Journal Publications
(an updated list of publications can be found here, including the PDF files for download)
- “On Optimal Perfect Reconstruction Feedback Quantizers”
Milan S. Derpich, Eduardo I. Silva, Daniel E. Quevedo and Graham C. Goodwin. IEEE Transactions on Signal Processing, Vol 56, No 8, Part 2, August 2008. - “A Bound on the MSE of Oversampled Dithered Quantization with Feedback“
Milan S. Derpich. IEEE Signal Processing Letters, vol.16, issue 6, 2009 , pp. 541-544. - “An Empirical Study of the Achievable Rates of Several Indoor Network-MIMO Techniques“
Rodolfo Feick, Milan S. Derpich, Reinaldo A. Valuenzuela, Héctor Carrasco, Luciano Ahumada, H. Huang, C.T.K. Ng, and P. Arancibia
IEEE Transactions on Wireless Communications,
Volume: 10 , Issue: 2, 2011 , pp: 581 – 591. - “The High-Resolution Rate-Distortion Function under the Structural Similarity Index”
Jan Østergaard, Milan S. Derpich, and Sumohana S. Channappayya,
EURASIP Journal on Advances in Signal Processing, vol. 2011, Article ID 857959, 7 pages,
2011. doi:10.1155/2011/857959 - “A Framework for Control System Design Subject to Average Data-Rate Constraints“
Eduardo I. Silva, Milan S. Derpich and Jan Østergaard.
IEEE Transactions on Automatic Control, vol. 56 , Nr. 8,
2011 , pp. 1886 – 1899 - “An achievable data-rate region subject to a stationary performance constraint for LTI plants“
Eduardo I. Silva, Milan S. Derpich and Jan Østergaard.
IEEE Transactions on Automatic Control, Vol. 56 , Nr. 8,
2011 , pp. 1968 – 1973 - “Wireless Access Channels with Near-Ground Level Antennas”
Mauricio Rodríguez, Rodolfo Feick, Héctor Carrasco, Reinaldo Valenzuela, Milan S. Derpich and Luciano Ahumada.
IEEE Transactions on Wireless Communications, Vol. 11 , Nr. 6
2012 , Page(s): 2204 – 2211 - “Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources“.
Milan S. Derpich and Jan Østergaard.
IEEE Transactions on Information Theory, Vol. 58 , Nr. 5,
2012 , pp. 3131 – 3152. - “Maximum Expected Rates of Block-Fading Channels with Entropy-Constrained Channel State Feedback”
Elizondo, V.M. and Milan S. Derpich
IEEE Transactions on Communications, vol. 61 , Nr. 2
2013 , pp. 576 – 589 - “Empirical evaluation of the received power gain when remote radio heads are used to enhance the coverage area in urban environments”
Luciano Ahumada, Rodolfo Feick,
Reinaldo Valenzuela, Manuel Gallardo, Milan S. Derpich and
Héctor Carrasco
To appear in IEEE Transactions on Wireless Communications - “Second-Order Spectral Statistics for the Power Gain of Wideband Wireless Channels”
Milan S. Derpich and Rodolfo Feick
To appear in IEEE Transactions on Vehicular Technology
Conference Publications (not updated)
- “Probability of Interpolation of a Mute Sample Interpolative A/D Converter with Horizon Length Two” Milan S. Derpich, Daniel E. Quevedo and Graham C.Goodwin.Proceedings of IEEE-TENCON-2005, Melbourne, Australia, Nov. 2005, pp. 1100-1103
- “Utilizing Prior Knowledge in Robust Optimal Experiment Design” Graham C. Goodwin, James Welsh, Arie Feuer and Milan S. Derpich.Proceedings 14th IFAC Symposium on System Identification (SYSID2006),Newcastle, Australia, March 29-31 2006
Abstract
- “Quantization and Sampling of Not Necessarily Band-Limited Signals” Milan S. Derpich, Daniel E. Quevedo, Graham C. Goodwin and Arie Feuer.Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006;Volume 3, 21-24 May 2006, pp:III-396 – III-399.(This version corrects minor errors present in the version available through IEEE-Xplore.)
Abstract Full PDF
- “Efficient Data Representations for Signal Processing and Control: “Making Most of a Little” Graham C. Goodwin, Milan S. Derpich and Daniel E. Quevedo.Chinese Control Conference- Aug. 2006, pp. PL-17 – PL-37.(This version corrects minor errors present in the version available through IEEE-Xplore)
Abstract Full PDF
- “Optimal AD-Conversion via Sampled-Data Receding Horizon Control Theory” Milan S. Derpich, Daniel E. Quevedo and Graham C. Goodwin.Chinese Control Conference, Aug. 2006, pp. 1417-1422.
Abstract Full PDF
- “Optimal Noise Shaping for Networked Control Systems” Eduardo I. Silva, Graham C. Goodwin, Daniel E. Quevedo and Milan S. Derpich.Proceedings European Control Conference ECC 07, Kos, Greece, 2-5 July 2007.
Abstract Full PDF
- “Conditions for Optimality of Scalar Feedback Quantization” Milan S. Derpich, Daniel E. Quevedo and Graham C. Goodwin.Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008Las Vegas, Nevada, U.S.A., March 31 2008-April 4 2008, pp 3749-3752.
Abstract Full PDF
- “The High-Resolution Rate-Distortion Function for a Simplified SSIM Index” Jan Ostergaard, Milan S. Derpich and Sumohana Channappayya.Submitted to the IEEE International Conference on Image Processing, ICIP 2009.
