the
scene, and FN corresponds to the detection of one or zero per-
sons when more than one person is in the scene. Here, 140 TP,
57 TN, 3 FP and 0 FN were found, giving a precision of 0.98
and a sensitivity of 1. Table 3 shows the classification results.
Each row represents ground truth and each column represents
the detected object. Notice that committed errors were always
associated with the detection of more or less one person, com-
pared with the real number of persons.
In both cases, results are obtained in real-time. No-
tice that the performance of the complete method (consid-
ering Segmentation, Classification and Merging phases) is
about 20[ f rames/sec], while the method performance con-
sidering only Classification and Merging phases is about
65[ f rames/sec], showing that the time spent in the classifica-
tion and merging phases is inexpensive compared with the time
spent in the segmentation phase.



1p 2p 3p
1p 57 3 0
2p 0 73 7
3p 0 1 59

Table 3: Classification results for bank locked chamber video,
for objects one-person (1p), two-persons (2p) and three-
persons (3p).

5 Conclusion

The proposed classification method has shown promising re-
sults in object classification. First, the proposed approach has
been able to cope principally with the problems of object posi-
tion relative to the camera position, object orientation and di-
mensional deformation caused by camera proximity, with high
classification rates. Second, the method has shown its capabil-
ity of performing at video frame rate.
One of the principal limitations of the method is its inability
of discrimination between more than one situation geometri-
cally plausible, because it does not use pixel-level information
of moving regions. However, sometimes it is more appropriate
to postpone the decision of classification to later phases when
more information is available.
Visual reliability measures are intended to be used by further
video interpretation phases, as data integration in multi-camera
data fusion and discrimination between visually plausible data
from pure data estimation to aid in the detection and learning
of primitive states and events.
Future work comprises the integration of this method with ob-
ject tracking techniques, the capability of coping with occlu-
sion situations and the improvement of the computation time.
The problem of static occlusion (moving object occluded by a
static object or image borders) can be treated with the infor-
mation obtained from the proposed classification approach, but
dynamic occlusion (a moving object occluded by another mov-
ing object) will require more information that can be obtained
from tracking techniques.
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