Abstract Full PDF
My Ph.D. Thesis
- “Optimal Source Coding with Signal Transfer Function Constraints”
Milan S. Derpich, 2009.
Ph.D. Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering.
School of Electrical Engineering and Computer Science,
The University of Newcastle,
Callaghan, NSW 2308, Australia,
February, 2009 (Full PDF)
- Abstract:
This thesis presents results on optimal coding and decoding of discrete-time stochastic signals, in the sense of minimizing a distortion metric subject to a constraint on the bit-rate and on the signal transfer function from source to reconstruction.The first (preliminary) contribution of this thesis is the introduction of new distortion metric that extends the mean squared error (MSE) criterion. We give this extension the name Weighted-Correlation MSE (WCMSE), and use it as the distortion metric throughout the thesis. The WCMSE is a weighted sum of two components of the MSE: the variance of the error component uncorrelated to the source, on the one hand, and the remainder of the MSE, on the other. The WCMSE can take account of signal transfer function constraints by assigning a larger weight to deviations from a target signal transfer function than to source-uncorrelated distortion.Within this framework, the second contribution is the solution of a family of feedback quantizer design problems for wide sense stationary sources using an additive noise model for quantization errors.These associated problems consist of finding the frequency response of the filters deployed around ascalar quantizer that minimize the WCMSE for a fixed quantizer signal-to-(granular)-noise ratio (SNR).This general structure, which incorporates pre-, post-, and feedback filters, includes as special caseswell known source coding schemes such as pulse coded modulation (PCM), Differential Pulse-CodedModulation (DPCM), Sigma Delta (Σ∆) converters, and noise-shaping coders. The optimal frequency response of each of the filters in this architecture is found for each possible subset of the remainingfilters being given and fixed. These results are then applied to oversampled feedback quantization. Inparticular, it is shown that, within the linear model used, and for a fixed quantizer SNR, the MSE decaysexponentially with oversampling ratio, provided optimal filters are used at each oversampling ratio. If a subtractively dithered quantizer is utilized, then the noise model is exact, and the SNR constraint can bedirectly related to the bit-rate if entropy coding is used, regardless of the number of quantization levels.On the other hand, in the case of fixed-rate quantization, the SNR is related to the number of quantization levels, and hence to the bit-rate, when overload errors are negligible. It is shown that, for sources with unbounded support, the latter condition is violated for sufficiently large oversampling ratios. By deriving an upper bound on the contribution of overload errors to the total WCMSE, a lower bound for the decay rate of the WCMSE as a function of the oversampling ratio is found for fixed-rate quantization of sourceswith finite or infinite support.
The third main contribution of the thesis is the introduction of the rate-distortion function (RDF) when WCMSE is the distortion metric, denoted by WCMSE-RDF. We provide a complete characterization for Gaussian sources. The resulting WCMSE-RDF yields, as special cases, Shannon’s RDF, as well as the recently introduced RDF for source-uncorrelated distortions (RDF-SUD). For cases where only source-uncorrelated distortion is allowed, the RDF-SUD is extended to include the possibility of linear-time invariant feedback between reconstructed signal and coder input. It is also shown that feedbackquantization schemes can achieve a bit-rate only 0.254 bits/sample above this RDF by using the samefilters that minimize the reconstruction MSE for a quantizer-SNR constraint.The fourth main contribution of this thesis is to provide a set of conditions under which knowledge of a realization of the RDF can be used directly to solve encoder-decoder design optimization problems.This result has direct implications in the design of subband coders with feedback, as well as in the design of encoder-decoder pairs for applications such as networked control.As the fifth main contribution of this thesis, the RDF-SUD is utilized to show that, for Gaussian stationary sources with memory and MSE distortion criterion, an upper bound on the information-theoretic causal RDF can be obtained by means of an iterative numerical procedure, at all rates. This bound is tighter than 0.5 bits/sample. Moreover, if there exists a realization of the causal RDF in which the reconstruction error is jointly stationary with the source, then the bound obtained coincides with the causal RDF. The iterative procedure proposed here to obtain Rcit(D) also yields a characterization of the filters in a scalar feedback quantizer having an operational rate that exceeds the bound by less than 0.254 bits/sample. This constitutes an upper bound on the optimal performance theoretically attainable by any causal source coder for stationary Gaussian sources under the MSE distortion criterion.
Other Documents
- “Optimal Noise-Shaping DPCM” Milan S. Derpich, Eduardo I. Silva, Daniel E. Quevedo and Graham C. Goodwin.Technical Report.
Abstract Full PDF
- “Sequential Quantization of Frame Expansions” Milan S. DerpichSlides of my Masters to PhD Upgrade Seminar, 1-Feb-2007.
Abstract Full PDF (e-mail request)
- “Achieving the Quadratic Gaussian Rate-Distortion Function for Source Uncorrelated Distortions” Milan S. Derpich, Jan Ostergaard and Daniel E. Quevedo.Technical Report, 2008.
Abstract Full PDF
- “Comments On `Information nonanticipative rate distortion function and its applications’ ”
Milan S. Derpich. Technical Report, December 2017. Full PDF
Abstract:
Comments on the manuscript titled `Information nonanticipative rate distortion function and its applications’, by P. Stavrou, C. K. Kourtellaris, and C. D. Charalambous, CoRR, vol. abs/1405.1593v2, 2015.